In Vitro Modulation of Human Foam Cell Formation and Adhesion Molecules Expression by Ginger Extracts Points to Potential Cardiovascular Preventive Agents
Abstract
:1. Introduction
2. Results
2.1. Fractionation of Raw Ginger Extract and Thin-Layer Chromatography
2.2. Foam Cell Formation upon oxLDL Exposure
2.3. The Effect of Ginger Fractions on Foam Cell Formation
2.4. The Effect of Ginger Fractions on Scavenger Receptors and Cellular Adhesion Markers
2.5. Effect of Ginger Fractions on LDL Oxidation
2.6. The Effect of Ginger Fractions on the Inflammasome
3. Discussion
4. Materials and Methods
4.1. Fractionation of Raw Ginger Extract and High-Performance Thin-Layer Chromatography
4.2. oxLDL Production
4.3. Cell Culture
4.4. Assessment of Foam Cell Formation under oxLDL Exposure by the Oil Red O Assay
4.5. Effect of Ginger Fractions on Foam Cell Formation According to the Oil Red O Assay
4.6. The Effect of Ginger Fractions on Scavenger Receptors and Cellular Adhesion Markers Determined by Indirect Immunofluorescence
4.7. The Effect of Ginger Fractions on the Electronegativity of LDL
4.8. The Effect of Ginger Fractions on the Inflammasome by Western Blotting Analysis
4.9. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cesare, D.; Bixby, H.; Gaziano, T.; Hadeed, L.; Kabudula, C.; McGhie, D.V.; Mwangi, J.; Pervan, B.; Perel, P.; Piñeiro, D.; et al. World Heart Report 2023-Confronting the world’s number one killer. Nat. Med. 2022, 28, 2019–2026. [Google Scholar] [CrossRef]
- Rafieian-Kopaei, M.; Setorki, M.; Doudi, M.; Baradaran, A.; Nasri, H. Atherosclerosis: Process, Indicators, Risk Factors and New Hopes. Int. J. Prev. Med. 2014, 5, 927–946. [Google Scholar]
- Tannock, L.R.; King, V.L. Proteoglycan mediated lipoprotein retention: A mechanism of diabetic atherosclerosis. Rev. Endocr. Metab. Disord. 2008, 9, 289–300. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, H.; Kisugi, R. Mechanisms of LDL oxidation. Clin. Chim. Acta 2010, 411, 1875–1882. [Google Scholar] [CrossRef]
- Cunningham, K.S.; Gotlieb, A.I. The role of shear stress in the pathogenesis of atherosclerosis. Lab. Investig. 2005, 85, 9–23. [Google Scholar] [CrossRef]
- Gimbrone, M.A.; García-Cardeña, G. Endothelial Cell Dysfunction and the Pathobiology of Atherosclerosis. Circ. Res. 2016, 118, 620–636. [Google Scholar] [CrossRef] [PubMed]
- Falk, E. Pathogenesis of Atherosclerosis. J. Am. Coll. Cardiol. 2006, 47, C7–C12. [Google Scholar] [CrossRef]
- Colin, S.; Chinetti-Gbaguidi, G.; Staels, B. Macrophage phenotypes in atherosclerosis. Immunol. Rev. 2014, 262, 153–166. [Google Scholar] [CrossRef]
- Xu, H.; Jiang, J.; Chen, W.; Li, W.; Chen, Z. Vascular Macrophages in Atherosclerosis. J. Immunol. Res. 2019, 2019, 1–14. [Google Scholar] [CrossRef]
- Moore, K.J.; Freeman, M.W. Scavenger Receptors in Atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 2006, 26, 1702–1711. [Google Scholar] [CrossRef]
- Kzhyshkowska, J.; Neyen, C.; Gordon, S. Role of macrophage scavenger receptors in atherosclerosis. Immunobiology 2012, 217, 492–502. [Google Scholar] [CrossRef] [PubMed]
- de Villiers, W.J.S.; Smart, E.J. Macrophage scavenger receptors and foam cell formation. J. Leukoc. Biol. 1999, 66, 740–746. [Google Scholar] [CrossRef]
- Glass, C.K.; Witztum, J.L. Atherosclerosis: The Road Ahead. Cell 2001, 104, 503–516. [Google Scholar] [CrossRef]
- Libby, P. The changing landscape of atherosclerosis. Nature 2021, 592, 7855. [Google Scholar] [CrossRef] [PubMed]
- Newman, D.J.; Cragg, G.M. Natural Products as Sources of New Drugs over the Nearly Four Decades from 01/1981 to 09/2019. J. Nat. Prod. 2020, 83, 770–803. [Google Scholar] [CrossRef] [PubMed]
- Sedighi, M.; Bahmani, M.; Asgary, S.; Beyranvand, F.; Rafieian-Kopaei, M. A review of plant-based compounds and medicinal plants effective on atherosclerosis. J. Res. Med. Sci. 2017, 22, 30. [Google Scholar] [CrossRef]
- Singletary, K. Ginger: An Overview of Health Benefits. Nutr. Today 2010, 45, 171. [Google Scholar] [CrossRef]
- Shahrajabian, M.H.; Sun, W.; Cheng, Q. Clinical aspects and health benefits of ginger (Zingiber officinale) in both traditional Chinese medicine and modern industry. Acta Agric. Scand. Sect. B—Soil Plant Sci. 2019, 69, 546–556. [Google Scholar] [CrossRef]
- Al-Awwadi, N.A.J. Potential health benefits and scientific review of ginger. JPP 2017, 9, 111–116. [Google Scholar] [CrossRef]
- Murad, M.S.; Shahina; Arain, A.Q.; Azmi, A.A. A Prospective Study on Hypolipidaemic Effects in Fresh and Dried Ginger Varieties. J. Pharmacovigil. Drug Saf. 2020, 17, 2. [Google Scholar]
- Li, C.; Li, J.; Jiang, F.; Tzvetkov, N.T.; Horbanczuk, J.O.; Li, Y.; Atanasov, A.G.; Wang, D. Vasculoprotective effects of ginger (Zingiber officinale Roscoe) and underlying molecular mechanisms. Food Funct. 2021, 12, 1897–1913. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Tian, M.; Yang, R.; Jing, Y.; Chen, W.; Wang, J.; Zheng, X.; Wang, F. 6-Gingerol Ameliorates Behavioral Changes and Atherosclerotic Lesions in ApoE−/−Mice Exposed to Chronic Mild Stress. Cardiovasc. Toxicol. 2018, 18, 420–430. [Google Scholar] [CrossRef] [PubMed]
- Praillet, C.; Lortat-Jacob, H.; Grimaud, J.-A. Les protéoglycanes II. Rôles en pathologie. M.S. Méd. Sci. 1998, 14, 421–428. [Google Scholar] [CrossRef]
- Mankan, A.K.; Dau, T.; Jenne, D.; Hornung, V. The NLRP3/ASC/Caspase-1 axis regulates IL-1β processing in neutrophils. Eur. J. Immunol. 2012, 42, 710–715. [Google Scholar] [CrossRef]
- Salaramoli, S.; Mehri, S.; Yarmohammadi, F.; Hashemy, S.I.; Hosseinzadeh, H. The effects of ginger and its constituents in the prevention of metabolic syndrome: A review. Iran. J. Basic Med. Sci. 2022, 25, 664–674. [Google Scholar] [CrossRef]
- Roudsari, N.M.; Lashgari, N.-A.; Momtaz, S.; Roufogalis, B.; Abdolghaffari, A.H.; Sahebkar, A. Ginger: A complementary approach for management of cardiovascular diseases. BioFactors 2021, 47, 933–951. [Google Scholar] [CrossRef]
- Fakhri, S.; Patra, J.K.; Das, S.K.; Das, G.; Majnooni, M.B.; Farzaei, M.H. Ginger and Heart Health: From Mechanisms to Therapeutics. Curr. Mol. Pharmacol. 2021, 14, 943–959. [Google Scholar] [CrossRef]
- Liu, Q.; Liu, J.; Guo, H.; Sun, S.; Wang, S.; Zhang, Y.; Li, S.; Qiao, Y. [6]-Gingerol: A Novel AT1 Antagonist for the Treatment of Cardiovascular Disease. Planta Med. 2013, 79, 322–326. [Google Scholar] [CrossRef]
- Halliwell, B. Oxidative stress in cell culture: An under-appreciated problem? FEBS Lett. 2003, 540, 3–6. [Google Scholar] [CrossRef]
- Hosseinzadeh, A.; Bahrampour Juybari, K.; Fatemi, M.J.; Kamarul, T.; Bagheri, A.; Tekiyehmaroof, N.; Sharifi, A.M. Protective Effect of Ginger (Zingiber officinale Roscoe) Extract against Oxidative Stress and Mitochondrial Apoptosis Induced by Interleukin-1β in Cultured Chondrocytes. Cells Tissues Organs 2017, 204, 241–250. [Google Scholar] [CrossRef]
- Scalia, A.; Doumani, L.; Kindt, N.; Journé, F.; Trelcat, A.; Carlier, S. The Interplay between Atherosclerosis and Cancer: Breast Cancer Cells Increase the Expression of Endothelial Cell Adhesion Markers. Biology 2023, 12, 896. [Google Scholar] [CrossRef]
- Lara-Guzmán, O.J.; Gil-Izquierdo, Á.; Medina, S.; Osorio, E.; Álvarez-Quintero, R.; Zuluaga, N.; Oger, C.; Galano, J.M.; Durand, T.; Muñoz-Durango, K. Oxidized LDL triggers changes in oxidative stress and inflammatory biomarkers in human macrophages. Redox Biol. 2018, 15, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Hu, Z.; Hui, B.; Hou, X.; Liu, R.; Sukhanov, S.; Liu, X. APE1 inhibits foam cell formation from macrophages via LOX1 suppression. Am. J. Transl. Res. 2020, 12, 6559–6568. [Google Scholar] [PubMed]
- Badrnya, S.; Schrottmaier, W.C.; Kral, J.B.; Yaiw, K.C.; Volf, I.; Schabbauer, G.; Söderberg-Nauclér, C.; Assinger, A. Platelets Mediate Oxidized Low-Density Lipoprotein–Induced Monocyte Extravasation and Foam Cell Formation. Arterioscler. Thromb. Vasc. Biol. 2014, 34, 571–580. [Google Scholar] [CrossRef]
- Wang, Q.; Wu, J.; Zeng, Y.; Chen, K.; Wang, C.; Yang, S.; Sun, N.; Chen, H.; Duan, K.; Zeng, G. Pyroptosis: A pro-inflammatory type of cell death in cardiovascular disease. Clin. Chim. Acta 2020, 510, 62–72. [Google Scholar] [CrossRef] [PubMed]
- Balanescu, S.; Barbu, E.; Georgescu, C.; Popescu, A.C. NLRP3 Inflammasome in Cardiovascular Disease: David’s Stone against Goliath? Rom. J. Cardiol. 2021, 31, 517–527. [Google Scholar] [CrossRef]
- Wang, P.; Zhang, W.; Feng, Z.; Zhang, J.; Sun, Y.; Zhang, W. LDL-induced NLRC3 inflammasome activation in cardiac fibroblasts contributes to cardiomyocytic dysfunction. Mol. Med. Rep. 2021, 24, 526. [Google Scholar] [CrossRef]
- Gram, A.M.; Wright, J.A.; Pickering, R.J.; Lam, N.L.; Booty, L.M.; Webster, S.J.; Bryant, C.E. Salmonella Flagellin Activates NAIP/NLRC4 and Canonical NLRP3 Inflammasomes in Human Macrophages. J. Immunol. 2021, 206, 631–640. [Google Scholar] [CrossRef]
- Vlaminck, B.; Calay, D.; Genin, M.; Sauvage, A.; Ninane, N.; Zouaoui Boudjeltia, K.; Raes, M.; Michiels, C. Effects of copper sulfate-oxidized or myeloperoxidase-modified LDL on lipid loading and programmed cell death in macrophages under hypoxia. Hypoxia 2014, 2, 153–169. [Google Scholar] [CrossRef]
- Cathcart, M.K. Regulation of Superoxide Anion Production by NADPH Oxidase in Monocytes/Macrophages. Arterioscler. Thromb. Vasc. Biol. 2004, 24, 23–28. [Google Scholar] [CrossRef]
- Council of Europe. High-performance thin-layer chromatography of herbal drugs and herbal drug preparations (2.8.25). In European Pharmacopoeia, 11th ed.; Council of Europe: Strasbourg, France, 2023. [Google Scholar]
- Scalia, A.; Kindt, N.; Trelcat, A.; Nachtergael, A.; Duez, P.; Journé, F.; Carlier, S. Development of a Method for Producing oxLDL: Characterization of Their Effects on HPV-Positive Head and Neck Cancer Cells. Int. J. Mol. Sci. 2022, 23, 12552. [Google Scholar] [CrossRef] [PubMed]
- Justo, O.R.; Simioni, P.U.; Gabriel, D.L.; da S, W.M.; de T, P.; Moraes, Â.M. Evaluation of in vitro anti-inflammatory effects of crude ginger and rosemary extracts obtained through supercritical CO2 extraction on macrophage and tumor cell line: The influence of vehicle type. BMC Complement. Altern. Med. 2015, 15, 390. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Scalia, A.; Coquay, M.; Kindt, N.; Duez, P.; Aro, R.; Journé, F.; Fabjanczyk, M.; Trelcat, A.; Carlier, S. In Vitro Modulation of Human Foam Cell Formation and Adhesion Molecules Expression by Ginger Extracts Points to Potential Cardiovascular Preventive Agents. Int. J. Mol. Sci. 2024, 25, 9487. https://doi.org/10.3390/ijms25179487
Scalia A, Coquay M, Kindt N, Duez P, Aro R, Journé F, Fabjanczyk M, Trelcat A, Carlier S. In Vitro Modulation of Human Foam Cell Formation and Adhesion Molecules Expression by Ginger Extracts Points to Potential Cardiovascular Preventive Agents. International Journal of Molecular Sciences. 2024; 25(17):9487. https://doi.org/10.3390/ijms25179487
Chicago/Turabian StyleScalia, Alessandro, Maxime Coquay, Nadège Kindt, Pierre Duez, Rania Aro, Fabrice Journé, Mathilde Fabjanczyk, Anne Trelcat, and Stéphane Carlier. 2024. "In Vitro Modulation of Human Foam Cell Formation and Adhesion Molecules Expression by Ginger Extracts Points to Potential Cardiovascular Preventive Agents" International Journal of Molecular Sciences 25, no. 17: 9487. https://doi.org/10.3390/ijms25179487
APA StyleScalia, A., Coquay, M., Kindt, N., Duez, P., Aro, R., Journé, F., Fabjanczyk, M., Trelcat, A., & Carlier, S. (2024). In Vitro Modulation of Human Foam Cell Formation and Adhesion Molecules Expression by Ginger Extracts Points to Potential Cardiovascular Preventive Agents. International Journal of Molecular Sciences, 25(17), 9487. https://doi.org/10.3390/ijms25179487