Manual Therapy Improves Fibromyalgia Symptoms by Downregulating SIK1
Abstract
:1. Introduction
2. Results
2.1. Study Design, Demographics, and Phenotyping
2.1.1. Demographics of Participants by Study Cohort
2.1.2. Participant Phenotyping
2.2. Differential Gene Expression in PBMCs of FM with Therapy
2.3. Gene Enrichment and Pathway Analysis with MT in the Immune System of FM
2.4. RT-qPCR Validation of Protein-Coding Genes Differentially Expressed in Response to MT in FM
2.5. Correlation of Genes Differentially Expressed in Response to MT with Patient Symptoms and Sensitivity to Pain (PPTs)
3. Discussion
4. Materials and Methods
4.1. Study Design and Intervention
4.2. Total RNA Preparation and Quality Assessment
4.3. RNAseq
4.4. Enrichment Analysis
4.5. RT-qPCR Validation
4.6. Statistics
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Harrison, J.E.; Weber, S.; Jakob, R.; Chute, C.G. ICD-11: An international classification of diseases for the twenty-first century. BMC Med. Inform. Decis. Mak. 2021, 21 (Suppl. 6), 206. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wolfe, F.; Smythe, H.A.; Yunus, M.B.; Bennett, R.M.; Bombardier, C.; Goldenberg, D.L.; Tugwell, P.; Campbell, S.M.; Abeles, M.; Clark, P.; et al. The American College of Rheumatology 1990 Criteria for the Classification of Fibromyalgia. Report of the Multicenter Criteria Committee. Arthritis Rheum. 1990, 33, 160–172. [Google Scholar] [CrossRef] [PubMed]
- Wolfe, F.; Clauw, D.J.; Fitzcharles, M.A.; Goldenberg, D.L.; Katz, R.S.; Mease, P.; Russell, A.S.; Russell, I.J.; Winfield, J.B.; Yunus, M.B. The American College of Rheumatology preliminary diagnostic criteria for fibromyalgia and measurement of symptom severity. Arthritis Care Res. 2010, 62, 600–610. [Google Scholar] [CrossRef] [PubMed]
- Fitzcharles, M.A.; Cohen, S.P.; Clauw, D.J.; Littlejohn, G.; Usui, C.; Häuser, W. Nociplastic pain: Towards an understanding of prevalent pain conditions. Lancet 2021, 397, 2098–2110. [Google Scholar] [CrossRef] [PubMed]
- Carruthers, B.M.; Jain, A.K.; De Meirleir, K.L.; Peterson, D.L.; Klimas, N.G.; Lerner, A.M.; Bested, A.C.; Flor-Henry, P.; Joshi, P.; Powles, A.C.P.; et al. Myalgic Encephalomyelitis/Chronic Fatigue Syndrome: Clinical Working Case Definition, Diagnostic and Treatment Protocols. J. Chronic Fatigue Syndr. 2003, 11, 7–115. [Google Scholar] [CrossRef]
- Carruthers, B.M.; van de Sande, M.I.; De Meirleir, K.L.; Klimas, N.G.; Broderick, G.; Mitchell, T.; Staines, D.; Powles, A.C.; Speight, N.; Vallings, R.; et al. Myalgic encephalomyelitis: International Consensus Criteria. J. Intern. Med. 2011, 270, 327–338. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Jones, G.T.; Atzeni, F.; Beasley, M.; Flüß, E.; Sarzi-Puttini, P.; Macfarlane, G.J. The prevalence of fibromyalgia in the general population: A comparison of the American College of Rheumatology 1990, 2010, and modified 2010 classification criteria. Arthritis Rheumatol. 2015, 67, 568–575. [Google Scholar] [CrossRef] [PubMed]
- Queiroz, L.P. Worldwide Epidemiology of Fibromyalgia. Curr. Pain. Headache Rep. 2013, 17, 356. [Google Scholar] [CrossRef] [PubMed]
- Cabo-Meseguer, A.; Cerdá-Olmedo, G.; Trillo-Mata, J.L. Fibromyalgia: Prevalence, epidemiologic profiles and economic costs. Med. Clin. 2017, 149, 441–448, (In English, Spanish). [Google Scholar] [CrossRef] [PubMed]
- Almenar-Pérez, E.; Sánchez-Fito, T.; Ovejero, T.; Nathanson, L.; Oltra, E. Impact of Polypharmacy on Candidate Biomarker miRNomes for the Diagnosis of Fibromyalgia and Myalgic Encephalomyelitis/Chronic Fatigue Syndrome: Striking Back on Treatments. Pharmaceutics 2019, 11, 126. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Carrasco-Vega, E.; Guiducci, S.; Nacci, F.; Bellando Randone, S.; Bevilacqua, C.; Gonzalez-Sanchez, M.; Barni, L. Efficacy of physiotherapy treatment in medium and long term in adults with fibromyalgia: An umbrella of systematic reviews. Clin. Exp. Rheumatol. 2024, 42, 1248–1261. [Google Scholar] [CrossRef] [PubMed]
- Espejo, J.A.; García-Escudero, M.; Oltra, E. Unraveling the Molecular Determinants of Manual Therapy: An Approach to Integrative Therapeutics for the Treatment of Fibromyalgia and Chronic Fatigue Syndrome/Myalgic Encephalomyelitis. Int. J. Mol. Sci. 2018, 19, 2673. [Google Scholar] [CrossRef] [PubMed]
- Waters-Banker, C.; Butterfield, T.A.; Dupont-Versteegden, E.E. Immunomodulatory effects of massage on nonperturbed skeletal muscle in rats. J. Appl. Physiol. 2014, 116, 164–175. [Google Scholar] [CrossRef] [PubMed]
- Eller-Smith, O.C.; Nicol, A.L.; Christianson, J.A. Potential Mechanisms Underlying Centralized Pain and Emerging Therapeutic Interventions. Front. Cell. Neurosci. 2018, 12, 35. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Li, Y.H.; Wang, F.Y.; Feng, C.Q.; Yang, X.F.; Sun, Y.H. Massage therapy for fibromyalgia: A systematic review and meta-analysis of randomized controlled trials. PLoS ONE 2014, 9, e89304. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhang, Z.; Zhu, Z.; Liu, D.; Mi, Z.; Tao, H.; Fan, H. Blood transcriptome and machine learning identified the crosstalk between COVID-19 and fibromyalgia: A preliminary study. Clin. Exp. Rheumatol. 2023, 41, 1262–1274. [Google Scholar] [CrossRef] [PubMed]
- Verma, V.; Drury, G.L.; Parisien, M.; Özdağ Acarli, A.N.; Al-Aubodah, T.A.; Nijnik, A.; Wen, X.; Tugarinov, N.; Verner, M.; Klares, R.I.; et al. Unbiased immune profiling reveals a natural killer cell-peripheral nerve axis in fibromyalgia. Pain 2022, 163, e821–e836. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Falaguera-Vera, F.J.; Garcia-Escudero, M.; Bonastre-Férez, J.; Zacarés, M.; Oltra, E. Pressure Point Thresholds and ME/CFS Comorbidity as Indicators of Patient’s Response to Manual Physiotherapy in Fibromyalgia. Int. J. Environ. Res. Public Health 2020, 17, 8044. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Burckhardt, C.S.; Clark, S.R.; Bennett, R.M. The fibromyalgia impact questionnaire: Development and validation. J. Rheumatol. 1991, 18, 728–733. [Google Scholar] [PubMed]
- Rivera, J.; González, T. The Fibromyalgia Impact Questionnaire: A validated Spanish version to assess the health status in women with fibromyalgia. Clin. Exp. Rheumatol. 2004, 22, 554–560. [Google Scholar] [PubMed]
- Smets, E.M.; Garssen, B.; Bonke, B.; De Haes, J.C. The Multidimensional Fatigue Inventory (MFI) psychometric qualities of an instrument to assess fatigue. J. Psychosom. Res. 1995, 39, 315–325. [Google Scholar] [CrossRef] [PubMed]
- McHorney, C.A.; Ware, J.E., Jr.; Raczek, A.E. The MOS 36-Item Short-Form Health Survey (SF-36): II. Psychometric and clinical tests of validity in measuring physical and mental health constructs. Med. Care 1993, 31, 247–263. [Google Scholar] [CrossRef] [PubMed]
- Silva-Passadouro, B.; Tamasauskas, A.; Khoja, O.; Casson, A.J.; Delis, I.; Brown, C.; Sivan, M. A systematic review of quantitative EEG findings in Fibromyalgia, Chronic Fatigue Syndrome and Long COVID. Clin. Neurophysiol. 2024, 163, 209–222. [Google Scholar] [CrossRef] [PubMed]
- Ashburner, M.; Ball, C.A.; Blake, J.A.; Botstein, D.; Butler, H.; Cherry, J.M.; Davis, A.P.; Dolinski, K.; Dwight, S.S.; Eppig, J.T.; et al. Gene ontology: Tool for the unification of biology. The Gene Ontology Consortium. Nat. Genet. 2000, 25, 25–29. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- The Gene Ontology Consortium; Aleksander, S.A.; Balhoff, J.; Carbon, S.; Cherry, J.M.; Drabkin, H.J.; Ebert, D.; Feuermann, M.; Gaudet, P.; Harris, N.L.; et al. The Gene Ontology knowledgebase in 2023. Genetics 2023, 224, iyad031. [Google Scholar] [CrossRef] [PubMed]
- Jagannath, A.; Taylor, L.; Ru, Y.; Wakaf, Z.; Akpobaro, K.; Vasudevan, S.; Foster, R.G. The multiple roles of salt-inducible kinases in regulating physiology. Physiol. Rev. 2023, 103, 2231–2269. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Jagannath, A.; Butler, R.; Godinho, S.I.; Couch, Y.; Brown, L.A.; Vasudevan, S.R.; Flanagan, K.C.; Anthony, D.; Churchill, G.C.; Wood, M.J.; et al. The CRTC1-SIK1 pathway regulates entrainment of the circadian clock. Cell 2013, 154, 1100–1111. [Google Scholar] [CrossRef]
- Stewart, R.; Akhmedov, D.; Robb, C.; Leiter, C.; Berdeaux, R. Regulation of SIK1 abundance and stability is critical for myogenesis. Proc. Natl. Acad. Sci. USA 2013, 110, 117–122. [Google Scholar] [CrossRef] [PubMed]
- Clark, K.; MacKenzie, K.F.; Petkevicius, K.; Kristariyanto, Y.; Zhang, J.; Choi, H.G.; Peggie, M.; Plater, L.; Pedrioli, P.G.; McIver, E.; et al. Phosphorylation of CRTC3 by the salt-inducible kinases controls the interconversion of classically activated and regulatory macrophages. Proc. Natl. Acad. Sci. USA 2012, 109, 16986–16991. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Yong Kim, S.; Jeong, S.; Chah, K.H.; Jung, E.; Baek, K.H.; Kim, S.T.; Shim, J.H.; Chun, E.; Lee, K.Y. Salt-inducible kinases 1 and 3 negatively regulate Toll-like receptor 4-mediated signal. Mol. Endocrinol. 2013, 27, 1958–1968. [Google Scholar] [CrossRef] [PubMed]
- Sanosaka, M.; Fujimoto, M.; Ohkawara, T.; Nagatake, T.; Itoh, Y.; Kagawa, M.; Kumagai, A.; Fuchino, H.; Kunisawa, J.; Naka, T.; et al. Salt-inducible kinase 3 deficiency exacerbates lipopolysaccharide-induced endotoxin shock accompanied by increased levels of proinflammatory molecules in mice. Immunology 2015, 145, 268–278. [Google Scholar] [CrossRef]
- Sundberg, T.B.; Choi, H.G.; Song, J.H.; Russell, C.N.; Hussain, M.M.; Graham, D.B.; Khor, B.; Gagnon, J.; O’Connell, D.J.; Narayan, K.; et al. Small-molecule screening identifies inhibition of salt-inducible kinases as a therapeutic strategy to enhance immunoregulatory functions of dendritic cells. Proc. Natl. Acad. Sci. USA 2014, 111, 12468–12473. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ozanne, J.; Prescott, A.R.; Clark, K. The clinically approved drugs dasatinib and bosutinib induce anti-inflammatory macrophages by inhibiting the salt-inducible kinases. Biochem. J. 2015, 465, 271–279. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Peixoto, C.; Joncour, A.; Temal-Laib, T.; Tirera, A.; Dos Santos, A.; Jary, H.; Bucher, D.; Laenen, W.; Pereira Fernandes, A.; Lavazais, S.; et al. Discovery of Clinical Candidate GLPG3970: A Potent and Selective Dual SIK2/SIK3 Inhibitor for the Treatment of Autoimmune and Inflammatory Diseases. J. Med. Chem. 2024, 67, 5233–5258. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Darling, N.J.; Arthur, J.S.C.; Cohen, P. Salt-inducible kinases are required for the IL-33-dependent secretion of cytokines and chemokines in mast cells. J. Biol. Chem. 2021, 296, 100428. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Nefla, M.; Darling, N.J.; van Gijsel Bonnello, M.; Cohen, P.; Arthur, J.S.C. Salt inducible kinases 2 and 3 are required for thymic T cell development. Sci. Rep. 2021, 11, 21550. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Canté-Barrett, K.; Meijer, M.T.; Cordo’, V.; Hagelaar, R.; Yang, W.; Yu, J.; Smits, W.K.; Nulle, M.E.; Jansen, J.P.; Pieters, R.; et al. MEF2C opposes Notch in lymphoid lineage decision and drives leukemia in the thymus. JCI Insight 2022, 7, e150363. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kim, M.J.; Park, S.K.; Lee, J.H.; Jung, C.Y.; Sung, D.J.; Park, J.H.; Yoon, Y.S.; Park, J.; Park, K.G.; Song, D.K.; et al. Salt-Inducible Kinase 1 Terminates cAMP Signaling by an Evolutionarily Conserved Negative-Feedback Loop in β-Cells. Diabetes 2015, 64, 3189–3202. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Huang, S.; Wu, X.; Feng, Y.; Shen, Y.; Zhao, Q.S.; Leng, Y. Activation of SIK1 by phanginin A inhibits hepatic gluconeogenesis by increasing PDE4 activity and suppressing the cAMP signaling pathway. Mol. Metab. 2020, 41, 101045. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lee, M.; Lee, Y.; Song, J.; Lee, J.; Chang, S.Y. Tissue-specific Role of CX3CR1 Expressing Immune Cells and Their Relationships with Human Disease. Immune Netw. 2018, 18, e5. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Li, G.; Yu, H.; Liu, N.; Zhang, P.; Tang, Y.; Hu, Y.; Zhang, Y.; Pan, C.; Deng, H.; Wang, J.; et al. Overexpression of CX3CR1 in Adipose-Derived Stem Cells Promotes Cell Migration and Functional Recovery After Experimental Intracerebral Hemorrhage. Front. Neurosci. 2019, 13, 462. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Meucci, O.; Fatatis, A.; Simen, A.A.; Miller, R.J. Expression of CX3CR1 chemokine receptors on neurons and their role in neuronal survival. Proc. Natl. Acad. Sci. USA 2000, 97, 8075–8080. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hadis, U.; Wahl, B.; Schulz, O.; Hardtke-Wolenski, M.; Schippers, A.; Wagner, N.; Müller, W.; Sparwasser, T.; Förster, R.; Pabst, O. Intestinal tolerance requires gut homing and expansion of FoxP3+ regulatory T cells in the lamina propria. Immunity 2011, 34, 237–246. [Google Scholar] [CrossRef] [PubMed]
- Schneider, K.M.; Bieghs, V.; Heymann, F.; Hu, W.; Dreymueller, D.; Liao, L.; Frissen, M.; Ludwig, A.; Gassler, N.; Pabst, O.; et al. CX3CR1 is a gatekeeper for intestinal barrier integrity in mice: Limiting steatohepatitis by maintaining intestinal homeostasis. Hepatology 2015, 62, 1405–1416. [Google Scholar] [CrossRef] [PubMed]
- Giménez-Orenga, K.; Martín-Martínez, E.; Nathanson, L.; Oltra, E. HERV activation segregates ME/CFS from fibromyalgia and defines a novel nosological entity for patients fulfilling both clinical criteria. bioRxiv 2023. [Google Scholar] [CrossRef]
- Nepotchatykh, E.; Caraus, I.; Elremaly, W.; Leveau, C.; Elbakry, M.; Godbout, C.; Rostami-Afshari, B.; Petre, D.; Khatami, N.; Franco, A.; et al. Circulating microRNA expression signatures accurately discriminate myalgic encephalomyelitis from fibromyalgia and comorbid conditions. Sci. Rep. 2023, 13, 1896. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mendes, K.; Schmidhofer, S.; Minderjahn, J.; Glatz, D.; Kiesewetter, C.; Raithel, J.; Wimmer, J.; Gebhard, C.; Rehli, M. The epigenetic pioneer EGR2 initiates DNA demethylation in differentiating monocytes at both stable and transient binding sites. Nat. Commun. 2021, 12, 1556. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Tyler, E.J.; Gutierrez Del Arroyo, A.; Hughes, B.K.; Wallis, R.; Garbe, J.C.; Stampfer, M.R.; Koh, J.; Lowe, R.; Philpott, M.P.; Bishop, C.L. Early growth response 2 (EGR2) is a novel regulator of the senescence programme. Aging Cell 2021, 20, e13318. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Li, S.; Symonds, A.L.; Zhu, B.; Liu, M.; Raymond, M.V.; Miao, T.; Wang, P. Early growth response gene-2 (Egr-2) regulates the development of B and T cells. PLoS ONE 2011, 6, e18498. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kerr, J.R.; Petty, R.; Burke, B.; Gough, J.; Fear, D.; Sinclair, L.I.; Mattey, D.L.; Richards, S.C.; Montgomery, J.; Baldwin, D.A.; et al. Gene expression subtypes in patients with chronic fatigue syndrome/myalgic encephalomyelitis. J. Infect. Dis. 2008, 197, 1171–1184. [Google Scholar] [CrossRef] [PubMed]
- Kerr, J. Early Growth Response Gene Upregulation in Epstein-Barr Virus (EBV)-Associated Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS). Biomolecules 2020, 10, 1484. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhan, L.; Zheng, L.; Hosoi, T.; Okuma, Y.; Nomura, Y. Stress-induced neuroprotective effects of epiregulin and amphiregulin. PLoS ONE 2015, 10, e0118280. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Navarro-Ledesma, S.; Hamed-Hamed, D.; Gonzalez-Muñoz, A.; Pruimboom, L. Impact of physical therapy techniques and common interventions on sleep quality in patients with chronic pain: A systematic review. Sleep Med. Rev. 2024, 76, 101937. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.; Paggi, J.M.; Park, C.; Bennett, C.; Salzberg, S.L. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat. Biotechnol. 2019, 37, 907–915. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Li, H.; Handsaker, B.; Wysoker, A.; Fennell, T.; Ruan, J.; Homer, N.; Marth, G.; Abecasis, G.; Durbin, R. 1000 Genome Project Data Processing Subgroup. The Sequence Alignment/Map format and SAMtools. Bioinformatics 2009, 25, 2078–2079. [Google Scholar] [CrossRef] [PubMed]
- Kelley, L.G.C.T. Cummerbund. Bioconductor, version 3.18. 2017. Available online: https://www.bioconductor.org/ (accessed on 30 March 2020).
- Young, M.D.; Wakefield, M.J.; Smyth, G.K.; Oshlack, A. Gene ontology analysis for RNA-seq: Accounting for selection bias. Genome Biol. 2010, 11, R14. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2024; Available online: https://www.R-project.org/ (accessed on 30 March 2020).
- Langfelder, P.; Horvath, S. WGCNA: An R package for weighted correlation network analysis. BMC Bioinform. 2008, 9, 559. [Google Scholar] [CrossRef]
- Wickham, H. ggplot2: Elegant Graphics for Data Analysis; Springer: New York, NY, USA, 2016. [Google Scholar]
Questionnaire | Total Cohort (n = 38) Mean Pre- ± SD [Range] | RNAseq RNAseq Cohort (n = 6) Mean Pre- ± SD [Range] | Non-FM Cohort (n = 12) Mean Pre- ± SD [Range] | p-Value (1) | p-Value (2) | p-Value (3) |
---|---|---|---|---|---|---|
FIQ | ||||||
Total FIQ | 72.62 ± 15.67 [41.08–96.51] | 80.05 ± 17.26 [46.12–92.09] | 27.29 ± 13.28 [5.64–49.64] | 0.269 | <0.001 | 0.005 |
Function | 5.16 ± 2.29 [0–9.24] | 5.72 ± 2.11 [3.3–8.25] | 2.39 ± 0.50 [1.98–3.63] | 0.492 | 0.016 | 0.012 |
Overall | 8.30 ± 2.23 [2.86–10.01] | 8.10 ± 1.73 [5.72–10.01] | 9.17 ± 2.88 [0–10.01] | 0.817 | 0.530 | 0.043 |
Symptoms | 4.59 ± 3.72 [0–10.01] | 7.39 ± 3.77 [0–10.01] | 0.47 ± 1.11 [0–2.86] | 0.079 | 0.014 | 0.005 |
MFI | ||||||
General Fatigue | 11.5 ± 1.6 [7, 8, 9, 10, 11, 12, 13, 14, 15, 16] | 11 ± 1.79 [8, 9, 10, 11, 12, 13] | 11.41 ± 4.21 [5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17] | 0.274 | 0.694 | 0.211 |
Physical Fatigue | 12.3 ± 1.2 [10, 11, 12, 13, 14, 15, 16] | 12.83 ± 1.17 [12, 13, 14, 15] | 9.91 ± 3.75 [6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17] | 0.741 | 0.023 | 0.218 |
Reduced Activity | 12.1 ± 1.9 [6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19] | 11.5 ± 2.74 [6, 7, 8, 9, 10, 11, 12, 13] | 8.08 ± 2.87 [4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14] | 1.000 | 0.001 | 0.013 |
Reduced Motivation | 10.6 ± 2.7 [4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19] | 10.83 ± 4.54 [6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19] | 7.58 ± 3.14 [4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15] | 0.920 | 0.082 | 0.009 |
Mental Fatigue | 11.5 ± 1.8 [7, 8, 9, 10, 11, 12, 13, 14, 15] | 11.5 ± 1.52 [10, 11, 12, 13, 14] | 7.08 ± 3.34 [4, 5, 6, 7, 8, 9, 10, 11, 12, 13] | 0.363 | <0.01 | 0.033 |
SF-36 | ||||||
Physical Functioning (PF) | 38.95 ± 17.48 [0–85] | 37.5 ± 16.96 [15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60] | 87.50 ± 13.56 [65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100] | 0.690 | <0.001 | 0.010 |
Role Physical (RP) | 28.95 ± 21.87 [0–81.25] | 16.67 ± 17.08 [0–43.75] | 85.41 ± 16.92 [50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100] | 0.652 | <0.001 | 0.002 |
Bodily Pain (BP) | 26.64 ± 18.39 [0–70] | 18.75 ± 12.12 [0–35] | 63.75 ± 16.32 [45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90] | 0.108 | 0.002 | <0.01 |
General Health (GH) | 29.68 ± 16.03 [0–65] | 22.5 ± 19.69 [0–45] | 69.58 ± 14.84 [35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85] | 0.242 | <0.001 | 0.029 |
Vitality (VT) | 16.12 ± 15.83 [0–50] | 10.42 ± 15.14 [0–37.5] | 59.89 ± 10.47 [43.75–75] | 0.182 | <0.001 | 0.003 |
Social Functioning (SF) | 35.20 ± 27.39 [0–87.5] | 22.92 ± 18.40 [0–50] | 88.54 ± 13.54 [62.5–100] | 0.112 | 0.002 | <0.01 |
Role Emotional (RE) | 56.58 ± 37.12 [0–100] | 43.06 ± 36.29 [0–83.33] | 84.72 ± 20.04 [50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100] | 0.305 | 0.174 | 0.060 |
Mental Health (MH) | 47.24 ± 21.92 [5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90] | 40 ± 24.08 [10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70] | 76.66 ± 18.25 [40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95] | 0.339 | 0.008 | 0.054 |
Total Cohort (n = 38) | RNAseq RNAseq Cohort (n = 6) | Non-FM Cohort (n = 12) | ||||
---|---|---|---|---|---|---|
Tender Points | Mean PPTs Pre- ± SD [Range] | Mean PPTs Pre- ± SD [Range] | Mean PPTs Pre- ± SD [Range] | p-Value (1) | p-Value (2) | p-Value (3) |
Occiput right * | 0.8062 ± 0.3771 [0.056–1.525] | 0.908 ± 0.252 [0.348–1.135] | 4.715 ± 1.457 [2.770–8.391] | 0.555 | <0.001 | <0.001 |
Occiput left * | 0.8606 ± 0.4029 [0.097–1.733] | 0.931 ± 0.257 [0.367–1.270] | 5.025 ± 2.056 [2.800–10.88] | 0.696 | <0.001 | 0.001 |
Trapezius right * | 0.9371 ± 0.3521 [0.240–1.493] | 0.985 ± 0.307 [0.398–1.937] | 5.946 ± 1.739 [3.410–8.491] | 0.052 | <0.001 | 0.002 |
Trapezius left * | 0.9757 ± 0.4149 [0.140–1.825] | 1.126 ± 0.378 [0.398–1.883] | 5.327 ± 1.336 [3.521–11.40] | 0.246 | <0.001 | 0.003 |
Supraspinatus right * | 1.0115 ± 0.4311 [0.217–1.905] | 1.202 ± 0.336 [0.550–1.968 | 6.506 ± 2.608 [3.384–13.38] | 0.915 | <0.001 | 0.001 |
Supraspinatus left * | 1.0050 ± 0.4045 [0.177–1.838] | 1.086 ± 0.438 [0.405–1.613] | 6.687 ± 2.313 [3.010–12.15] | 0.939 | <0.001 | 0.002 |
Gluteal right * | 1.3336 ± 0.6430 [0.158–2.780] | 1.563 ± 0.654 [0.930–2.698] | 8.657 ± 3.588 [4.651–15.37] | 0.936 | <0.001 | 0.007 |
Gluteal left * | 1.3617 ± 0.6481 [0.207–2.670] | 1.547 ± 0.598 [0.667–2.433] | 9.13 ± 2.893 [4.120–14.34] | 0.944 | <0.001 | 0.003 |
Low cervical right * | 0.4879 ± 0.2684 [0.000–1.172] | 0.541 ± 0.134 [0.218–0.707] | 3.028 ± 1.132 [1.291–5.611] | 0.943 | <0.001 | <0.001 |
Low cervical left * | 0.4732 ± 0.2347 [0.095–1.070] | 0.434 ± 0.145 [0.183–0.625] | 2.725 ± 1.361 [1.400–6.821] | 0.332 | <0.001 | <0.001 |
Second rib right | 0.7123 ± 0.4746 [0.152–2.665] | 0.813 ± 0.322 [0.323–1.292] | 5.281 ± 2.332 [3.060–11.15] | 0.855 | <0.001 | <0.001 |
Second rib left | 0.7036 ± 0.4530 [0.153–2.307] | 0.806 ± 0.356 [0.238–1.338] | 4.936 ± 2.771 [2.961–12.6] | 0.948 | <0.001 | <0.001 |
Lateral epicondyle humerus right | 0.8170 ± 0.4386 [0.080–1.830] | 1.048 ± 0.331 [0.440–1.447] | 5.868 ± 2.238 [2.722–11.52] | 0.892 | <0.001 | 0.001 |
Lateral epicondyle humerus left | 0.8495 ± 0.3602 [0.298–1.823] | 1.024 ± 0.311 [0.327–1.498] | 5.719 ± 2.479 [3.133–12.34] | 0.465 | <0.001 | 0.001 |
Greater trochanter right | 1.9234 ± 0.9089 [0.285–1.823] | 2.077 ± 0.921 [0.548–3.362] | 9.073 ± 2.266 [4.642–13.54] | 0.133 | <0.001 | 0.002 |
Greater trochander left | 1.8306 ± 0.8524 [0.472–3.955] | 1.928 ± 0.836 [0.793–3.195] | 8.822 ± 2.875 [3.970–13.94] | 0.532 | <0.001 | 0.003 |
Knee right | 1.1938 ± 0.6141 [0.263–2.505] | 1.543 ± 0.618 [0.578–2.505] | 8.766 ± 3.377 [3.511–16.80] | 0.491 | <0.001 | 0.001 |
Knee left | 1.2958 ± 0.7296 [0.000–2.980] | 1.637 ± 0.569 [0.542–1.930] | 8.434 ± 3.007 [3.824–13.07] | 0.977 | <0.001 | 0.002 |
Transcript | Post.Value | Pre.Value | FC (Post/Pre) | Log2FC | p-Value | Indiv.pval < 0.05 | Gene_Name |
---|---|---|---|---|---|---|---|
UPREGULATED | |||||||
ENST00000361763 | 116.22 | 29.0968 | 3.994 | 1.997 | 0.0001 | 1.2.3.5.6 | CD3E |
ENST00000307271 | 20.6445 | 14.0276 | 1.472 | 0.557 | 0.00730 | 2.3.4 | GIMAP8 |
ENST00000399220 | 76.4694 | 53.082 | 1.44 | 0.526 | 0.01760 | 1.2.3.4 | CX3CR1 |
ENST00000296028 | 42.3176 | 29.9796 | 1.412 | 0.497 | 0.03415 | 1.4.5 | PPBP |
ENST00000304141 | 52.6702 | 39.3078 | 1.340 | 0.422 | 0.03320 | 1.4.5 | SDPR |
ENST00000367460 | 54.5804 | 41.3812 | 1.319 | 0.399 | 0.04980 | 1.2.4 | RGS18 |
DOWNREGULATED | |||||||
ENST00000295924 | 10.7353 | 15.596 | 0.6883 | −0.538 | 0.02835 | 2.3.4 | TIPARP |
ENST00000330871 | 51.7681 | 88.0488 | 0.588 | −0.76624 | 0.00030 | 2.3.4.6 | SOCS3 |
ENST00000288943 | 47.6877 | 90.7936 | 0.525 | −0.92897 | 0.00160 | 2.4.5 | DUSP2 |
ENST00000230990 | 3.1006 | 12.3126 | 0.251 | −1.9895 | 0.0021 | 1.2.3.4.6 | HBEGF |
ENST00000307407 | 40.7346 | 164.584 | 0.2475 | −2.0145 | 5.00 × 10−5 | 1.4.5.6 | CXCL8 |
ENST00000369448 | 21.5097 | 43.1226 | 0.499 | −1.0034 | 0.00005 | 1.3.5.6 | FAM46C |
ENST00000242480 | 3.61705 | 7.42934 | 0.487 | −1.0384 | 0.01290 | 1.2.3.4.6 | EGR2 |
ENST00000370626 | 1.7777 | 3.73306 | 0.048 | −1.0703 | 0.00680 | 1.2.4 | AVPI1 |
ENST00000377103 | 1.30687 | 2.91557 | 0.488 | −1.1576 | 0.00045 | 1.2.6 | THBD |
ENST00000357949 | 3.02653 | 7.21969 | 0.419 | −1.2542 | 0.00015 | 1.2.4 | SERTAD1 |
ENST00000397806 | 139.994 | 354.549 | 0.395 | −1.3406 | 0.00540 | 1.2.6 | HBA2 |
ENST00000237305 | 13.9606 | 35.5195 | 0.393 | −1.3472 | 0.03305 | 1.5.6 | SGK1 |
ENST00000436139 | 3.12892 | 8.02824 | 0.390 | −1.3594 | 0.00005 | 2.3.6 | RASGEF1B |
ENST00000379775 | 6.77581 | 17.804 | 0.3805 | −1.3937 | 7.00 × 10−4 | 1.2.4 | PFKFB3 |
ENST00000270162 | 0.63422 | 1.68599 | 0.004 | −1.4105 | 0.00005 | 1.2.3.4.5.6 | SIK1 |
ENST00000278175 | 10.4363 | 3.46589 | 0.301 | −1.7316 | 0.01270 | 3.5.6 | ADM |
ENST00000508487 | 1.4087 | 6.71942 | 0.021 | −2.2539 | 0.02150 | 1.5.6 | CXCL2 |
ENST00000244869 | 0.492138 | 2.50443 | 0.002 | −2.3473 | 0.02260 | 1.5.6 | EREG |
Total Cohort (n = 38) | RNAseq RNAseq Cohort (n = 6) | Non-FM Cohort (n = 12) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Questionnaire | Mean Pre- ± SD | Mean Post- ± SD | p-Value | Range | Mean Pre- ± SD | Mean Post- ± SD | p-Value | Range | Mean Pre- ± SD | Mean Post- ± SD | p-Value | Range |
FIQ | ||||||||||||
Total FIQ | 72.62 ± 15.67 | 64.15 ± 18.25 | 0.0334 | [41.08–96.51] | 80.05 ± 17.26 | 68.71 ± 19.74 | 0.084 | [46.12–92.09] | 27.29 ± 13.28 | 26.97 ± 11.59 | 0.677 | [5.64–49.64] |
Function | 5.16 ± 2.29 | 4.62 ± 2.43 | 0.3249 | [0–9.24] | 5.72 ± 2.11 | 5.225 ± 2.22 | 0.456 | [3.3–8.25] | 2.39 ± 0.50 | 2.42 ± 0.49 | 0.339 | [1.98–3.63] |
Overall | 8.30 ± 2.23 | 6.74 ± 305 | 0.0117 | [2.86–10.01] | 8.10 ± 1.73 | 8.103 ± 2.811 | 1.000 | [5.72–10.01] | 9.17 ± 2.88 | 9.41 ± 1.42 | 0.674 | [0–10.01] |
Symptoms | 4.59 ± 3.72 | 4.14 ± 3.32 | 0.2139 | [0–10.01] | 7.39 ± 3.77 | 4.05 ± 3.55 | 0.122 | [0–10.01] | 0.47 ± 1.11 | 0.47 ± 1.10 | 0.339 | [0–2.86] |
MFI | ||||||||||||
General Fatigue | 11.5 ± 1.6 | 11.7 ± 1.1 | 0.4383 | [7, 8, 9, 10, 11, 12, 13, 14, 15, 16] | 11 ± 1.79 | 11.83 ± 0.40 | 0.317 | [8, 9, 10, 11, 12, 13] | 11.41 ± 4.21 | 10.83 ± 3.56 | 0.027 | [5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17] |
Physical Fatigue | 12.3 ± 1.2 | 12.4 ± 1.8 | 0.8124 | [10, 11, 12, 13, 14, 15, 16] | 12.83 ± 1.17 | 13.33 ± 1.96 | 0.490 | [12, 13, 14, 15] | 9.91 ± 3.75 | 9.66 ± 3.31 | 0.191 | [6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17] |
Reduced Activity | 12.1 ± 1.9 | 12.2 ± 2.3 | 0.8507 | [6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19] | 11.5 ± 2.74 | 11.5 ± 1.37 | 1.000 | [6, 7, 8, 9, 10, 11, 12, 13] | 8.08 ± 2.87 | 8.16 ± 3.04 | 0.339 | [4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14] |
Reduced Motivation | 10.6 ± 2.7 | 10.7 ± 2.6 | 0.8765 | [4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19] | 10.83 ± 4.54 | 10.66 ± 2.58 | 0.872 | [6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19] | 7.58 ± 3.14 | 7.5 ± 2.93 | 0.339 | [4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15] |
Mental Fatigue | 11.5 ± 1.8 | 11.9 ± 1.7 | 0.4786 | [7, 8, 9, 10, 11, 12, 13, 14, 15] | 11.5 ± 1.52 | 11 ± 1.09 | 0.597 | [10, 11, 12, 13, 14] | 7.08 ± 3.34 | 6.75 ± 3.01 | 0.104 | [4, 5, 6, 7, 8, 9, 10, 11, 12, 13] |
SF-36 | ||||||||||||
Physical Functioning (PF) | 38.95 ± 17.48 | 41.46 ± 16.55 | 0.9486 | [0–85] | 37.5 ± 16.96 | 37.5 ± 14.74 | 1.000 | [15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60] | 87.50 ± 13.56 | 87.50 ± 13.04 | 0.795 | [65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100] |
Role Physical (RP) | 28.95 ± 21.87 | 34.21 ± 25.24 | 0.7732 | [0–81.25] | 16.67 ± 17.08 | 37.5 ± 27.38 | 0.093 | [0–43.75] | 85.41 ± 16.92 | 85.93 ± 16.45 | 0.586 | [50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100] |
Bodily Pain (BP) | 26.64 ± 18.39 | 36.45 ± 23.65 | 0.2341 | [0–70] | 18.75 ± 12.12 | 30 ± 19.74 | 0.112 | [0–35] | 63.75 ± 16.32 | 63.12 ± 16.72 | 0.339 | [45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90] |
General Health (GH) | 29.68 ± 16.03 | 27.76 ± 15.14 | 0.9010 | [0–65] | 22.5 ± 19.69 | 19.16 ± 14.28 | 0.286 | [0–45] | 69.58 ± 14.84 | 72.08 ± 12.14 | 0.191 | [35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85] |
Vitality (VT) | 16.12 ± 15.83 | 20.53 ± 21.71 | 0.5948 | [0–50] | 10.42 ± 15.14 | 12.5 ± 15.81 | 0.576 | [0–37.5] | 59.89 ± 10.47 | 57.29 ± 14.05 | 0.096 | [43.75–75] |
Social Functioning (SF) | 35.20 ± 27.39 | 46.91 ± 27.20 | 0.8543 | [0–87.5] | 22.92 ± 18.40 | 37.5 ± 27.38 | 0.135 | [0–50] | 88.54 ± 13.54 | 89.58 ± 13.93 | 0.586 | [62.5–100] |
Role Emotional (RE) | 56.58 ± 37.12 | 53.51 ± 34.64 | 0.3037 | [0–100] | 43.06 ± 36.29 | 48.61 ± 30 | 0.444 | [0–83.33] | 84.72 ± 20.04 | 86.8 ± 17.57 | 0.082 | [50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100] |
Mental Health (MH) | 47.24 ± 21.92 | 54.08 ± 22.08 | 0.9804 | [5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90] | 40 ± 24.08 | 41.66 ± 22.94 | 0.846 | [10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70] | 76.66 ± 18.25 | 45.93 ± 10.17 | 0.001 | [40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95] |
Total Cohort (n = 38) | RNAseq RNAseq Cohort (n = 6) | Non-FM Cohort (n = 12) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Tender Points | Mean PPTs Pre- ± SD | Mean PPTs Post- ± SD | p-Value | Range | Mean PPTs Pre- ± SD | Mean PPTs Post- ± SD | p-Value | Range | Mean PPTs Pre- ± SD | Mean PPTs Post- ± SD | p-Value | Range |
Occiput right * | 0.8062 ± 0.3771 | 0.8404 ± 0.3187 | 0.6732 | [0.056–1.525] | 0.908 ± 0.252 | 0.743 ± 0.307 | 0.457 | [0.348–1.135] | 4.715 ± 1.457 | 4.228 ± 1.179 | 0.104 | [2.770–8.391] |
Occiput left * | 0.8606 ± 0.4029 | 0.8095 ± 0.3264 | 0.4646 | [0.097–1.733] | 0.931 ± 0.257 | 0.846 ± 0.351 | 0.640 | [0.367–1.270] | 5.025 ± 2.056 | 4.577 ± 1.872 | 0.167 | [2.800–10.88] |
Trapezius right * | 0.9371 ± 0.3521 | 1.0741 ± 0.3597 | 0.0903 | [0.240–1.493] | 0.985 ± 0.307 | 1.173 ± 0.495 | 0.457 | [0.398–1.937] | 5.946 ± 1.739 | 5.172 ± 0.979 | 0.085 | [3.410–8.491] |
Trapezius left * | 0.9757 ± 0.4149 | 0.9725 ± 0.6339 | 0.1890 | [0.140–1.825] | 1.126 ± 0.378 | 1.213 ± 0.487 | 0.735 | [0.398–1.883] | 5.327 ± 1.336 | 5.58 ± 2.189 | 0.587 | [3.521–11.40] |
Supraspinatus right * | 1.0115 ± 0.4311 | 1.0115 ± 0.4139 | 0.4478 | [0.217–1.905] | 1.202 ± 0.336 | 1.416 ± 0.555 | 0.240 | [0.550–1.968 | 6.506 ± 2.608 | 6.046 ± 1.845 | 0.285 | [3.384–13.38] |
Supraspinatus left * | 1.0050 ± 0.4045 | 1.0050 ± 0.3470 | 0.3924 | [0.177–1.838] | 1.086 ± 0.438 | 1.113 ± 0.342 | 0.908 | [0.405–1.613] | 6.687 ± 2.313 | 6.081 ± 2.324 | 0.090 | [3.010–12.15] |
Gluteal right * | 1.3336 ± 0.6430 | 1.3286 ± 0.5877 | 0.1359 | [0.158–2.780] | 1.563 ± 0.654 | 1.820 ± 0.692 | 0.524 | [0.930–2.698] | 8.657 ± 3.588 | 7.45 ± 1.697 | 0.156 | [4.651–15.37] |
Gluteal left * | 1.3617 ± 0.6481 | 1.3550 ± 0.6178 | 0.2443 | [0.207–2.670] | 1.547 ± 0.598 | 1.470 ± 0.518 | 0.817 | [0.667–2.433] | 9.13 ± 2.893 | 8.214 ± 2.548 | 0.168 | [4.120–14.34] |
Low cervical right * | 0.4879 ± 0.2684 | 0.4865 ± 0.1565 | 0.0536 | [0.000–1.172] | 0.541 ± 0.134 | 0.466 ± 0.186 | 0.438 | [0.218–0.707] | 3.028 ± 1.132 | 2.758 ± 1.183 | 0.333 | [1.291–5.611] |
Low cervical left * | 0.4732 ± 0.2347 | 0.4774 ± 0.1235 | 0.0197 | [0.095–1.070] | 0.434 ± 0.145 | 0.418 ± 0.142 | 0.843 | [0.183–0.625] | 2.725 ± 1.361 | 2.641 ± 1.389 | 0.603 | [1.400–6.821] |
Second rib right | 0.7123 ± 0.4746 | 0.7117 ± 0.2492 | 0.2971 | [0.152–2.665] | 0.813 ± 0.322 | 0.620 ± 0.344 | 0.340 | [0.323–1.292] | 5.281 ± 2.332 | 4.841 ± 2.308 | 0.034 | [3.060–11.15] |
Second rib left | 0.7036 ± 0.4530 | 0.7098 ± 0.2691 | 0.8424 | [0.153–2.307] | 0.806 ± 0.356 | 0.664 ± 0.383 | 0.523 | [0.238–1.338] | 4.936 ± 2.771 | 4.853 ± 2.651 | 0.720 | [2.961–12.6] |
Lateral epicondyle humerus right | 0.8170 ± 0.4386 | 0.8108 ± 0.2781 | 0.3622 | [0.080–1.830] | 1.048 ± 0.331 | 0.894 ± 0.315 | 0.428 | [0.440–1.447] | 5.868 ± 2.238 | 5.536 ± 2.122 | 0.324 | [2.722–11.52] |
Lateral epicondyle humerus left | 0.8495 ± 0.3602 | 0.8495 ± 0.3054 | 0.1305 | [0.298–1.823] | 1.024 ± 0.311 | 0.738 ± 0.308 | 0.140 | [0.327–1.498] | 5.719 ± 2.479 | 5.335 ± 2.231 | 0.355 | [3.133–12.34] |
Greater trochanter right | 1.9234 ± 0.9089 | 1.9144 ± 0.8721 | 0.3864 | [0.285–1.823] | 2.077 ± 0.921 | 1.858 ± 0.849 | 0.678 | [0.548–3.362] | 9.073 ± 2.266 | 8.155 ± 2.285 | 0.206 | [4.642–13.54] |
Greater trochander left | 1.8306 ± 0.8524 | 1.7636 ± 0.8665 | 0.9034 | [0.472–3.955] | 1.928 ± 0.836 | 2.103 ± 0.973 | 0.746 | [0.793–3.195] | 8.822 ± 2.875 | 7.822 ± 2.274 | 0.263 | [3.970–13.94] |
Knee right | 1.1938 ± 0.6141 | 1.1887 ± 0.3921 | 0.5056 | [0.263–2.505] | 1.543 ± 0.618 | 1.244 ± 0.468 | 0.368 | [0.578–2.505] | 8.766 ± 3.377 | 6.494 ± 3.411 | 0.006 | [3.511–16.80] |
Knee left | 1.2958 ± 0.7296 | 1.3025 ± 0.4544 | 0.2608 | [0.000–2.980] | 1.637 ± 0.569 | 1.337 ± 0.428 | 0.327 | [0.542–1.930] | 8.434 ± 3.007 | 5.974 ± 2.355 | 0.004 | [3.824–13.07] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bonastre-Férez, J.; Giménez-Orenga, K.; Falaguera-Vera, F.J.; Garcia-Escudero, M.; Oltra, E. Manual Therapy Improves Fibromyalgia Symptoms by Downregulating SIK1. Int. J. Mol. Sci. 2024, 25, 9523. https://doi.org/10.3390/ijms25179523
Bonastre-Férez J, Giménez-Orenga K, Falaguera-Vera FJ, Garcia-Escudero M, Oltra E. Manual Therapy Improves Fibromyalgia Symptoms by Downregulating SIK1. International Journal of Molecular Sciences. 2024; 25(17):9523. https://doi.org/10.3390/ijms25179523
Chicago/Turabian StyleBonastre-Férez, Javier, Karen Giménez-Orenga, Francisco Javier Falaguera-Vera, María Garcia-Escudero, and Elisa Oltra. 2024. "Manual Therapy Improves Fibromyalgia Symptoms by Downregulating SIK1" International Journal of Molecular Sciences 25, no. 17: 9523. https://doi.org/10.3390/ijms25179523
APA StyleBonastre-Férez, J., Giménez-Orenga, K., Falaguera-Vera, F. J., Garcia-Escudero, M., & Oltra, E. (2024). Manual Therapy Improves Fibromyalgia Symptoms by Downregulating SIK1. International Journal of Molecular Sciences, 25(17), 9523. https://doi.org/10.3390/ijms25179523