Fluoride Alters Gene Expression via Histone H3K27 Acetylation in Ameloblast-like LS8 Cells
Abstract
:1. Introduction
2. Results
2.1. Detection of Gene Locations with Differential H3K27ac Occupancy Following Fluoride Treatment
2.2. Comparison of Gene Expressions and H3K27ac Occupancy Following Fluoride Treatment
2.3. Fluoride-Induced p21 and Mdm2 mRNA Levels Are Suppressed by HAT Inhibitors (AA, MG149)
2.4. Fluoride Suppresses the Activity of Class I and II HDACs
2.5. Sodium Butyrate Suppresses the Activity of Class I, II, and III HDACs and Increases Histone Acetylation
2.6. Addition of SB Increases the mRNA Levels of Bcl2 and Bad Compared to Fluoride Treatment Alone
2.7. Addition of SB Suppresses Fluoride-Mediated Apoptosis by Decreasing the mRNA Levels of p21, Mdm2, and the Bax/Bcl2 Ratio
3. Discussion
4. Materials and Methods
4.1. Cell Culture
4.2. ChIP-Sequence
4.3. Real Time PCR
4.4. Western Blotting
4.5. Immunofluorescence
4.6. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- U.S. Department of Health; Human Services Federal Panel on Community Water Fluoridation U.S. Public Health Service Recommendation for Fluoride Concentration in Drinking Water for the Prevention of Dental Caries. Public Health Rep. 2015, 130, 318–331. [Google Scholar] [CrossRef] [PubMed]
- Asawa, K.; Singh, A.; Bhat, N.; Tak, M.; Shinde, K.; Jain, S. Association of Temporomandibular Joint Signs & Symptoms with Dental Fluorosis & Skeletal Manifestations in Endemic Fluoride Areas of Dungarpur District, Rajasthan, India. J. Clin. Diagn. Res. 2015, 9, ZC18–ZC21. [Google Scholar] [CrossRef]
- Vasisth, D.; Mehra, P.; Yadav, L.; Kumari, V.; Bhatia, U.; Garg, R. Fluoride and its Implications on Oral Health: A Review. J. Pharm. Bioallied Sci. 2024, 16 (Suppl. 1), S49–S52. [Google Scholar] [CrossRef]
- DenBesten, P.; Wu, L. Chronic fluoride toxicity: Dental fluorosis. Monogr Oral Sci. 2011, 22, 81–96. [Google Scholar] [CrossRef]
- McKay, F.S. The Study of Mottled Enamel (Dental Fluorosis). J. Am. Dent. Assoc. 1952, 44, 133–137. [Google Scholar] [CrossRef] [PubMed]
- American Public Health Association. MOTTLED ENAMEL. Am. J. Public Health Nations Heath 1933, 23, 47–48. [Google Scholar] [CrossRef] [PubMed]
- Smith, C.; Issid, M.; Margolis, H.; Moreno, E. Developmental Changes in the PH of Enamel Fluid and Its Effects On Matrix-Resident Proteinases. Adv. Dent. Res. 1996, 10, 159–169. [Google Scholar] [CrossRef]
- Sharma, R.; Tsuchiya, M.; Skobe, Z.; Tannous, B.A.; Bartlett, J.D. The Acid Test of Fluoride: How pH Modulates Toxicity. PLoS ONE 2010, 5, e10895. [Google Scholar] [CrossRef]
- Suzuki, M.; Bartlett, J.D. Sirtuin1 and autophagy protect cells from fluoride-induced cell stress. Biochim. Biophys. Acta 2013, 1842, 245–255. [Google Scholar] [CrossRef]
- Suzuki, M.; Bandoski, C.; Bartlett, J.D. Fluoride induces oxidative damage and SIRT1/autophagy through ROS-mediated JNK signaling. Free Radic. Biol. Med. 2015, 89, 369–378. [Google Scholar] [CrossRef]
- Suzuki, M.; Ikeda, A.; Bartlett, J.D. Sirt1 overexpression suppresses fluoride-induced p53 acetylation to alleviate fluoride toxicity in ameloblasts responsible for enamel formation. Arch. Toxicol. 2017, 92, 1283–1293. [Google Scholar] [CrossRef]
- Berger, S.L.; Kouzarides, T.; Shiekhattar, R.; Shilatifard, A. An operational definition of epigenetics. Genes Dev. 2009, 23, 781–783. [Google Scholar] [CrossRef] [PubMed]
- Handy, D.E.; Castro, R.; Loscalzo, J. Epigenetic modifications: Basic mechanisms and role in cardiovascular disease. Circulation 2011, 123, 2145–2156. [Google Scholar] [CrossRef] [PubMed]
- Jenuwein, T.; Allis, C.D. Translating the Histone Code. Science 2001, 293, 1074–1080. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.; Rathore, A.S.; Dilnashin, H.; Keshri, P.K.; Gupta, N.K.; Prakash, S.A.S.; Zahra, W.; Singh, S.; Singh, S.P. HAT and HDAC: Enzyme with Contradictory Action in Neurodegenerative Diseases. In Molecular Neurobiology; Springer: Berlin/Heidelberg, Germany, 2024; pp. 1–15. [Google Scholar] [CrossRef]
- Voss, A.K.; Thomas, T. Histone Lysine and Genomic Targets of Histone Acetyltransferases in Mammals. BioEssays 2018, 40, e1800078. [Google Scholar] [CrossRef]
- Tomasiak, P.; Janisiak, J.; Rogińska, D.; Perużyńska, M.; Machaliński, B.; Tarnowski, M. Garcinol and Anacardic Acid, Natural Inhibitors of Histone Acetyltransferases, Inhibit Rhabdomyosarcoma Growth and Proliferation. Molecules 2023, 28, 5292. [Google Scholar] [CrossRef]
- Fahmy, S.H.; Jungbluth, H.; Jepsen, S.; Winter, J. Effects of histone acetyltransferase (HAT) and histone deacetylase (HDAC) inhibitors on proliferative, differentiative, and regenerative functions of Toll-like receptor 2 (TLR-2)-stimulated human dental pulp cells (hDPCs). Clin. Oral Investig. 2023, 28, 53. [Google Scholar] [CrossRef]
- Deng, H.; Fujiwara, N.; Cui, H.; Whitford, G.M.; Bartlett, J.D.; Suzuki, M. Histone acetyltransferase promotes fluoride toxicity in LS8 cells. Chemosphere 2020, 247, 125825. [Google Scholar] [CrossRef]
- Chen, H.P.; Zhao, Y.T.; Zhao, T.C. Histone Deacetylases and Mechanisms of Regulation of Gene Expression. Crit. Rev. Oncog. 2015, 20, 35–47. [Google Scholar] [CrossRef]
- Milazzo, G.; Mercatelli, D.; Di Muzio, G.; Triboli, L.; De Rosa, P.; Perini, G.; Giorgi, F.M. Histone Deacetylases (HDACs): Evolution, Specificity, Role in Transcriptional Complexes, and Pharmacological Actionability. Genes 2020, 11, 556. [Google Scholar] [CrossRef]
- I Razick, D.; Akhtar, M.; Wen, J.; Alam, M.; Dean, N.; Karabala, M.; Ansari, U.; Ansari, Z.; Tabaie, E.; Siddiqui, S. The Role of Sirtuin 1 (SIRT1) in Neurodegeneration. Cureus 2023, 15, e40463. [Google Scholar] [CrossRef]
- Elfadil, O.M.; Mundi, M.S.; Abdelmagid, M.G.; Patel, A.; Patel, N.; Martindale, R. Butyrate: More Than a Short Chain Fatty Acid. Curr. Nutr. Rep. 2023, 12, 255–262. [Google Scholar] [CrossRef]
- Patnala, R.; Arumugam, T.V.; Gupta, N.; Dheen, S.T. HDAC Inhibitor Sodium Butyrate-Mediated Epigenetic Regulation Enhances Neuroprotective Function of Microglia During Ischemic Stroke. Mol. Neurobiol. 2017, 54, 6391–6411. [Google Scholar] [CrossRef] [PubMed]
- Xu, S.; Liu, C.-X.; Xu, W.; Huang, L.; Zhao, J.-Y.; Zhao, S.-M. Butyrate induces apoptosis by activating PDC and inhibiting complex I through SIRT3 inactivation. Signal Transduct. Target. Ther. 2017, 2, 16035. [Google Scholar] [CrossRef]
- Cahyadi, A.; Ugrasena, I.D.G.; Andarsini, M.R.; Larasati, M.C.S.; Aryati, A.; Arumsari, D.K. Relationship between Bax and Bcl-2 Protein Expression and Outcome of Induction Phase Chemotherapy in Pediatric Acute Lymphoblastic Leukemia. Asian Pac. J. Cancer Prev. 2022, 23, 1679–1685. [Google Scholar] [CrossRef]
- Bahl, S.; Seto, E. Regulation of histone deacetylase activities and functions by phosphorylation and its physiological relevance. Cell. Mol. Life Sci. 2021, 78, 427–445. [Google Scholar] [CrossRef]
- Candido, E. Sodium butyrate inhibits histone deacetylation in cultured cells. Cell 1978, 14, 105–113. [Google Scholar] [CrossRef]
- Liu, J.; Wang, Y.; Wu, Y.; Ni, B.; Liang, Z. Sodium Butyrate Promotes the Differentiation of Rat Bone Marrow Mesenchymal Stem Cells to Smooth Muscle Cells through Histone Acetylation. PLoS ONE 2014, 9, e116183. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Hussain, T.; Wang, J.; Li, M.; Wang, W.; Ma, X.; Liao, Y.; Yao, J.; Song, Y.; Liang, Z.; et al. Sodium Butyrate Abrogates the Growth and Pathogenesis of Mycobacterium bovis via Regulation of Cathelicidin (LL37) Expression and NF-κB Signaling. Front. Microbiol. 2020, 11, 433. [Google Scholar] [CrossRef] [PubMed]
- Balasubramanian, S.; Perumal, E. A systematic review on fluoride-induced epigenetic toxicity in mammals. Crit. Rev. Toxicol. 2022, 52, 449–468. [Google Scholar] [CrossRef]
- Casamassimi, A.; Casamassimi, A.; Ciccodicola, A.; Ciccodicola, A. Transcriptional Regulation: Molecules, Involved Mechanisms, and Misregulation. Int. J. Mol. Sci. 2019, 20, 1281. [Google Scholar] [CrossRef]
- Sanders, Y.Y.; Liu, H.; Zhang, X.; Hecker, L.; Bernard, K.; Desai, L.; Liu, G.; Thannickal, V.J. Histone Modifications in Senescence-Associated Resistance to Apoptosis by Oxidative Stress. Redox Biol. 2013, 1, 8–16. [Google Scholar] [CrossRef]
- Liu, X.; Nie, Z.; Gao, Y.; Chen, L.; Yin, S.; Zhang, X.; Hao, C.; Miao, Y. Sodium fluoride disturbs DNA methylation of NNAT and declines oocyte quality by impairing glucose transport in porcine oocytes. Environ. Mol. Mutagen. 2018, 59, 223–233. [Google Scholar] [CrossRef]
- Bhowmik, A.D.; Das, T.; Chattopadhyay, A. Chronic exposure to environmentally relevant concentration of fluoride impairs osteoblast’s collagen synthesis and matrix mineralization: Involvement of epigenetic regulation in skeletal fluorosis. Environ. Res. 2023, 236 Pt 2, 116845. [Google Scholar] [CrossRef] [PubMed]
- Daiwile, A.P.; Sivanesan, S.; Tarale, P.; Naoghare, P.K.; Bafana, A.; Parmar, D.; Kannan, K. Role of fluoride induced histone trimethylation in development of skeletal fluorosis. Environ. Toxicol. Pharmacol. 2018, 57, 159–165. [Google Scholar] [CrossRef] [PubMed]
- Wilson, A.J.; Byun, D.-S.; Popova, N.; Murray, L.B.; L’Italien, K.; Sowa, Y.; Arango, D.; Velcich, A.; Augenlicht, L.H.; Mariadason, J.M. Histone Deacetylase 3 (HDAC3) and Other Class I HDACs Regulate Colon Cell Maturation and p21 Expression and Are Deregulated in Human Colon Cancer. J. Biol. Chem. 2006, 281, 13548–13558. [Google Scholar] [CrossRef] [PubMed]
- Peng, S.; Zhao, S.; Yan, F.; Cheng, J.; Huang, L.; Chen, H.; Liu, Q.; Ji, X.; Yuan, Z. HDAC2 Selectively Regulates FOXO3a-Mediated Gene Transcription during Oxidative Stress-Induced Neuronal Cell Death. J. Neurosci. 2015, 35, 1250–1259. [Google Scholar] [CrossRef] [PubMed]
- Vaziri, H.; Dessain, S.K.; Eaton, E.N.; Imai, S.-I.; Frye, R.A.; Pandita, T.K.; Guarente, L.; Weinberg, R.A. hSIR2SIRT1 Functions as an NAD-Dependent p53 Deacetylase. Cell 2001, 107, 149–159. [Google Scholar] [CrossRef]
- De Haan, J.B.; Gevers, W.; I Parker, M. Effects of sodium butyrate on the synthesis and methylation of DNA in normal cells and their transformed counterparts. Cancer Res. 1986, 46, 713–716. [Google Scholar]
- A Stein, R.; Riber, L. Epigenetic effects of short-chain fatty acids from the large intestine on host cells. microLife 2023, 4, uqad032. [Google Scholar] [CrossRef]
- Li, Y.; Yang, F.; Liu, J.; Jiang, M.; Yu, Y.; Zhou, Q.; Sun, L.; Zhang, Z.; Zhou, L.; Li, Y.; et al. Protective effects of sodium butyrate on fluorosis in rats by regulating bone homeostasis and serum metabolism. Ecotoxicol. Environ. Saf. 2024, 276, 116284. [Google Scholar] [CrossRef]
- Li, Y.; Wang, Z.; Li, J.; Yu, Y.; Wang, Y.; Jin, X.; Dong, Y.; Liu, Q.; Duan, X.; Yan, N. Sodium Butyrate Ameliorates Fluorosis-Induced Neurotoxicity by Regulating Hippocampal Glycolysis In Vivo. Biol. Trace Elem. Res. 2023, 201, 5230–5241. [Google Scholar] [CrossRef] [PubMed]
- Fujiwara, N.; Whitford, G.M.; Bartlett, J.D.; Suzuki, M. Curcumin suppresses cell growth and attenuates fluoride-mediated Caspase-3 activation in ameloblast-like LS8 cells. Environ. Pollut. 2021, 273, 116495. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Couwenhoven, R.; Hsu, D.; Luo, W.; Snead, M. Maintenance of amelogenin gene expression by transformed epithelial cells of mouse enamel organ. Arch. Oral Biol. 1992, 37, 771–778. [Google Scholar] [CrossRef] [PubMed]
- Pfaffl, M.W. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 2001, 29, e45. [Google Scholar] [CrossRef] [PubMed]
- Fujiwara, N.; Yamashita, S.; Okamoto, M.; Cooley, M.A.; Ozaki, K.; Everett, E.T.; Suzuki, M. Perfluorooctanoic acid-induced cell death via the dual roles of ROS-MAPK/ERK signaling in ameloblast-lineage cells. Ecotoxicol. Environ. Saf. 2023, 260, 115089. [Google Scholar] [CrossRef] [PubMed]
Histone | Chromosome | PeakStart | PeakEnd | Distance | GeneStart | GeneEnd | ClosestTSS_ID | Symbol | Strand | Enrichment | Qvalues | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
acetylated | H3K27 | chr7 | 52,721,282 | 52,722,261 | 373 | 52,717,232 | 52,722,145 | ENSMUST00000169539 | Bax | − | 2.65055 | 4.98461 |
chr10 | 117,146,295 | 117,147,436 | 212 | 117,125,951 | 117,147,078 | ENSMUST00000155285 | Mdm2 | − | 2.47539 | 4.63473 | ||
chr17 | 29,230,713 | 29,231,971 | 625 | 29,230,717 | 29,237,667 | ENSMUST00000023829 | p21 | + | 2.31322 | 5.8589 | ||
De-acetylated | H3K27 | chr1 | 108,610,964 | 108,611,451 | −356 | 108,434,755 | 108,610,851 | ENSMUST00000112751 | Bcl2 | − | 2.49999 | 1.6118 |
chr1 | 108,610,216 | 108,610,628 | 429 | 108,434,755 | 108,610,851 | ENSMUST00000112751 | Bcl2 | − | 2.84654 | 1.61343 | ||
chr11 | 69,394,210 | 69,394,667 | 531 | 69,393,907 | 69,405,375 | ENSMUST00000108657 | Trp53 | + | 1.63639 | 2.34386 | ||
chr19 | 7,016,341 | 7,017,061 | −112 | 7,016,813 | 7,026,382 | ENSMUST00000113426 | Bad | + | 2.19519 | 3.62331 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yamashita, S.; Okamoto, M.; Mendonca, M.; Fujiwara, N.; Kitamura, E.; Chang, C.-S.S.; Brueckner, S.; Shindo, S.; Kuriki, N.; Cooley, M.A.; et al. Fluoride Alters Gene Expression via Histone H3K27 Acetylation in Ameloblast-like LS8 Cells. Int. J. Mol. Sci. 2024, 25, 9600. https://doi.org/10.3390/ijms25179600
Yamashita S, Okamoto M, Mendonca M, Fujiwara N, Kitamura E, Chang C-SS, Brueckner S, Shindo S, Kuriki N, Cooley MA, et al. Fluoride Alters Gene Expression via Histone H3K27 Acetylation in Ameloblast-like LS8 Cells. International Journal of Molecular Sciences. 2024; 25(17):9600. https://doi.org/10.3390/ijms25179600
Chicago/Turabian StyleYamashita, Shohei, Motoki Okamoto, Melanie Mendonca, Natsumi Fujiwara, Eiko Kitamura, Chang-Sheng Sam Chang, Susanne Brueckner, Satoru Shindo, Nanako Kuriki, Marion A. Cooley, and et al. 2024. "Fluoride Alters Gene Expression via Histone H3K27 Acetylation in Ameloblast-like LS8 Cells" International Journal of Molecular Sciences 25, no. 17: 9600. https://doi.org/10.3390/ijms25179600
APA StyleYamashita, S., Okamoto, M., Mendonca, M., Fujiwara, N., Kitamura, E., Chang, C. -S. S., Brueckner, S., Shindo, S., Kuriki, N., Cooley, M. A., Gill Dhillon, N., Kawai, T., Bartlett, J. D., Everett, E. T., & Suzuki, M. (2024). Fluoride Alters Gene Expression via Histone H3K27 Acetylation in Ameloblast-like LS8 Cells. International Journal of Molecular Sciences, 25(17), 9600. https://doi.org/10.3390/ijms25179600