Genome-Wide Identification of NAC Family Genes and Their Expression Analyses in Response to Osmotic Stress in Cannabis sativa L.
Abstract
:1. Introduction
2. Results
2.1. Genome-Wide Identification and Analysis of NAC Genes in Cannabis sativa
2.2. Identification Duplicated CsNAC Genes
2.3. Phylogeny of CsNAC Genes
2.4. Cis-Element Analysis of the Promoter Regions of the CsNAC Genes
2.5. Interaction Analysis of the CsNAC Proteins
2.6. Transcriptome Sequencing of Cannabis sativa in Response to Osmotic Stress
2.7. Expression Analysis of CsNAC Genes in Response to Osmotic Stress
3. Discussion
3.1. Identification and Evolutionary Analysis of CsNAC Gene
3.2. The Role of the CsNAC Genes in the Cannabis sativa Seed Germination Process under Osmotic Stress
4. Materials and Methods
4.1. Identification of NACs in the Cannabis sativa Genome
4.2. Phylogenetic Analysis of CsNAC
4.3. Chromosomal Location, Gene Structure and Motif Analysis of CsNACs
4.4. Sub-Cellular Location of CsNAC
4.5. Cis-Regulatory Features in the Upstream Promoter Regions of CsNACs
4.6. Protein-Protein Interaction Studies of CsNAC
4.7. RNA-Seq Analysis
4.7.1. Plant Materials
4.7.2. RNA-Seq and Bioinformatics Analysis
4.8. qRT-PCR Analysis of CsNACs under Osmotic Stress
4.9. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Das, L.; Li, W.; Dodge, L.A.; Stevens, J.C.; Williams, D.W.; Hu, H.; Li, C.; Ray, A.E.; Shi, J. Comparative evaluation of industrial hemp cultivars: Agronomical practices, feedstock characterization, and potential for biofuels and bioproducts. ACS Sustain. Chem. Eng. 2020, 8, 6200–6210. [Google Scholar] [CrossRef]
- Boehnke, K.F.; Gagnier, J.J.; Matallana, L.; Willams, D.A. Substituting cannabidiol for opioids and pain medications among individuals with fibromyalgia: A large online survey. J. Pain 2021, 22, 1418–1428. [Google Scholar] [CrossRef] [PubMed]
- Hu, H.; Liu, H.; Du, G.; Yang, F.; Deng, G.; Yang, Y.; Liu, F. Fiber and seed type of hemp (Cannabis sativa L.) responded differently to salt-alkali stress in seedling growth and physiological indices. Ind. Crops Prod. 2019, 129, 624–630. [Google Scholar] [CrossRef]
- Jin, J.; Tian, F.; Yang, D.C.; Meng, Y.Q.; Kong, L.; Luo, J.; Gao, G. PlantTFDB 4.0: Toward a central hub for transcription factors and regulatory interactions in plants. Nucleic Acids Res. 2017, 45, D1040–D1045. [Google Scholar] [CrossRef]
- Aida, M.; Ishida, T.; Fukaki, H.; Fujisawa, H.; Tasaka, M. Genes involved in organ separation in Arabidopsis: An analysis of the cup-shaped cotyledon mutant. Plant Cell 1997, 9, 841–857. [Google Scholar] [CrossRef]
- Souer, E.; van Houwelingen, A.; Kloos, D.; Mol, J.; Koes, R. The no apical meristem gene of Petunia is required for pattern formation in embryos and flowers and is expressed at meristem and primordia boundaries. Cell 1996, 85, 159–170. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Wang, Q.; Xiong, L.; Lou, Z. A structural view of the conserved domain of rice stress-responsive NAC1. Protein Cell 2011, 2, 55–63. [Google Scholar] [CrossRef]
- Su, H.; Zhang, S.; Yin, Y.; Zhu, D.; Han, L. Genome-wide analysis of NAM-ATAF1, 2-CUC2 transcription factor family in Solanum lycopersicum. J. Plant Biochem. Biotechnol. 2015, 24, 176–183. [Google Scholar] [CrossRef]
- Nuruzzaman, M.; Sharoni, A.M.; Kikuchi, S. Roles of NAC transcription factors in the regulation of biotic and abiotic stress responses in plants. Front. Microbiol. 2013, 4, 248. [Google Scholar] [CrossRef]
- Shao, H.; Wang, H.; Tang, X. NAC transcription factors in plant multiple abiotic stress responses: Progress and prospects. Front. Plant Sci. 2015, 6, 902. [Google Scholar] [CrossRef]
- Singh, S.; Koyama, H.; Bhati, K.K.; Alok, A. The biotechnological importance of the plant-specific NAC transcription factor family in crop improvement. J. Plant Res. 2021, 134, 475–495. [Google Scholar] [CrossRef]
- Kim, H.J.; Nam, H.G.; Lim, P.O. Regulatory network of NAC transcription factors in leaf senescence. Curr. Opin. Plant Biol. 2016, 33, 48–56. [Google Scholar] [CrossRef] [PubMed]
- Takasaki, H.; Maruyama, K.; Takahashi, F.; Miki, F.; Takuya, Y.; Kazuo, N.; Fumiyoshi, M.; Kiminori, T.; Kazuko, Y.S.; Kazuo, S. SNAC-As, stress-responsive NAC transcription factors, mediate ABA-inducible leaf senescence. Plant J. 2015, 84, 1114–1123. [Google Scholar] [CrossRef] [PubMed]
- Mei, F.; Chen, B.; Li, F.; Zhang, Y.; Kang, Z.; Wang, X.; Mao, H. Overexpression of the wheat NAC transcription factor TaSNAC4-3A gene confers drought tolerance in transgenic Arabidopsis. Plant Physiol. Biochem. 2021, 160, 37–50. [Google Scholar] [CrossRef]
- Ma, J.; Tang, X.; Sun, B.; Wei, J.; Ma, L.; Yuan, M.; Zhang, D.; Shao, Y.; Li, C.; Chen, K.M. A NAC transcription factor, TaNAC5D-2, acts as a positive regulator of drought tolerance through regulating water loss in wheat (Triticum aestivum L.). Environ. Exp. Bot. 2022, 196, 104805. [Google Scholar] [CrossRef]
- Luo, P.; Chen, Y.; Rong, K.; Lu, Y.; Wang, N.; Xu, Z.; Pang, B.; Zhou, D.; Weng, J.; Li, M.; et al. ZmSNAC13, a maize NAC transcription factor conferring enhanced resistance to multiple abiotic stresses in transgenic Arabidopsis. Plant Physiol. Biochem. 2022, 170, 160–170. [Google Scholar] [CrossRef] [PubMed]
- He, L.; Bian, J.; Xu, J.; Yang, K. Novel maize NAC transcriptional repressor ZmNAC071 confers enhanced sensitivity to ABA and osmotic stress by downregulating stress-responsive genes in transgenic Arabidopsis. J. Agric. Food Chem. 2019, 67, 8905–8918. [Google Scholar] [CrossRef]
- Shen, J.; Lv, B.; Luo, L.; He, J.; Mao, H.; Xi, D.; Ming, F. The NAC-type transcription factor OsNAC2 regulates ABA-dependent genes and abiotic stress tolerance in rice. Sci. Rep. 2017, 7, 40641. [Google Scholar] [CrossRef]
- Jian, W.; Zheng, Y.; Yu, T.; Cao, H.; Li, Z. SlNAC6, A NAC transcription factor, is involved in drought stress response and reproductive process in tomato. J. Plant Physiol. 2021, 264, 153483. [Google Scholar] [CrossRef]
- Jia, X.; Zeng, Z.; Lyu, Y.; Zhao, S. Drought-responsive NAC transcription factor RcNAC72 is recognized by RcABF4, interacts with RcDREB2A to enhance drought tolerance in Arabidopsis. Int. J. Mol. Sci. 2022, 23, 1755. [Google Scholar] [CrossRef]
- Cao, H.; Wang, L.; Nawaz, M.A.; Niu, M.; Sun, J.; Xie, J.; Kong, Q.; Huang, Y.; Cheng, F.; Bie, Z. Ectopic expression of pumpkin NAC transcription factor CmNAC1 improves multiple abiotic stress tolerance in Arabidopsis. Front. Plant Sci. 2017, 8, 2052. [Google Scholar] [CrossRef]
- Xie, Q.; Frugis, G.; Colgan, D.; Chua, N. Arabidopsis NAC1 transduces auxin signal downstream of TIR1 to promote lateral root development. Genes Dev. 2000, 14, 3024–3036. [Google Scholar] [CrossRef] [PubMed]
- Olsen, A.N.; Eenst, H.A.; Leggio, L.L.; Skriver, K. NAC transcription factors: Structurally distinct, functionally diverse. Trends Plant Sci. 2005, 10, 79–87. [Google Scholar] [CrossRef]
- Ren, T.; Qu, F.; Morris, T.J. HRT gene function requires interaction between a NAC protein and viral capsid protein to confer resistance to turnip crinkle virus. Plant Cell 2000, 12, 1917–1925. [Google Scholar] [CrossRef] [PubMed]
- Nuruzzaman, M.; Manimekalai, R.; Sharoni, A.M.; Satoh, K.; Kondoh, H.; Ooka, H.; Kikuchi, S. Genome-wide analysis of NAC transcription factor family in rice. Gene 2010, 465, 30–44. [Google Scholar] [CrossRef] [PubMed]
- Le, D.T.; Nishiyama, R.; Watanabe, Y.; Mochida, K.; Yamaguchi-Shinozaki, K.; Shinozaki, K.; Tran, L.S.P. Genome-wide survey and expression analysis of the plant-specific NAC transcription factor family in soybean during development and dehydration stress. DNA Res. 2011, 18, 263–276. [Google Scholar] [CrossRef] [PubMed]
- Peng, X.; Zhao, Y.; Li, X.; Wu, M.; Chai, W.; Sheng, L.; Wang, Y.; Dong, Q.; Jiang, H.; Cheng, B. Genomewide identification, classification and analysis of NAC type gene family in maize. J. Genet. 2015, 94, 377–390. [Google Scholar] [CrossRef]
- Wang, B.; Guo, X.; Wang, C.; Ma, J.; Niu, F.; Zhang, H.; Yang, B.; Liang, W.; Han, F.; Jiang, Y.Q. Identification and characterization of plant-specific NAC gene family in canola (Brassica napus L.) reveal novel members involved in cell death. Plant Mol. Biol. 2015, 87, 395–411. [Google Scholar] [CrossRef]
- Kent, W.J.; Baertsch, R.; Hinrichs, A.; Miller, W.; Haussler, D. Evolution’s cauldron: Duplication, deletion, and rearrangement in the mouse and human genomes. Proc. Natl. Acad. Sci. USA 2003, 100, 11484–11489. [Google Scholar] [CrossRef]
- Kong, H.; Landherr, L.L.; Frohlich, M.W.; Leebens-Mack, J.; Ma, H.; de Pamphilis, C.W. Patterns of gene duplication in the plant SKP1 gene family in angiosperms: Evidence for multiple mechanisms of rapid gene birth. Plant J. 2007, 50, 873–885. [Google Scholar] [CrossRef]
- Mehan, M.R.; Freimer, N.B.; Ophoff, R.A. A genome-wide survey of segmental duplications that mediate common human genetic variation of chromosomal architecture. Hum. Genom. 2004, 1, 335. [Google Scholar] [CrossRef] [PubMed]
- Yu, L.; Fei, C.; Wang, D.; Huang, R.; Xuan, W.; Guo, C.; Jing, L.; Meng, W.; Yi, L.; Zhang, H.; et al. Genome-wide identification, evolution and expression profiles analysis of bHLH gene family in Castanea mollissima. Front. Genet. 2023, 14, 1193953. [Google Scholar] [CrossRef] [PubMed]
- Hussain, R.M.; Ali, M.; Feng, X.; Li, X. The essence of NAC gene family to the cultivation of drought-resistant soybean (Glycine max L. Merr.) cultivars. BMC Plant Biol. 2017, 17, 55. [Google Scholar] [CrossRef]
- Shang, H.; Li, W.; Zou, C.; Yuan, Y. Analyses of the NAC transcription factor gene family in Gossypium raimondii Ulbr.: Chromosomal location, structure, phylogeny, and expression patterns. J. Integr. Plant Biol. 2013, 55, 663–676. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Deng, Z.; Lai, J.; Zhang, Y.; Yang, C.; Yin, B.; Zhao, Q.; Zhang, L.; Li, Y.; Yang, C. Dual function of Arabidopsis ATAF1 in abiotic and biotic stress responses. Cell Res. 2009, 19, 1279–1290. [Google Scholar] [CrossRef]
- Rui, Z.; Pan, W.; Zhao, Q.; Hu, H.; Li, X.; Xing, L.; Jia, H.; She, K.; Nie, X. Genome-wide identification, evolution and expression analysis of NAC gene family under salt stress in wild emmer wheat (Triticum dicoccoides. L). Int. J. Biol. Macromol. 2023, 230, 123376. [Google Scholar] [CrossRef]
- Sukiran, N.L.; Ma, J.C.; Ma, H.; Su, Z. ANAC019 is required for recovery of reproductive development under drought stress in Arabidopsis. Plant Mol. Biol. 2019, 99, 161–174. [Google Scholar] [CrossRef]
- Jensen, M.K.; Kjaersgaard, T.; Nielsen, M.M.; Galberg, P.; Petersen, K.; O’Shea, C.; Skriver, K. The Arabidopsis thaliana NAC transcription factor family: Structure–function relationships and determinants of ANAC019 stress signalling. Biochem. J. 2010, 426, 183–196. [Google Scholar] [CrossRef]
- Ye, H.; Liu, S.; Tang, B.; Chen, J.; Xie, Z.; Nolan, T.M.; Jiang, H.; Guo, H.; Lin, H.Y.; Li, L.; et al. RD26 mediates crosstalk between drought and brassinosteroid signalling pathways. Nat. Commun. 2017, 8, 14573. [Google Scholar] [CrossRef]
- Ning, Y.Q.; Ma, Z.Y.; Huang, H.W.; Mo, H.; Zhao, T.T.; Li, L.; Cai, T.; Chen, S.; Ma, L.; He, X.J. Two novel NAC transcription factors regulate gene expression and flowering time by associating with the histone demethylase JMJ14. Nucleic Acids Res. 2015, 43, 1469–1484. [Google Scholar] [CrossRef]
- Zhang, Y.; Wu, X.; Wang, X.; Dai, M.; Peng, Y. Crop root system architecture in drought response. J. Genet. Genom. 2024. [Google Scholar] [CrossRef] [PubMed]
- Wu, A.; Allu, A.D.; Garapati, P.; Siddiqui, H.; Dortay, H.; Zanor, M.I.; Asensi-Fabado, M.A.; Munné-Bosch, S.; Antonio, C.; Tohge, T. JUNGBRUNNEN1, a reactive oxygen species–responsive NAC transcription factor, regulates longevity in Arabidopsis. Plant Cell 2012, 24, 482–506. [Google Scholar] [CrossRef] [PubMed]
- Shahnejat-Bushehri, S.; Mueller-Roeber, B.; Balazadeh, S. Arabidopsis NAC transcription factor JUNGBRUNNEN1 affects thermomemory-associated genes and enhances heat stress tolerance in primed and unprimed conditions. Plant Signal. Behav. 2012, 7, 1518–1521. [Google Scholar] [CrossRef] [PubMed]
- Xu, B.; Sathitsuksanoh, N.; Tang, Y.; Udvardi, M.K.; Zhang, J.Y.; Shen, Z.; Balota, M.; Harich, K.; Zhang, Y.H.; Zhao, B. Overexpression of AtLOV1 in switchgrass alters plant architecture, lignin content, and flowering time. PLoS ONE 2012, 7, e47399. [Google Scholar] [CrossRef] [PubMed]
- Lei, W.; Li, Y.; Yao, X.; Qiao, K.; Wei, L.; Liu, B.; Zhang, D.; Lin, H. NAP is involved in GA-mediated chlorophyll degradation and leaf senescence by interacting with DELLAs in Arabidopsis. Plant Cell Rep. 2020, 39, 75–87. [Google Scholar] [CrossRef]
- Wang, C.; Li, T.; Liu, Q.; Li, L.; Feng, Z.; Yu, S. Characterization and functional analysis of GhNAC82, a NAM domain gene, coordinates the leaf senescence in upland cotton (Gossypium hirsutum L.). Plants 2022, 11, 1491. [Google Scholar] [CrossRef]
- Sáanhez Montesino, R.; Bouza Morcillo, L.; Marquez, J.; Ghita, M.; Duran-Nebreda, S.; Gomez, L.; Holdsworth, M.J.; Bassel, G.; Onate-Sanchez, L. A regulatory module controlling GA-mediated endosperm cell expansion is critical for seed germination in Arabidopsis. Mol. Plant 2019, 12, 71–85. [Google Scholar] [CrossRef]
- Xie, C.; Ding, Z. NAC1 maintains root meristem activity by repressing the transcription of E2Fa in Arabidopsis. Int. J. Mol. Sci. 2022, 23, 12258. [Google Scholar] [CrossRef]
- Balazadeh, S.; Kwashiewski, M.; Caldana, C.; Mehrnia, M.; Zanor, M.I.; Xue, G.P.; Mueller-Roeber, B. ORS1, an H2O2-responsive NAC transcription factor, controls senescence in Arabidopsis thaliana. Mol. Plant 2011, 4, 346–360. [Google Scholar] [CrossRef]
- Zhou, J.; Zhong, R.; Ye, Z.H. Arabidopsis NAC domain proteins, VND1 to VND5, are transcriptional regulators of secondary wall biosynthesis in vessels. PLoS ONE 2014, 9, e105726. [Google Scholar] [CrossRef]
- Tan, T.T.; Endo, H.; Sano, R.; Kurata, T.; Yamaguchi, M.; Ohtani, M.; Demura, T. Transcription factors VND1-VND3 contribute to cotyledon xylem vessel formation. Plant Physiol. 2018, 176, 773–789. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.; Langmead, B.; Salzberg, S.L. HISAT: A fast spliced aligner with low memory requirements. Nat. Methods 2015, 12, 357–360. [Google Scholar] [CrossRef] [PubMed]
- Pertea, M.; Pertea, G.M.; Aatonesce, C.M.; Chang, T.C.; Mendell, J.T.; Salzberg, S.L. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat. Biotechnol. 2015, 33, 290–295. [Google Scholar] [CrossRef] [PubMed]
- Florea, L.; Song, L.; Salzberg, S.L. Thousands of exon skipping events differentiate among splicing patterns in sixteen human tissues. F1000Research 2013, 2, 188. [Google Scholar] [CrossRef]
- Love, M.I.; Huber, W.; Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014, 15, 550. [Google Scholar] [CrossRef]
Gene Symbol | Gene ID | Peptide Length | Chromosome Number | Isoelectric Point | Molecular Weight (KDa) |
---|---|---|---|---|---|
CsNAC01 | LOC115704795 | 417 | Chr1 | 6.15 | 48.27 |
CsNAC02 | LOC115706643 | 368 | Chr1 | 4.88 | 42.34 |
CsNAC03 | LOC115704045 | 355 | Chr1 | 5.13 | 40.05 |
CsNAC04 | LOC115704046 | 139 | Chr1 | 5.49 | 16.06 |
CsNAC05 | LOC115707050 | 296 | Chr1 | 5.47 | 34.45 |
CsNAC06 | LOC115708284 | 508 | Chr1 | 5.38 | 56.52 |
CsNAC07 | LOC115708285 | 496 | Chr1 | 5.26 | 55.96 |
CsNAC08 | LOC115708331 | 353 | Chr1 | 5.78 | 40.64 |
CsNAC09 | LOC115706598 | 297 | Chr1 | 5.30 | 34.47 |
CsNAC10 | LOC115704050 | 478 | Chr1 | 5.60 | 53.15 |
CsNAC11 | LOC115708192 | 498 | Chr1 | 5.15 | 56.17 |
CsNAC12 | LOC115704732 | 353 | Chr1 | 5.57 | 40.80 |
CsNAC13 | LOC115704782 | 378 | Chr1 | 8.84 | 42.51 |
CsNAC14 | LOC115705946 | 380 | Chr1 | 8.84 | 42.69 |
CsNAC15 | LOC115706009 | 498 | Chr1 | 6.02 | 55.09 |
CsNAC16 | LOC115706004 | 588 | Chr1 | 4.54 | 65.40 |
CsNAC17 | LOC115706266 | 352 | Chr1 | 8.50 | 39.49 |
CsNAC18 | LOC115706270 | 393 | Chr1 | 7.31 | 43.35 |
CsNAC19 | LOC115706318 | 413 | Chr1 | 7.23 | 46.34 |
CsNAC20 | LOC115708111 | 419 | Chr1 | 5.81 | 47.31 |
CsNAC21 | LOC115718596 | 380 | Chr2 | 6.68 | 42.94 |
CsNAC22 | LOC115718718 | 248 | Chr2 | 6.86 | 28.73 |
CsNAC23 | LOC115718524 | 205 | Chr2 | 9.87 | 23.60 |
CsNAC24 | LOC115710269 | 333 | Chr3 | 6.57 | 39.24 |
CsNAC25 | LOC115710199 | 235 | Chr3 | 9.06 | 27.15 |
CsNAC26 | LOC115709772 | 368 | Chr3 | 9.00 | 41.39 |
CsNAC27 | LOC115708730 | 295 | Chr3 | 7.18 | 34.27 |
CsNAC28 | LOC115712266 | 267 | Chr4 | 5.22 | 30.86 |
CsNAC29 | LOC115713726 | 295 | Chr4 | 6.08 | 33.99 |
CsNAC30 | LOC115714610 | 433 | Chr4 | 6.81 | 48.79 |
CsNAC31 | LOC115713981 | 350 | Chr4 | 4.76 | 39.01 |
CsNAC32 | LOC115712846 | 265 | Chr4 | 9.43 | 30.31 |
CsNAC33 | LOC115712070 | 422 | Chr4 | 6.31 | 49.01 |
CsNAC34 | LOC115712883 | 285 | Chr4 | 5.63 | 32.92 |
CsNAC35 | LOC115716209 | 511 | Chr5 | 4.98 | 58.08 |
CsNAC36 | LOC115715739 | 364 | Chr5 | 6.30 | 41.75 |
CsNAC37 | LOC115715736 | 860 | Chr5 | 4.50 | 96.02 |
CsNAC38 | LOC115715828 | 329 | Chr5 | 5.28 | 37.09 |
CsNAC39 | LOC115717256 | 487 | Chr5 | 6.35 | 55.32 |
CsNAC40 | LOC115725272 | 322 | Chr6 | 4.50 | 37.95 |
CsNAC41 | LOC115725395 | 325 | Chr6 | 4.51 | 38.22 |
CsNAC42 | LOC115725039 | 338 | Chr6 | 4.51 | 39.68 |
CsNAC43 | LOC115694863 | 214 | Chr6 | 5.27 | 25.28 |
CsNAC44 | LOC115694873 | 289 | Chr6 | 5.40 | 33.73 |
CsNAC45 | LOC115725662 | 206 | Chr6 | 5.03 | 23.81 |
CsNAC46 | LOC115697858 | 381 | Chr7 | 8.97 | 43.12 |
CsNAC47 | LOC115697141 | 392 | Chr7 | 7.20 | 43.33 |
CsNAC48 | LOC115696687 | 359 | Chr7 | 7.74 | 41.40 |
CsNAC49 | LOC115696790 | 249 | Chr7 | 8.70 | 29.41 |
CsNAC50 | LOC115698713 | 459 | Chr8 | 6.43 | 51.65 |
CsNAC51 | LOC115698928 | 287 | Chr8 | 7.09 | 32.60 |
CsNAC52 | LOC115701358 | 284 | Chr8 | 6.96 | 32.57 |
CsNAC53 | LOC115698755 | 254 | Chr8 | 9.53 | 29.21 |
CsNAC54 | LOC115698787 | 389 | Chr8 | 6.09 | 44.69 |
CsNAC55 | LOC115700780 | 188 | Chr8 | 9.24 | 21.72 |
CsNAC56 | LOC115701489 | 343 | Chr8 | 7.20 | 39.82 |
CsNAC57 | LOC115721938 | 314 | Chr9 | 4.45 | 36.72 |
CsNAC58 | LOC115723181 | 457 | Chr9 | 6.84 | 52.16 |
CsNAC59 | LOC115723676 | 323 | Chr9 | 9.61 | 37.64 |
CsNAC60 | LOC115721797 | 738 | Chr9 | 5.56 | 83.83 |
CsNAC61 | LOC115724173 | 382 | Chr9 | 6.20 | 43.78 |
CsNAC62 | LOC115723252 | 419 | Chr9 | 8.24 | 48.33 |
CsNAC63 | LOC115703936 | 293 | ChrX | 6.92 | 33.77 |
CsNAC64 | LOC115709817 | 287 | ChrX | 6.33 | 32.83 |
CsNAC65 | LOC115711844 | 418 | ChrX | 7.21 | 46.82 |
CsNAC66 | LOC115712310 | 637 | ChrX | 4.54 | 72.14 |
CsNAC67 | LOC115712323 | 635 | ChrX | 4.66 | 71.94 |
CsNAC68 | LOC115696969 | 136 | ChrX | 9.79 | 16.09 |
CsNAC69 | LOC115702348 | 382 | ChrX | 6.41 | 44.06 |
Samples | Clean Bases | % ≥ Q30 | Mapped Reads |
---|---|---|---|
YM1-CK1 | 6,670,487,864 | 0.9571 | 39,785,426 (89.23%) |
YM1-CK2 | 6,749,721,064 | 0.9554 | 40,343,097 (89.44%) |
YM1-CK3 | 6,489,204,412 | 0.9552 | 39,105,425 (90.16%) |
YM1-T1 | 7,085,565,094 | 0.9538 | 42,580,022 (89.92%) |
YM1-T2 | 6,935,724,352 | 0.9574 | 41,715,006 (90.00%) |
YM1-T3 | 6,887,479,172 | 0.9532 | 41,339,511 (89.81%) |
YM7-CK1 | 6,902,265,136 | 0.9553 | 39,989,676 (86.68%) |
YM7-CK2 | 7,571,531,100 | 0.9566 | 44,674,940 (88.27%) |
YM7-CK3 | 6,326,231,956 | 0.9574 | 37,321,714 (88.28%) |
YM7-T1 | 6,491,325,706 | 0.9523 | 39,158,112 (90.27%) |
YM7-T2 | 7,173,656,642 | 0.9580 | 43,483,607 (90.69%) |
YM7-T3 | 7,793,387,594 | 0.9557 | 46,930,775 (90.11%) |
YM1 | YM7 | ||||||
---|---|---|---|---|---|---|---|
Gene | Gene ID | Regulated | FDR Value | Gene | Gene ID | Regulated | FDR Value |
CsNAC54 | LOC115698787 | down | 7.38 × 10−5 | CsNAC54 | LOC115698787 | down | 4.80 × 10−3 |
CsNAC55 | LOC115700780 | up | 2.50 × 10−2 | CsNAC55 | LOC115700780 | up | 1.66 × 10−18 |
CsNAC52 | LOC115701358 | down | 3.25 × 10−9 | CsNAC52 | LOC115701358 | down | 7.67 × 10−5 |
CsNAC63 | LOC115703936 | down | 2.81 × 10−4 | CsNAC63 | LOC115703936 | down | 5.77 × 10−3 |
CsNAC03 | LOC115704045 | down | 8.64 × 10−5 | CsNAC03 | LOC115704045 | down | 1.26 × 10−4 |
CsNAC01 | LOC115704795 | up | 4.27 × 10−6 | CsNAC01 | LOC115704795 | up | 3.22 × 10−4 |
CsNAC16 | LOC115706004 | down | 3.60 × 10−6 | CsNAC16 | LOC115706004 | down | 7.28 × 10−4 |
CsNAC15 | LOC115706009 | up | 9.94 × 10−17 | CsNAC15 | LOC115706009 | up | 5.19 × 10−13 |
CsNAC17 | LOC115706266 | down | 4.25 × 10−6 | CsNAC17 | LOC115706266 | down | 1.30 × 10−3 |
CsNAC18 | LOC115706270 | down | 5.47 × 10−14 | CsNAC18 | LOC115706270 | down | 1.40 × 10−19 |
CsNAC19 | LOC115706318 | down | 2.48 × 10−60 | CsNAC19 | LOC115706318 | down | 1.16 × 10−16 |
CsNAC09 | LOC115706598 | down | 5.82 × 10−25 | CsNAC09 | LOC115706598 | down | 5.34 × 10−6 |
CsNAC05 | LOC115707050 | down | 2.65 × 10−10 | CsNAC05 | LOC115707050 | down | 4.76 × 10−2 |
CsNAC26 | LOC115709772 | down | 4.70 × 10−10 | CsNAC26 | LOC115709772 | down | 1.60 × 10−3 |
CsNAC24 | LOC115710269 | down | 1.03 × 10−4 | CsNAC24 | LOC115710269 | down | 2.20 × 10−2 |
CsNAC66 | LOC115712310 | down | 1.00 × 10−6 | CsNAC66 | LOC115712310 | down | 6.81 × 10−8 |
CsNAC67 | LOC115712323 | down | 3.57 × 10−3 | CsNAC67 | LOC115712323 | down | 1.43 × 10−4 |
CsNAC32 | LOC115712846 | down | 4.22 × 10−16 | CsNAC32 | LOC115712846 | down | 1.90 × 10−14 |
CsNAC34 | LOC115712883 | down | 1.50 × 10−11 | CsNAC34 | LOC115712883 | down | 2.59 × 10−5 |
CsNAC29 | LOC115713726 | down | 4.08 × 10−20 | CsNAC29 | LOC115713726 | down | 1.67 × 10−5 |
CsNAC30 | LOC115714610 | down | 8.91 × 10−6 | CsNAC30 | LOC115714610 | down | 6.62 × 10−9 |
CsNAC62 | LOC115723252 | down | 1.93 × 10−25 | CsNAC62 | LOC115723252 | down | 5.94 × 10−6 |
CsNAC61 | LOC115724173 | down | 3.45 × 10−8 | CsNAC61 | LOC115724173 | down | 5.00 × 10−4 |
CsNAC45 | LOC115725662 | down | 1.67 × 10−3 | CsNAC45 | LOC115725662 | down | 8.44 × 10−4 |
CsNAC46 | LOC115697858 | up | 1.40 × 10−2 | CsNAC13 | LOC115704782 | down | 5.05 × 10−8 |
CsNAC51 | LOC115698928 | up | 4.59 × 10−3 | CsNAC02 | LOC115706643 | up | 3.50 × 10−2 |
CsNAC37 | LOC115715736 | up | 2.08 × 10−4 | CsNAC20 | LOC115708111 | down | 1.53 × 10−9 |
CsNAC38 | LOC115715828 | down | 1.37 × 10−5 | ||||
CsNAC21 | LOC115718596 | up | 2.57 × 10−6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Q.; Zhang, H.; Yang, Y.; Tang, K.; Yang, Y.; Ouyang, W.; Du, G. Genome-Wide Identification of NAC Family Genes and Their Expression Analyses in Response to Osmotic Stress in Cannabis sativa L. Int. J. Mol. Sci. 2024, 25, 9466. https://doi.org/10.3390/ijms25179466
Li Q, Zhang H, Yang Y, Tang K, Yang Y, Ouyang W, Du G. Genome-Wide Identification of NAC Family Genes and Their Expression Analyses in Response to Osmotic Stress in Cannabis sativa L. International Journal of Molecular Sciences. 2024; 25(17):9466. https://doi.org/10.3390/ijms25179466
Chicago/Turabian StyleLi, Qi, Hanxue Zhang, Yulei Yang, Kailei Tang, Yang Yang, Wenjing Ouyang, and Guanghui Du. 2024. "Genome-Wide Identification of NAC Family Genes and Their Expression Analyses in Response to Osmotic Stress in Cannabis sativa L." International Journal of Molecular Sciences 25, no. 17: 9466. https://doi.org/10.3390/ijms25179466
APA StyleLi, Q., Zhang, H., Yang, Y., Tang, K., Yang, Y., Ouyang, W., & Du, G. (2024). Genome-Wide Identification of NAC Family Genes and Their Expression Analyses in Response to Osmotic Stress in Cannabis sativa L. International Journal of Molecular Sciences, 25(17), 9466. https://doi.org/10.3390/ijms25179466