Environmental Temperature Variation Affects Brain Lipid Composition in Adult Zebrafish (Danio rerio)
Abstract
:1. Introduction
2. Results
2.1. Lipids Were Significantly Altered at 18 °C Compared to 26 °C
2.2. Lipids Significantly Altered at 34 °C Compared to 26 °C
3. Discussion
4. Materials and Methods
4.1. Fish Husbandry and Experimental Setup
4.2. Lipidomic Analyses
4.3. Statistical Analysis
4.4. Figure Preparation
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schaefer, J.; Ryan, A. Developmental plasticity in the thermal tolerance of zebrafish Danio rerio. J. Fish Biol. 2006, 69, 722–734. [Google Scholar] [CrossRef]
- Daufresne, M.; Lengfellner, K.; Sommer, U. Global warming benefits the small in aquatic ecosystems. Proc. Natl. Acad. Sci. USA 2009, 106, 12788–12793. [Google Scholar] [CrossRef]
- Somero, G.N. Adaptation of enzymes to temperature: Searching for basic “strategies”. Comp. Biochem. Physiol. Part B Biochem. Mol. Biol. 2004, 139, 321–333. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wang, H.M.; Zhou, Y.; Hu, L.H.; Wan, J.M.; Yang, J.H.; Niu, H.B.; Hong, X.P.; Hu, P.; Chen, L.B. Dusp1 regulates thermal tolerance limits in zebrafish by maintaining mitochondrial integrity. Zool. Res. 2023, 44, 126–141. [Google Scholar] [CrossRef]
- Somero, G.N.; Hochachka, P.W. Biochemical Adaptation to the Environment. Am. Zool. 2015, 11, 159–167. [Google Scholar] [CrossRef]
- di Iorio, P.J.; Holsinger, K.; Schultz, R.J.; Hightower, L.E. Quantitative evidence that both Hsc70 and Hsp70 contribute to thermal adaptation in hybrids of the livebearing fishes Poeciliopsis. Cell Stress Chaperones 1996, 1, 139–147. [Google Scholar] [CrossRef] [PubMed]
- Fader, S.C.; Yu, Z.; Spotila, J.R. Seasonal variation in heat shock proteins (hsp 70) in stream fish under natural conditions. J. Therm. Biol. 1994, 19, 335–341. [Google Scholar] [CrossRef]
- Johnston, P.V.; Roots, B.I. Brain Lipid Fatty Acids and Temperature Acclimation. Comp. Biochem. Physiol. 1964, 11, 303–309. [Google Scholar] [CrossRef]
- Pichaud, N.; Ekstrom, A.; Hellgren, K.; Sandblom, E. Dynamic changes in cardiac mitochondrial metabolism during warm acclimation in rainbow trout. J. Exp. Biol. 2017, 220, 1674–1683. [Google Scholar] [CrossRef]
- St-Pierre, J.; Charest, P.-M.; Guderley, H. Relative contribution of quantitative and qualitative changes in mitochondria to metabolic compensation during seasonal acclimatisation of rainbow trout Oncorhynchus mykiss. J. Exp. Biol. 1998, 201, 2961–2970. [Google Scholar] [CrossRef]
- Lawson, C.R.; Vindenes, Y.; Bailey, L.; van de Pol, M. Environmental variation and population responses to global change. Ecol. Lett. 2015, 18, 724–736. [Google Scholar] [CrossRef] [PubMed]
- La Cognata, V.; Morello, G.; Cavallaro, S. Omics Data and Their Integrative Analysis to Support Stratified Medicine in Neurodegenerative Diseases. Int. J. Mol. Sci. 2021, 22, 4820. [Google Scholar] [CrossRef]
- Hasin, Y.; Seldin, M.; Lusis, A. Multi-omics approaches to disease. Genome Biol. 2017, 18, 83. [Google Scholar] [CrossRef] [PubMed]
- Yoon, J.H.; Seo, Y.; Jo, Y.S.; Lee, S.; Cho, E.; Cazenave-Gassiot, A.; Shin, Y.S.; Moon, M.H.; An, H.J.; Wenk, M.R.; et al. Brain lipidomics: From functional landscape to clinical significance. Sci. Adv. 2022, 8, eadc9317. [Google Scholar] [CrossRef] [PubMed]
- Schlinger, H.D. Behaviour analysis and behavioural neuroscience. Front. Hum. Neurosci. 2015, 9, 210. [Google Scholar] [CrossRef]
- Malavasi, S.; Cipolato, G.; Cioni, C.; Torricelli, P.; Alleva, E.; Manciocco, A.; Toni, M. Effects of Temperature on the Antipredator Behaviour and on the Cholinergic Expression in the European Sea Bass (Dicentrarchus labrax L.) Juveniles. Ethology 2013, 119, 592–604. [Google Scholar] [CrossRef]
- Manciocco, A.; Toni, M.; Tedesco, A.; Malavasi, S.; Alleva, E.; Cioni, C. The Acclimation of European Sea Bass (Dicentrarchus labrax) to Temperature: Behavioural and Neurochemical Responses. Ethology 2015, 121, 68–83. [Google Scholar] [CrossRef]
- Toni, M.; Arena, C.; Cioni, C.; Tedeschi, G. Temperature- and chemical-induced neurotoxicity in zebrafish. Front. Physiol. 2023, 14, 1276941. [Google Scholar] [CrossRef]
- Toni, M.; Angiulli, E.; Miccoli, G.; Cioni, C.; Alleva, E.; Frabetti, F.; Pizzetti, F.; Grassi Scalvini, F.; Nonnis, S.; Negri, A.; et al. Environmental temperature variation affects brain protein expression and cognitive abilities in adult zebrafish (Danio rerio): A proteomic and behavioural study. J. Proteom. 2019, 204, 103396. [Google Scholar] [CrossRef]
- Nonnis, S.; Angiulli, E.; Maffioli, E.; Frabetti, F.; Negri, A.; Cioni, C.; Alleva, E.; Romeo, V.; Tedeschi, G.; Toni, M. Acute environmental temperature variation affects brain protein expression, anxiety and explorative behaviour in adult zebrafish. Sci. Rep. 2021, 11, 2521. [Google Scholar] [CrossRef]
- Maffioli, E.; Nonnis, S.; Grassi Scalvini, F.; Negri, A.; Tedeschi, G.; Toni, M. The Neurotoxic Effect of Environmental Temperature Variation in Adult Zebrafish (Danio rerio). Int. J. Mol. Sci. 2023, 24, 15735. [Google Scholar] [CrossRef] [PubMed]
- Maffioli, E.; Angiulli, E.; Nonnis, S.; Grassi Scalvini, F.; Negri, A.; Tedeschi, G.; Arisi, I.; Frabetti, F.; D’Aniello, S.; Alleva, E.; et al. Brain Proteome and Behavioural Analysis in Wild Type, BDNF (+/−) and BDNF (−/−) Adult Zebrafish (Danio rerio) Exposed to Two Different Temperatures. Int. J. Mol. Sci. 2022, 23, 5606. [Google Scholar] [CrossRef] [PubMed]
- Angiulli, E.; Pagliara, V.; Cioni, C.; Frabetti, F.; Pizzetti, F.; Alleva, E.; Toni, M. Increase in environmental temperature affects exploratory behaviour, anxiety and social preference in Danio rerio. Sci. Rep. 2020, 10, 5385. [Google Scholar] [CrossRef]
- Sukardi, H.; Ung, C.Y.; Gong, Z.; Lam, S.H. Incorporating zebrafish omics into chemical biology and toxicology. Zebrafish 2010, 7, 41–52. [Google Scholar] [CrossRef] [PubMed]
- Levin, E.D.; Cerutti, D.T. Behavioural Neuroscience of Zebrafish. In Methods of Behaviour Analysis in Neuroscience, 2nd ed.; Buccafusco, J.J., Ed.; CRC Press/Taylor & Francis: Boca Raton, FL, USA, 2009. [Google Scholar]
- Aslanidi, K.B.; Kharakoz, D.P. Limits of temperature adaptation and thermopreferendum. Cell Biosci. 2021, 11, 69. [Google Scholar] [CrossRef]
- Cortemeglia, C.; Beitinger, T.L. Temperature Tolerances of Wild-Type and Red Transgenic Zebra Danios. Trans. Am. Fish. Soc. 2005, 134, 1431–1437. [Google Scholar] [CrossRef]
- Parichy, D.M. Advancing biology through a deeper understanding of zebrafish ecology and evolution. eLife 2015, 4, e05635. [Google Scholar] [CrossRef]
- Spence, R.; Gerlach, G.; Lawrence, C.; Smith, C. The behaviour and ecology of the zebrafish, Danio rerio. Biol. Rev. Camb. Philos. Soc. 2008, 83, 13–34. [Google Scholar] [CrossRef] [PubMed]
- Engeszer, R.E.; Patterson, L.B.; Rao, A.A.; Parichy, D.M. Zebrafish in the wild: A review of natural history and new notes from the field. Zebrafish 2007, 4, 21–40. [Google Scholar] [CrossRef]
- Arunachalam, M.; Raja, M.; Vijayakumar, C.; Malaiammal, P.; Mayden, R.L. Natural history of zebrafish (Danio rerio) in India. Zebrafish 2013, 10, 1–14. [Google Scholar] [CrossRef]
- Spence, R.; Fatema, M.K.; Reichard, M.; Huq, K.A.; Wahab, M.A.; Ahmed, Z.F.; Smith, C. The distribution and habitat preferences of the zebrafish in Bangladesh. J. Fish Biol. 2006, 69, 1435–1448. [Google Scholar] [CrossRef]
- López-Olmeda, J.F.; Sánchez-Vázquez, F.J. Thermal biology of zebrafish (Danio rerio). J. Therm. Biol. 2011, 36, 91–104. [Google Scholar] [CrossRef]
- Vergauwen, L.; Benoot, D.; Blust, R.; Knapen, D. Long-term warm or cold acclimation elicits a specific transcriptional response and affects energy metabolism in zebrafish. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 2010, 157, 149–157. [Google Scholar] [CrossRef] [PubMed]
- Roots, B.I. Phospholipids of goldfish (Carassius auratus L.) brain: The influence of environmental temperature. Comp. Biochem. Physiol. 1968, 25, 457–466. [Google Scholar] [CrossRef] [PubMed]
- Cossins, A.R. Adaptation of biological membranes to temperature. The effect of temperature acclimation of goldfish upon the viscosity of synaptosomal membranes. Biochim. Biophys. Acta 1977, 470, 395–411. [Google Scholar] [CrossRef] [PubMed]
- Cossins, A.R.; Friedlander, M.J.; Prosser, C.L. Correlations between behavioural temperature adaptations of goldfish and the viscosity and fatty acid composition of their synaptic membranes. J. Comp. Physiol. 1977, 120, 109–121. [Google Scholar] [CrossRef]
- Cossins, A.R.; Prosser, C.L. Variable homeoviscous responses of different brain membranes of thermally-acclimated goldfish. Biochim. Biophys. Acta 1982, 687, 303–309. [Google Scholar] [CrossRef] [PubMed]
- Peck, L.S.; Morley, S.A.; Richard, J.; Clark, M.S. Acclimation and thermal tolerance in Antarctic marine ectotherms. J. Exp. Biol. 2014, 217, 16–22. [Google Scholar] [CrossRef]
- Campos, D.F.; Amanajas, R.D.; Almeida-Val, V.M.F.; Val, A.L. Climate vulnerability of South American freshwater fish: Thermal tolerance and acclimation. J. Exp. Zool. Part A Ecol. Integr. Physiol. 2021, 335, 723–734. [Google Scholar] [CrossRef]
- Ern, R.; Andreassen, A.H.; Jutfelt, F. Physiological Mechanisms of Acute Upper Thermal Tolerance in Fish. Physiology 2023, 38, 141–158. [Google Scholar] [CrossRef]
- Asheim, E.R.; Andreassen, A.H.; Morgan, R.; Silvestre, M.; Jutfelt, F. Acute warming tolerance (CT (max)) in zebrafish (Danio rerio) appears unaffected by changes in water salinity. PeerJ 2024, 12, e17343. [Google Scholar] [CrossRef] [PubMed]
- Morgan, R.; Sundin, J.; Finnoen, M.H.; Dresler, G.; Vendrell, M.M.; Dey, A.; Sarkar, K.; Jutfelt, F. Are model organisms representative for climate change research? Testing thermal tolerance in wild and laboratory zebrafish populations. Conserv. Physiol. 2019, 7, coz036. [Google Scholar] [CrossRef] [PubMed]
- Biederman, A.M.; Kuhn, D.E.; O’Brien, K.M.; Crockett, E.L. Physical, chemical, and functional properties of neuronal membranes vary between species of Antarctic notothenioids differing in thermal tolerance. J. Comp. Physiol. B Biochem. Syst. Environ. Physiol. 2019, 189, 213–222. [Google Scholar] [CrossRef] [PubMed]
- Thiam, A.R.; Farese, R.V., Jr.; Walther, T.C. The biophysics and cell biology of lipid droplets. Nat. Rev. Mol. Cell Biol. 2013, 14, 775–786. [Google Scholar] [CrossRef]
- Li, Z.; Agellon, L.B.; Allen, T.M.; Umeda, M.; Jewell, L.; Mason, A.; Vance, D.E. The ratio of phosphatidylcholine to phosphatidylethanolamine influences membrane integrity and steatohepatitis. Cell Metab. 2006, 3, 321–331. [Google Scholar] [CrossRef]
- Glaser, P.E.; Gross, R.W. Rapid plasmenylethanolamine-selective fusion of membrane bilayers catalyzed by an isoform of glyceraldehyde-3-phosphate dehydrogenase: Discrimination between glycolytic and fusogenic roles of individual isoforms. Biochemistry 1995, 34, 12193–12203. [Google Scholar] [CrossRef]
- Lohner, K. Is the high propensity of ethanolamine plasmalogens to form non-lamellar lipid structures manifested in the properties of biomembranes? Chem. Phys. Lipids 1996, 81, 167–184. [Google Scholar] [CrossRef]
- Tracey, T.J.; Steyn, F.J.; Wolvetang, E.J.; Ngo, S.T. Neuronal Lipid Metabolism: Multiple Pathways Driving Functional Outcomes in Health and Disease. Front. Mol. Neurosci. 2018, 11, 10. [Google Scholar] [CrossRef] [PubMed]
- Rahmann, H.; Jonas, U.; Kappel, T.; Hilderbrandt, H. Differential involvement of gangliosides versus phospholipids in the process of temperature adaptation in vertebrates. A comparative phenomenological and physicochemical study. Ann. N. Y. Acad. Sci. 1998, 845, 72–91. [Google Scholar] [CrossRef] [PubMed]
- Fu, Y.; Pickford, R.; Galper, J.; Phan, K.; Wu, P.; Li, H.; Kim, Y.B.; Dzamko, N.; Halliday, G.M.; Kim, W.S. A protective role of ABCA5 in response to elevated sphingomyelin levels in Parkinson’s disease. NPJ Park. Dis. 2024, 10, 20. [Google Scholar] [CrossRef]
- Gaudioso, A.; Jiang, X.; Casas, J.; Schuchman, E.H.; Ledesma, M.D. Sphingomyelin 16:0 is a therapeutic target for neuronal death in acid sphingomyelinase deficiency. Cell Death Dis. 2023, 14, 248. [Google Scholar] [CrossRef]
- Viljetic, B.; Labak, I.; Majic, S.; Stambuk, A.; Heffer, M. Distribution of mono-, di- and trisialo gangliosides in the brain of Actinopterygian fishes. Biochim. Biophys. Acta 2012, 1820, 1437–1443. [Google Scholar] [CrossRef]
- Rahmann, H. Gangliosides and thermal adaptation in vertebrates. Jpn. J. Exp. Med. 1978, 48, 85–96. [Google Scholar]
- Rahmann, H.; Hilbig, R. The possible functional role of neuronal gangliosides in temperature adaptation of vertebrates. J. Therm. Biol. 1981, 6, 315–319. [Google Scholar] [CrossRef]
- Rahmann, R. Gangliosides and thermal adaptation. Adv. Exp. Med. Biol. 1980, 125, 505–514. [Google Scholar] [CrossRef] [PubMed]
- Sonnino, S.; Chiricozzi, E.; Grassi, S.; Mauri, L.; Prioni, S.; Prinetti, A. Gangliosides in Membrane Organization. Prog. Mol. Biol. Transl. Sci. 2018, 156, 83–120. [Google Scholar] [CrossRef] [PubMed]
- Anderson, R.G. The caveolae membrane system. Annu. Rev. Biochem. 1998, 67, 199–225. [Google Scholar] [CrossRef] [PubMed]
- Simons, K.; Toomre, D. Lipid rafts and signal transduction. Nat. Reviews. Mol. Cell Biol. 2000, 1, 31–39. [Google Scholar] [CrossRef]
- Hakomori, S.; Handa, K.; Iwabuchi, K.; Yamamura, S.; Prinetti, A. New insights in glycosphingolipid function: “glycosignaling domain”, a cell surface assembly of glycosphingolipids with signal transducer molecules, involved in cell adhesion coupled with signaling. Glycobiology 1998, 8, xi–xviii. [Google Scholar] [CrossRef]
- Yu, R.K.; Nakatani, Y.; Yanagisawa, M. The role of glycosphingolipid metabolism in the developing brain. J. Lipid Res. 2009, 50, S440–S445. [Google Scholar] [CrossRef]
- Zeller, C.B.; Marchase, R.B. Gangliosides as modulsators of cell function. Am. J. Physiol. 1992, 262, C1341–C1355. [Google Scholar] [CrossRef]
- Lopez, P.H.H.; Baez, B.B. Gangliosides in Axon Stability and Regeneration. Prog. Mol. Biol. Transl. Sci. 2018, 156, 383–412. [Google Scholar] [CrossRef]
- Regina Todeschini, A.; Hakomori, S.I. Functional role of glycosphingolipids and gangliosides in control of cell adhesion, motility, and growth, through glycosynaptic microdomains. Biochim. Biophys. Acta 2008, 1780, 421–433. [Google Scholar] [CrossRef] [PubMed]
- Groux-Degroote, S.; Rodriguez-Walker, M.; Dewald, J.H.; Daniotti, J.L.; Delannoy, P. Gangliosides in Cancer Cell Signaling. Prog. Mol. Biol. Transl. Sci. 2018, 156, 197–227. [Google Scholar] [CrossRef] [PubMed]
- Ledeen, R.; Wu, G. Gangliosides of the Nervous System. Methods Mol. Biol. 2018, 1804, 19–55. [Google Scholar] [CrossRef]
- Rubovitch, V.; Zilberstein, Y.; Chapman, J.; Schreiber, S.; Pick, C.G. Restoring GM1 ganglioside expression ameliorates axonal outgrowth inhibition and cognitive impairments induced by blast traumatic brain injury. Sci. Rep. 2017, 7, 41269. [Google Scholar] [CrossRef]
- Olsen, A.S.B.; Faergeman, N.J. Sphingolipids: Membrane microdomains in brain development, function and neurological diseases. Open Biol. 2017, 7, 170069. [Google Scholar] [CrossRef] [PubMed]
- Kappel, T.; Anken, R.H.; Hanke, W.; Rahmann, H. Gangliosides affect membrane-channel activities dependent on ambient temperature. Cell. Mol. Neurobiol. 2000, 20, 579–590. [Google Scholar] [CrossRef]
- Fantini, J.; Barrantes, F.J. Sphingolipid/cholesterol regulation of neurotransmitter receptor conformation and function. Biochim. Biophys. Acta 2009, 1788, 2345–2361. [Google Scholar] [CrossRef]
- Jazvinscak Jembrek, M.; Hof, P.R.; Simic, G. Ceramides in Alzheimer’s Disease: Key Mediators of Neuronal Apoptosis Induced by Oxidative Stress and Abeta Accumulation. Oxidative Med. Cell. Longev. 2015, 2015, 346783. [Google Scholar] [CrossRef]
- Pan, Y.; Li, J.; Lin, P.; Wan, L.; Qu, Y.; Cao, L.; Wang, L. A review of the mechanisms of abnormal ceramide metabolism in type 2 diabetes mellitus, Alzheimer’s disease, and their co-morbidities. Front. Pharmacol. 2024, 15, 1348410. [Google Scholar] [CrossRef]
- Dadsena, S.; Bockelmann, S.; Mina, J.G.M.; Hassan, D.G.; Korneev, S.; Razzera, G.; Jahn, H.; Niekamp, P.; Muller, D.; Schneider, M.; et al. Ceramides bind VDAC2 to trigger mitochondrial apoptosis. Nat. Commun. 2019, 10, 1832. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Novgorodov, S.A.; Chudakova, D.; Zhu, H.; Bielawska, A.; Bielawski, J.; Obeid, L.M.; Kindy, M.S.; Gudz, T.I. JNK3 signaling pathway activates ceramide synthase leading to mitochondrial dysfunction. J. Biol. Chem. 2007, 282, 25940–25949. [Google Scholar] [CrossRef]
- Carsana, E.V.; Lunghi, G.; Prioni, S.; Mauri, L.; Loberto, N.; Prinetti, A.; Zucca, F.A.; Bassi, R.; Sonnino, S.; Chiricozzi, E.; et al. Massive Accumulation of Sphingomyelin Affects the Lysosomal and Mitochondria Compartments and Promotes Apoptosis in Niemann-Pick Disease Type A. J. Mol. Neurosci. 2022, 72, 1482–1499. [Google Scholar] [CrossRef]
- Kogot-Levin, A.; Saada, A. Ceramide and the mitochondrial respiratory chain. Biochimie 2014, 100, 88–94. [Google Scholar] [CrossRef]
- Novgorodov, S.A.; Riley, C.L.; Keffler, J.A.; Yu, J.; Kindy, M.S.; Macklin, W.B.; Lombard, D.B.; Gudz, T.I. SIRT3 Deacetylates Ceramide Synthases: Implications for mitochondrial dysfunction and brain injury. J. Biol. Chem. 2016, 291, 1957–1973. [Google Scholar] [CrossRef] [PubMed]
- Cutler, R.G.; Kelly, J.; Storie, K.; Pedersen, W.A.; Tammara, A.; Hatanpaa, K.; Troncoso, J.C.; Mattson, M.P. Involvement of oxidative stress-induced abnormalities in ceramide and cholesterol metabolism in brain aging and Alzheimer’s disease. Proc. Natl. Acad. Sci. USA 2004, 101, 2070–2075. [Google Scholar] [CrossRef]
- Matsuda, J.; Kido, M.; Tadano-Aritomi, K.; Ishizuka, I.; Tominaga, K.; Toida, K.; Takeda, E.; Suzuki, K.; Kuroda, Y. Mutation in saposin D domain of sphingolipid activator protein gene causes urinary system defects and cerebellar Purkinje cell degeneration with accumulation of hydroxy fatty acid-containing ceramide in mouse. Hum. Mol. Genet. 2004, 13, 2709–2723. [Google Scholar] [CrossRef] [PubMed]
- Mesicek, J.; Lee, H.; Feldman, T.; Jiang, X.; Skobeleva, A.; Berdyshev, E.V.; Haimovitz-Friedman, A.; Fuks, Z.; Kolesnick, R. Ceramide synthases 2, 5, and 6 confer distinct roles in radiation-induced apoptosis in HeLa cells. Cell. Signal. 2010, 22, 1300–1307. [Google Scholar] [CrossRef]
- Luberto, C.; Hassler, D.F.; Signorelli, P.; Okamoto, Y.; Sawai, H.; Boros, E.; Hazen-Martin, D.J.; Obeid, L.M.; Hannun, Y.A.; Smith, G.K. Inhibition of tumor necrosis factor-induced cell death in MCF7 by a novel inhibitor of neutral sphingomyelinase. J. Biol. Chem. 2002, 277, 41128–41139. [Google Scholar] [CrossRef]
- Bose, R.; Verheij, M.; Haimovitz-Friedman, A.; Scotto, K.; Fuks, Z.; Kolesnick, R. Ceramide synthase mediates daunorubicin-induced apoptosis: An alternative mechanism for generating death signals. Cell 1995, 82, 405–414. [Google Scholar] [CrossRef]
- Alphonse, G.; Bionda, C.; Aloy, M.T.; Ardail, D.; Rousson, R.; Rodriguez-Lafrasse, C. Overcoming resistance to gamma-rays in squamous carcinoma cells by poly-drug elevation of ceramide levels. Oncogene 2004, 23, 2703–2715. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Panda, S.P. Targeting GM2 Ganglioside Accumulation in Dementia: Current Therapeutic Approaches and Future Directions. Curr. Mol. Med. 2023, 24, 1329–1345. [Google Scholar] [CrossRef]
- Morand, O.H.; Zoeller, R.A.; Raetz, C.R. Disappearance of plasmalogens from membranes of animal cells subjected to photosensitized oxidation. J. Biol. Chem. 1988, 263, 11597–11606. [Google Scholar] [CrossRef] [PubMed]
- Zoeller, R.A.; Morand, O.H.; Raetz, C.R. A possible role for plasmalogens in protecting animal cells against photosensitized killing. J. Biol. Chem. 1988, 263, 11590–11596. [Google Scholar] [CrossRef]
- Reiss, D.; Beyer, K.; Engelmann, B. Delayed oxidative degradation of polyunsaturated diacyl phospholipids in the presence of plasmalogen phospholipids in vitro. Biochem. J. 1997, 323, 807–814. [Google Scholar] [CrossRef] [PubMed]
- Sipione, S.; Monyror, J.; Galleguillos, D.; Steinberg, N.; Kadam, V. Gangliosides in the Brain: Physiology, Pathophysiology and Therapeutic Applications. Front. Neurosci. 2020, 14, 572965. [Google Scholar] [CrossRef]
- Vasques, J.F.; de Jesus Goncalves, R.G.; da Silva-Junior, A.J.; Martins, R.S.; Gubert, F.; Mendez-Otero, R. Gangliosides in nervous system development, regeneration, and pathologies. Neural Regen. Res. 2023, 18, 81–86. [Google Scholar] [CrossRef]
- Dean, J.M.; Lodhi, I.J. Structural and functional roles of ether lipids. Protein Cell 2018, 9, 196–206. [Google Scholar] [CrossRef]
- Dasgupta, S.; Ray, S.K. Ceramide and Sphingosine Regulation of Myelinogenesis: Targeting Serine Palmitoyltransferase Using microRNA in Multiple Sclerosis. Int. J. Mol. Sci. 2019, 20, 5031. [Google Scholar] [CrossRef]
- Dasgupta, S.; Ray, S.K. Insights into abnormal sphingolipid metabolism in multiple sclerosis: Targeting ceramide biosynthesis as a unique therapeutic strategy. Ther. Targets Neurol. Dis. 2017, 4, e1598. [Google Scholar]
- Miller, L.G., Jr.; Young, J.A.; Ray, S.K.; Wang, G.; Purohit, S.; Banik, N.L.; Dasgupta, S. Sphingosine Toxicity in EAE and MS: Evidence for Ceramide Generation via Serine-Palmitoyltransferase Activation. Neurochem. Res. 2017, 42, 2755–2768. [Google Scholar] [CrossRef] [PubMed]
- Blusztajn, J.K.; Aytan, N.; Rajendiran, T.; Mellott, T.J.; Soni, T.; Burant, C.F.; Serrano, G.E.; Beach, T.G.; Lin, H.; Stein, T.D. Cerebral Gray and White Matter Monogalactosyl Diglyceride Levels Rise with the Progression of Alzheimer’s Disease. J. Alzheimer’s Dis. JAD 2023, 95, 1623–1634. [Google Scholar] [CrossRef]
- Steim, J.M. Monogalactosyl diglyceride: A new neurolipid. Biochim. Biophys. Acta 1967, 144, 118–126. [Google Scholar] [CrossRef] [PubMed]
- Pieringer, R.A.; Deshmukh, D.S.; Flynn, T.J. The association of the galactosyl diglycerides of nerve tissue with myelination. Prog. Brain Res. 1973, 40, 398–405. [Google Scholar]
- Deshmukh, D.S.; Flynn, T.J.; Pieringer, R.A. The biosynthesis and concentration of galactosyl diglyceride in glial and neuronal enriched fractions of actively myelinating rat brain. J. Neurochem. 1974, 22, 479–485. [Google Scholar] [CrossRef] [PubMed]
- Wenger, D.A.; Petitpas, J.W.; Pieringer, R.A. The metabolism of glyceride glycolipids. II. Biosynthesis of monogalactosyl diglyceride from uridine diphosphate galactose and diglyceride in brain. Biochemistry 1968, 7, 3700–3707. [Google Scholar] [CrossRef]
- Wells, M.A.; Dittmer, J.C. A comprehensive study of the postnatal changes in the concentration of the lipids of developing rat brain. Biochemistry 1967, 6, 3169–3175. [Google Scholar] [CrossRef]
- Walkley, S.U.; Siegel, D.A.; Dobrenis, K. GM2 ganglioside and pyramidal neuron dendritogenesis. Neurochem. Res. 1995, 20, 1287–1299. [Google Scholar] [CrossRef]
- Walkley, S.U. Pyramidal neurons with ectopic dendrites in storage diseases exhibit increased GM2 ganglioside immunoreactivity. Neuroscience 1995, 68, 1027–1035. [Google Scholar] [CrossRef]
- Virgolini, M.J.; Feliziani, C.; Cambiasso, M.J.; Lopez, P.H.; Bollo, M. Neurite atrophy and apoptosis mediated by PERK signaling after accumulation of GM2-ganglioside. Biochim. Biophys. Acta. Mol. Cell Res. 2019, 1866, 225–239. [Google Scholar] [CrossRef]
- Murai, Y.; Honda, T.; Yuyama, K.; Mikami, D.; Eguchi, K.; Ukawa, Y.; Usuki, S.; Igarashi, Y.; Monde, K. Evaluation of Plant Ceramide Species-Induced Exosome Release from Neuronal Cells and Exosome Loading Using Deuterium Chemistry. Int. J. Mol. Sci. 2022, 23, 10751. [Google Scholar] [CrossRef] [PubMed]
- Gu, J.; Chen, L.; Sun, R.; Wang, J.L.; Wang, J.; Lin, Y.; Lei, S.; Zhang, Y.; Lv, D.; Jiang, F.; et al. Plasmalogens Eliminate Aging-Associated Synaptic Defects and Microglia-Mediated Neuroinflammation in Mice. Front. Mol. Biosci. 2022, 9, 815320. [Google Scholar] [CrossRef] [PubMed]
- de Wit, N.M.; den Hoedt, S.; Martinez-Martinez, P.; Rozemuller, A.J.; Mulder, M.T.; de Vries, H.E. Astrocytic ceramide as possible indicator of neuroinflammation. J. Neuroinflamm. 2019, 16, 48. [Google Scholar] [CrossRef]
- Mayo, L.; Trauger, S.A.; Blain, M.; Nadeau, M.; Patel, B.; Alvarez, J.I.; Mascanfroni, I.D.; Yeste, A.; Kivisakk, P.; Kallas, K.; et al. Regulation of astrocyte activation by glycolipids drives chronic CNS inflammation. Nat. Med. 2014, 20, 1147–1156. [Google Scholar] [CrossRef] [PubMed]
- Le Stunff, H.; Veret, J.; Kassis, N.; Denom, J.; Meneyrol, K.; Paul, J.L.; Cruciani-Guglielmacci, C.; Magnan, C.; Janel, N. Deciphering the Link Between Hyperhomocysteinemia and Ceramide Metabolism in Alzheimer-Type Neurodegeneration. Front. Neurol. 2019, 10, 807. [Google Scholar] [CrossRef]
- Demir, S.A.; Timur, Z.K.; Ates, N.; Martinez, L.A.; Seyrantepe, V. GM2 ganglioside accumulation causes neuroinflammation and behavioural alterations in a mouse model of early onset Tay-Sachs disease. J. Neuroinflamm. 2020, 17, 277. [Google Scholar] [CrossRef]
- Tu, R.; Yang, W.; Hu, Z. Inhibition of sphingomyelin synthase 1 affects ceramide accumulation and hydrogen peroxide-induced apoptosis in Neuro-2a cells. Neuroreport 2016, 27, 967–973. [Google Scholar] [CrossRef]
- Ichi, I.; Kamikawa, C.; Nakagawa, T.; Kobayashi, K.; Kataoka, R.; Nagata, E.; Kitamura, Y.; Nakazaki, C.; Matsura, T.; Kojo, S. Neutral sphingomyelinase-induced ceramide accumulation by oxidative stress during carbon tetrachloride intoxication. Toxicology 2009, 261, 33–40. [Google Scholar] [CrossRef]
- Yen, C.L.; Mar, M.H.; Zeisel, S.H. Choline deficiency-induced apoptosis in PC12 cells is associated with diminished membrane phosphatidylcholine and sphingomyelin, accumulation of ceramide and diacylglycerol, and activation of a caspase. FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol. 1999, 13, 135–142. [Google Scholar] [CrossRef]
- Katsel, P.; Li, C.; Haroutunian, V. Gene expression alterations in the sphingolipid metabolism pathways during progression of dementia and Alzheimer’s disease: A shift toward ceramide accumulation at the earliest recognizable stages of Alzheimer’s disease? Neurochem. Res. 2007, 32, 845–856. [Google Scholar] [CrossRef] [PubMed]
- Omahen, D.A. Augmentation of chemotherapy-triggered glioma cell apoptosis by blockade of arachidonic acid metabolism—The potential role of ceramide accumulation. Med. Hypotheses 2011, 77, 726–733. [Google Scholar] [CrossRef] [PubMed]
- Lyn-Cook, L.E., Jr.; Lawton, M.; Tong, M.; Silbermann, E.; Longato, L.; Jiao, P.; Mark, P.; Wands, J.R.; Xu, H.; de la Monte, S.M. Hepatic ceramide may mediate brain insulin resistance and neurodegeneration in type 2 diabetes and non-alcoholic steatohepatitis. J. Alzheimer’s Dis. JAD 2009, 16, 715–729. [Google Scholar] [CrossRef]
- Garcia-Ruiz, C.; Colell, A.; Mari, M.; Morales, A.; Calvo, M.; Enrich, C.; Fernandez-Checa, J.C. Defective TNF-alpha-mediated hepatocellular apoptosis and liver damage in acidic sphingomyelinase knockout mice. J. Clin. Investig. 2003, 111, 197–208. [Google Scholar] [CrossRef]
- Deng, X.; Yin, X.; Allan, R.; Lu, D.D.; Maurer, C.W.; Haimovitz-Friedman, A.; Fuks, Z.; Shaham, S.; Kolesnick, R. Ceramide biogenesis is required for radiation-induced apoptosis in the germ line of C. elegans. Science 2008, 322, 110–115. [Google Scholar] [CrossRef] [PubMed]
- Leal, A.F.; Benincore-Florez, E.; Solano-Galarza, D.; Garzon Jaramillo, R.G.; Echeverri-Pena, O.Y.; Suarez, D.A.; Almeciga-Diaz, C.J.; Espejo-Mojica, A.J. GM2 Gangliosidoses: Clinical Features, Pathophysiological Aspects, and Current Therapies. Int. J. Mol. Sci. 2020, 21, 6213. [Google Scholar] [CrossRef]
- Deschenes, N.M.; Cheng, C.; Ryckman, A.E.; Quinville, B.M.; Khanal, P.; Mitchell, M.; Chen, Z.; Sangrar, W.; Gray, S.J.; Walia, J.S. Biochemical Correction of GM2 Ganglioside Accumulation in AB-Variant GM2 Gangliosidosis. Int. J. Mol. Sci. 2023, 24, 9217. [Google Scholar] [CrossRef]
- Baek, R.C.; Kasperzyk, J.L.; Platt, F.M.; Seyfried, T.N. N-butyldeoxygalactonojirimycin reduces brain ganglioside and GM2 content in neonatal Sandhoff disease mice. Neurochem. Int. 2008, 52, 1125–1133. [Google Scholar] [CrossRef] [PubMed]
- Dodge, J.C.; Tamsett, T.J.; Treleaven, C.M.; Taksir, T.V.; Piepenhagen, P.; Sardi, S.P.; Cheng, S.H.; Shihabuddin, L.S. Glucosylceramide synthase inhibition reduces ganglioside GM3 accumulation, alleviates amyloid neuropathology, and stabilizes remote contextual memory in a mouse model of Alzheimer’s disease. Alzheimer’s Res. Ther. 2022, 14, 19. [Google Scholar] [CrossRef]
- Sohn, H.; Kim, Y.S.; Kim, H.T.; Kim, C.H.; Cho, E.W.; Kang, H.Y.; Kim, N.S.; Kim, C.H.; Ryu, S.E.; Lee, J.H.; et al. Ganglioside GM3 is involved in neuronal cell death. FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol. 2006, 20, 1248–1250. [Google Scholar] [CrossRef]
- Yuyama, K.; Yanagisawa, K. Sphingomyelin accumulation provides a favorable milieu for GM1 ganglioside-induced assembly of amyloid beta-protein. Neurosci. Lett. 2010, 481, 168–172. [Google Scholar] [CrossRef] [PubMed]
- Yamashita, S.; Kanno, S.; Nakagawa, K.; Kinoshita, M.; Miyazawa, T. Extrinsic plasmalogens suppress neuronal apoptosis in mouse neuroblastoma Neuro-2A cells: Importance of plasmalogen molecular species. RSC Adv. 2015, 5, 61012–61020. [Google Scholar] [CrossRef]
- Kind, T.; Liu, K.H.; Lee, D.Y.; DeFelice, B.; Meissen, J.K.; Fiehn, O. LipidBlast in silico tandem mass spectrometry database for lipid identification. Nat. Methods 2013, 10, 755–758. [Google Scholar] [CrossRef]
- Bauza-Martinez, J.; Aletti, F.; Pinto, B.B.; Ribas, V.; Odena, M.A.; Diaz, R.; Romay, E.; Ferrer, R.; Kistler, E.B.; Tedeschi, G.; et al. Proteolysis in septic shock patients: Plasma peptidomic patterns are associated with mortality. Br. J. Anaesth. 2018, 121, 1065–1074. [Google Scholar] [CrossRef]
- Tagliapietra, M.; Zanusso, G.; Ferrari, S.; Orlandi, R.; Bertolasi, L.; Cavallaro, T.; Monaco, S. Myelin uncompaction and axo-glial detachment in chronic ataxic neuropathy with monospecific IgM antibody to ganglioside GD1b. J. Peripher. Nerv. Syst. JPNS 2020, 25, 54–59. [Google Scholar] [CrossRef] [PubMed]
- da Silva, T.F.; Sousa, V.F.; Malheiro, A.R.; Brites, P. The importance of ether-phospholipids: A view from the perspective of mouse models. Biochim. Biophys. Acta 2012, 1822, 1501–1508. [Google Scholar] [CrossRef] [PubMed]
- Rodemer, C.; Thai, T.P.; Brugger, B.; Kaercher, T.; Werner, H.; Nave, K.A.; Wieland, F.; Gorgas, K.; Just, W.W. Inactivation of ether lipid biosynthesis causes male infertility, defects in eye development and optic nerve hypoplasia in mice. Hum. Mol. Genet. 2003, 12, 1881–1895. [Google Scholar] [CrossRef]
- Teigler, A.; Komljenovic, D.; Draguhn, A.; Gorgas, K.; Just, W.W. Defects in myelination, paranode organization and Purkinje cell innervation in the ether lipid-deficient mouse cerebellum. Hum. Mol. Genet. 2009, 18, 1897–1908. [Google Scholar] [CrossRef]
- Gu, L.; Huang, B.; Shen, W.; Gao, L.; Ding, Z.; Wu, H.; Guo, J. Early activation of nSMase2/ceramide pathway in astrocytes is involved in ischemia-associated neuronal damage via inflammation in rat hippocampi. J. Neuroinflamm. 2013, 10, 109. [Google Scholar] [CrossRef]
- Brodde, A.; Teigler, A.; Brugger, B.; Lehmann, W.D.; Wieland, F.; Berger, J.; Just, W.W. Impaired neurotransmission in ether lipid-deficient nerve terminals. Hum. Mol. Genet. 2012, 21, 2713–2724. [Google Scholar] [CrossRef]
- de la Monte, S.M.; Re, E.; Longato, L.; Tong, M. Dysfunctional pro-ceramide, ER stress, and insulin/IGF signaling networks with progression of Alzheimer’s disease. J. Alzheimer’s Dis. JAD 2012, 30 (Suppl. S2), S217–S229. [Google Scholar] [CrossRef] [PubMed]
- Spears, L.D.; Adak, S.; Dong, G.; Wei, X.; Spyropoulos, G.; Zhang, Q.; Yin, L.; Feng, C.; Hu, D.; Lodhi, I.J.; et al. Endothelial ether lipids link the vasculature to blood pressure, behaviour, and neurodegeneration. J. Lipid Res. 2021, 62, 100079. [Google Scholar] [CrossRef] [PubMed]
- Ginsberg, L.; Rafique, S.; Xuereb, J.H.; Rapoport, S.I.; Gershfeld, N.L. Disease and anatomic specificity of ethanolamine plasmalogen deficiency in Alzheimer’s disease brain. Brain Res. 1995, 698, 223–226. [Google Scholar] [CrossRef] [PubMed]
- Ginsberg, L.; Xuereb, J.H.; Gershfeld, N.L. Membrane instability, plasmalogen content, and Alzheimer’s disease. J. Neurochem. 1998, 70, 2533–2538. [Google Scholar] [CrossRef]
- Han, X.; Holtzman, D.M.; McKeel, D.W., Jr. Plasmalogen deficiency in early Alzheimer’s disease subjects and in animal models: Molecular characterization using electrospray ionization mass spectrometry. J. Neurochem. 2001, 77, 1168–1180. [Google Scholar] [CrossRef]
- Goodenowe, D.B.; Cook, L.L.; Liu, J.; Lu, Y.; Jayasinghe, D.A.; Ahiahonu, P.W.; Heath, D.; Yamazaki, Y.; Flax, J.; Krenitsky, K.F.; et al. Peripheral ethanolamine plasmalogen deficiency: A logical causative factor in Alzheimer’s disease and dementia. J. Lipid Res. 2007, 48, 2485–2498. [Google Scholar] [CrossRef] [PubMed]
- Wood, P.L.; Mankidy, R.; Ritchie, S.; Heath, D.; Wood, J.A.; Flax, J.; Goodenowe, D.B. Circulating plasmalogen levels and Alzheimer Disease Assessment Scale-Cognitive scores in Alzheimer patients. J. Psychiatry Neurosci. JPN 2010, 35, 59–62. [Google Scholar] [CrossRef]
- Fabelo, N.; Martin, V.; Santpere, G.; Marin, R.; Torrent, L.; Ferrer, I.; Diaz, M. Severe alterations in lipid composition of frontal cortex lipid rafts from Parkinson’s disease and incidental Parkinson’s disease. Mol. Med. 2011, 17, 1107–1118. [Google Scholar] [CrossRef]
- Tessier, C.; Sweers, K.; Frajerman, A.; Bergaoui, H.; Ferreri, F.; Delva, C.; Lapidus, N.; Lamaziere, A.; Roiser, J.P.; De Hert, M.; et al. Membrane lipidomics in schizophrenia patients: A correlational study with clinical and cognitive manifestations. Transl. Psychiatry 2016, 6, e906. [Google Scholar] [CrossRef]
- Huang, J.H.; Park, H.; Iaconelli, J.; Berkovitch, S.S.; Watmuff, B.; McPhie, D.; Ongur, D.; Cohen, B.M.; Clish, C.B.; Karmacharya, R. Unbiased Metabolite Profiling of Schizophrenia Fibroblasts under Stressful Perturbations Reveals Dysregulation of Plasmalogens and Phosphatidylcholines. J. Proteome Res. 2017, 16, 481–493. [Google Scholar] [CrossRef]
18 °C vs. 26 °C | ||||||
---|---|---|---|---|---|---|
Metabolite Name | Chemical Formula | p Value | Figure | |||
Upregulated | Phospholipids | Phosphatidylethanolamine | PE 36:3;O|PE 16:0_20:3;O | C41H76NO9P | 0.0437 | Figure 4A |
PE 38:3;O|PE 18:0_20:3;O | C43H80NO9P | 0.0152 | Figure 4B | |||
PE 40:4;O|PE 18:1_22:3;O | C45H82NO9P | 0.0040 | Figure 4C | |||
PE 42:9;O|PE 22:6_20:3;O | C47H76NO9P | 0.0184 | Figure 4D | |||
PE 44:9;O|PE 22:6_22:3;O | C49H80NO9P | 0.0230 | Figure 4E | |||
Sphingolipids | Sphingomyelin | SM 40:7;O3 | C45H79N2O7P | 0.0101 | Figure 4F | |
Downregulated | Sphingolipids | Sphingomyelin | SM 37:3;O2|SM 19:3;O2/18:0 | C42H81N2O6P | 0.0248 | Figure 5A |
SM 38:1;O2|SM 21:0;O2/17:1 | C43H87N2O6P | 0.0253 | Figure 5B | |||
SM 40:1;O2|SM 18:1;O2/22:0 | C45H91N2O6P | 0.0442 | Figure 5C | |||
SM 40:2;O2|SM 18:1;O2/22:1 | C45H89N2O6P | 0.0071 | Figure 5D | |||
SM 42:1;O3 | C47H95N2O7P | 0.0219 | Figure 5E | |||
SM 42:2;O2|SM 18:1;O2/24:1 | C47H93N2O6P | 0.0188 | Figure 5F | |||
SM 42:3;O2|SM 18:1;O2/24:2 | C47H91N2O6P | 0.0144 | Figure 5G | |||
SM 42:4;O2|SM 18:1;O2/24:3 | C47H89N2O6P | 0.0216 | Figure 5H | |||
SM 44:3;O2|SM 18:1;O2/26:2 | C49H95N2O6P | 0.0256 | Figure 5I | |||
SM 44:4;O2|SM 18:1;O2/26:3 | C49H93N2O6P | 0.0497 | Figure 5J |
34 °C vs. 26 °C | ||||||
---|---|---|---|---|---|---|
Metabolite Name | Chemical Formula | p Value | Figure | |||
Upregulated | Phospholipids | Phosphatidylethanolamine | PE 34:0;O|PE 16:0_18:0;O | C39H78NO9P | 0.00024848 | Figure 6A |
PE 34:1|PE 16:0_18:1 | C39H76NO8P | 0.0397 | Figure 6B | |||
PE 36:1|PE 18:0_18:1 | C41H80NO8P | 0.0274 | Figure 6C | |||
PE 38:3;O|PE 18:0_20:3;O | C43H80NO9P | 0.02629 | Figure 6D | |||
PE 40:1|PE 22:0_18:1 | C45H88NO8P | 0.04822 | Figure 6E | |||
PE 40:3;O|PE 18:0_22:3;O | C45H84NO9P | 0.02079 | Figure 6F | |||
PE 42:1|PE 24:0_18:1 | C47H92NO8P | 0.02425 | Figure 6G | |||
PE 42:2|PE 18:1_24:1 | C47H90NO8P | 0.04518 | Figure 6H | |||
PE 42:7|PE 18:1_24:6 | C47H80NO8P | 0.02326 | Figure 6I | |||
PE 44:1|PE 26:0_18:1 | C49H96NO8P | 0.03839 | Figure 6J | |||
Lyso phosphatidylethanolamine | LPE-N (FA)36:0|LPE-N (FA 18:0)18:0 | C41H82NO8P | 0.00716 | Figure 6K | ||
Sphingolipids | Ceramide | Cer 50:11;O4|Cer 28:4;O3 (FA 22:6) | C50H79NO5 | 0.00344 | Figure 6L | |
Gangliosides | GD0a/b (36:0)-2H | C92H161N5O44 | 0.03171 | Figure 7A | ||
GD1a/b (d18:1/18:0) | C85H149N3O39 | 0.0131 | Figure 7B | |||
GD1a/b (36:1) (OH) | C84H148N4O40 | 0.03135 | Figure 7C | |||
GD1a/b(38:1) (NeuGc)-2H/O-Ac-GD1b (36:0)-2H | C86H150N4O40 | 0.04056 | Figure 7D | |||
GM2 d18:1-18:0 | C67H121N3O26 | 0.00937 | Figure 7E | |||
GM3 d18:1-18:0 | C59H108N2O21 | 0.01035 | Figure 7F | |||
GQ1a/b (36:0) | C106H182N6O55 | 0.00991 | Figure 7G | |||
GQ1a/b (36:2) | C106H178N6O55 | 0.0413 | Figure 7H | |||
GT3 (36:0) | C81H142N4O37 | 0.00928 | Figure 7I | |||
GT3 (42:2) | C87H150N4O37 | 0.01129 | Figure 7J | |||
O-Ac-GD1a/b (38:0)-2H/GD1a/b (40:2) (OH)-2H | C88H154N4O40 | 0.0168 | Figure 7K | |||
Sphingomyelin | SM 33:0;O2 | C38H79N2O6P | 0.01027 | Figure 6M | ||
SM 34:1;O3 | C39H79N2O7P | 0.00042476 | Figure 6N | |||
SM 38:6;O2|SM 17:2;O2/21:4 | C43H77N2O6P | 0.0001563 | Figure 6O | |||
SM 44:0;O2|SM 18:0;O2/26:0 | C49H101N2O6P | 0.00431 | Figure 6P | |||
SM 46:6;O3 | C51H93N2O7P | 0.04989 | Figure 6Q | |||
Downregulated | Ether phospholipids | Lysophosphatidylethanolamine ether | LPE O-18:2 | C23H46NO6P | 0.02631 | Figure 8A |
LPE O-18:3 | C23H44NO6P | 0.04381 | Figure 8B | |||
LPE O-19:1 | C24H50NO6P | 0.03261 | Figure 8C | |||
LPE O-20:1 | C25H52NO6P | 0.03871 | Figure 8D | |||
LPE O-20:2 | C25H50NO6P | 0.02834 | Figure 8E | |||
Phosphatidylethanolamine ether | PE O-42:1|PE O-18:1_24:0 | C47H94NO7P | 0.00582 | Figure 8F | ||
PE O-44:1|PE O-18:1_26:0 | C49H98NO7P | 0.01071 | Figure 8G | |||
Phosphatidylglycerol ether | PG O-38:3|PG O-20:2_18:1 | C44H83O9P | 0.00793 | Figure 8H | ||
Glycolipids | Monogalactosyldiacylglycerol | MGDG 34:1|MGDG 16:0_18:1 | C43H80O10 | 0.02816 | Figure 8I |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maffioli, E.; Nonnis, S.; Negri, A.; Fontana, M.; Frabetti, F.; Rossi, A.R.; Tedeschi, G.; Toni, M. Environmental Temperature Variation Affects Brain Lipid Composition in Adult Zebrafish (Danio rerio). Int. J. Mol. Sci. 2024, 25, 9629. https://doi.org/10.3390/ijms25179629
Maffioli E, Nonnis S, Negri A, Fontana M, Frabetti F, Rossi AR, Tedeschi G, Toni M. Environmental Temperature Variation Affects Brain Lipid Composition in Adult Zebrafish (Danio rerio). International Journal of Molecular Sciences. 2024; 25(17):9629. https://doi.org/10.3390/ijms25179629
Chicago/Turabian StyleMaffioli, Elisa, Simona Nonnis, Armando Negri, Manuela Fontana, Flavia Frabetti, Anna Rita Rossi, Gabriella Tedeschi, and Mattia Toni. 2024. "Environmental Temperature Variation Affects Brain Lipid Composition in Adult Zebrafish (Danio rerio)" International Journal of Molecular Sciences 25, no. 17: 9629. https://doi.org/10.3390/ijms25179629
APA StyleMaffioli, E., Nonnis, S., Negri, A., Fontana, M., Frabetti, F., Rossi, A. R., Tedeschi, G., & Toni, M. (2024). Environmental Temperature Variation Affects Brain Lipid Composition in Adult Zebrafish (Danio rerio). International Journal of Molecular Sciences, 25(17), 9629. https://doi.org/10.3390/ijms25179629