Association between Serum Glycated Hemoglobin Levels and Female Infertility: A Cross-Sectional Survey and Genetic Approach
Abstract
:1. Introduction
2. Results
2.1. Basic Characteristics of Study Participants
2.2. HbA1c Levels and Infertility
2.3. The Causal Relationship of HbA1c and Female Infertility
3. Discussion
4. Materials and Methods
4.1. Cross-Sectional Study
4.1.1. Study Population
4.1.2. Exposure and Outcome Definition
4.1.3. Assessment of Covariates
4.1.4. Statistical Analysis
4.2. Mendelian Randomization Study
4.2.1. Study Design
4.2.2. Genome-Wide Association Study (GWAS) Sources
4.2.3. Selection of IVs
4.2.4. Bidirectional MR Analyses
4.2.5. Sensitivity Analyses
4.2.6. Statistical Analyses
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vander Borght, M.; Wyns, C. Fertility and infertility: Definition and epidemiology. Clin. Biochem. 2018, 62, 2–10. [Google Scholar] [CrossRef]
- Sharma, R.; Biedenharn, K.R.; Fedor, J.M.; Agarwal, A. Lifestyle factors and reproductive health: Taking control of your fertility. Reprod. Biol. Endocrinol. 2013, 11, 66. [Google Scholar] [CrossRef]
- Thong, E.P.; Codner, E.; Laven, J.S.E.; Teede, H. Diabetes: A metabolic and reproductive disorder in women. Lancet Diabetes Endocrinol. 2019, 8, 134–149. [Google Scholar] [CrossRef] [PubMed]
- Cavero-Redondo, I.; Peleteiro, B.; Álvarez-Bueno, C.; Rodriguez-Artalejo, F.; Martínez-Vizcaíno, V. Glycated haemoglobin A1c as a risk factor of cardiovascular outcomes and all-cause mortality in diabetic and non-diabetic populations: A systematic review and meta-analysis. BMJ Open 2017, 7, e015949. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Li, Y.; Liao, X.; Wang, Z.; Li, R.; Zou, S.; Jiang, T.; Zheng, B.; Duan, P.; Xiao, J. Diabetes Induces Abnormal Ovarian Function via Triggering Apoptosis of Granulosa Cells and Suppressing Ovarian Angiogenesis. Int. J. Biol. Sci. 2017, 13, 1297–1308. [Google Scholar] [CrossRef] [PubMed]
- Fraser, R.; Waite, S.; Wood, K.; Martin, K. Impact of hyperglycemia on early embryo development and embryopathy: In vitro experiments using a mouse model. Hum. Reprod. 2007, 22, 3059–3068. [Google Scholar] [CrossRef] [PubMed]
- Mattsson, K.; Nilsson-Condori, E.; Elmerstig, E.; Vassard, D.; Schmidt, L.; Ziebe, S.; Jöud, A. Fertility outcomes in women with pre-existing type 2 diabetes—A prospective cohort study. Fertil. Steril. 2021, 116, 505–513. [Google Scholar] [CrossRef]
- Jonasson, J.M.; Brismar, K.; Sparén, P.; Lambe, M.; Nyre, O.; Claes-Göran, Ö.; Ye, W. Fertility in women with Type 1 Diabetes: A population-based cohort study in Sweden. Diabetes Care 2007, 30, 2271–2276. [Google Scholar] [CrossRef]
- Liu, Y.; Li, J.; Yan, Z.; Liu, D.; Ma, J.; Tong, N. Improvement of Insulin Sensitivity Increases Pregnancy Rate in Infertile PCOS Women: A Systemic Review. Front. Endocrinol. 2021, 12, 657889. [Google Scholar] [CrossRef]
- Codner, E.; Merino, P.; Tena-Sempere, M. Female reproduction and type 1 diabetes: From mechanisms to clinical findings. Hum. Reprod. Updat. 2012, 18, 568–585. [Google Scholar] [CrossRef]
- Creţu, D.; Cernea, S.; Onea, C.R.; Pop, R.-M. Reproductive health in women with type 2 diabetes mellitus. Hormones 2020, 19, 291–300. [Google Scholar] [CrossRef]
- Andlib, N.; Sajad, M.; Thakur, S.C. Association of diabetes mellitus with risk of reproductive impairment in females: A comprehensive review. Acta Histochem. 2024, 126, 152173. [Google Scholar] [CrossRef] [PubMed]
- Qin, X.; Du, J.; He, R.; Li, Y.; Zhu, Q.; Li, Y.; Li, H.; Liang, X. Adverse effects of type 2 diabetes mellitus on ovarian reserve and pregnancy outcomes during the assisted reproductive technology process. Front. Endocrinol. 2023, 14, 1274327. [Google Scholar] [CrossRef] [PubMed]
- Lei, R.; Chen, S.; Li, W. Advances in the study of the correlation between insulin resistance and infertility. Front. Endocrinol. 2024, 15, 1288326. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Lee, H.C.; Kim, S.-Y.; Cho, G.J.; Woodruff, T.K. Poorly-Controlled Type 1 Diabetes Mellitus Impairs LH-LHCGR Signaling in the Ovaries and Decreases Female Fertility in Mice. Yonsei Med. J. 2019, 60, 667–678. [Google Scholar] [CrossRef]
- Ma, Y.-D.; Cui, Z.-H.; Zhao, D.; Wang, Y.-C.; Zhang, L.-X.; Zhang, X.-Q.; Guo, W.-J.; Yuan, D.-Z.; Zhang, J.-H.; Yue, L.-M.; et al. The Effects of Altered Endometrial Glucose Homeostasis on Embryo Implantation in Type 2 Diabetic Mice. Reprod. Sci. 2021, 28, 703–714. [Google Scholar] [CrossRef]
- Lee, K.; Lim, C.-Y. Mendelian Randomization Analysis in Observational Epidemiology. J. Lipid Atheroscler. 2019, 8, 67–77. [Google Scholar] [CrossRef]
- Chen, J.; Spracklen, C.N.; Marenne, G.; Varshney, A.; Corbin, L.J.; Luan, J.; Willems, S.M.; Wu, Y.; Zhang, X.; Horikoshi, M.; et al. The trans-ancestral genomic architecture of glycemic traits. Nat. Genet. 2021, 53, 840–860. [Google Scholar] [CrossRef]
- Kurki, M.I.; Karjalainen, J.; Palta, P.; Sipilä, T.P.; Kristiansson, K.; Donner, K.M.; Reeve, M.P.; Laivuori, H.; Aavikko, M.; Kaunisto, M.A.; et al. FinnGen provides genetic insights from a well-phenotyped isolated population. Nature 2023, 613, 508–518. [Google Scholar] [CrossRef]
- Elks, C.E.; Ong, K.K.; Scott, R.A.; van der Schouw, Y.T.; Brand, J.S.; Wark, P.A.; Amiano, P.; Balkau, B.; Barricarte, A.; Boeing, H.; et al. Age at Menarche and Type 2 Diabetes Risk. Diabetes Care 2013, 36, 3526–3534. [Google Scholar] [CrossRef]
- Żurawiecka, M.; Wronka, I. Association between age at menarche and body mass index, waist circumference, waist to hip ratio, and waist to height ratio in adult women. Am. J. Hum. Biol. 2021, 33, e23523. [Google Scholar] [CrossRef] [PubMed]
- Verhoef, M.; Eijnden, R.J.J.M.v.D.; Koning, I.M.; Vollebergh, W.A.M. Age at Menarche and Adolescent Alcohol Use. J. Youth Adolesc. 2013, 43, 1333–1345. [Google Scholar] [CrossRef]
- Yuan, S.; Larsson, S.C. Adiposity, diabetes, lifestyle factors and risk of gastroesophageal reflux disease: A Mendelian randomization study. Eur. J. Epidemiol. 2022, 37, 747–754. [Google Scholar] [CrossRef] [PubMed]
- Verbanck, M.; Chen, C.-Y.; Neale, B.; Do, R. Detection of widespread horizontal pleiotropy in causal relationships inferred from Mendelian randomization between complex traits and diseases. Nat. Genet. 2018, 50, 693–698. [Google Scholar] [CrossRef] [PubMed]
- Wootton, R.E.; Lawn, R.B.; Millard, L.A.C.; Davies, N.M.; Taylor, A.E.; Munafò, M.R.; Timpson, N.J.; Davis, O.S.P.; Smith, G.D.; Haworth, C.M.A. Evaluation of the causal effects between subjective wellbeing and cardiometabolic health: Mendelian randomisation study. BMJ 2018, 362, k3788. [Google Scholar] [CrossRef] [PubMed]
- Burgess, S.; Thompson, S.G. Interpreting findings from Mendelian randomization using the MR-Egger method. Eur. J. Epidemiol. 2017, 32, 377–389. [Google Scholar] [CrossRef]
- Bowden, J.; Smith, G.D.; Haycock, P.C.; Burgess, S. Consistent Estimation in Mendelian Randomization with Some Invalid Instruments Using a Weighted Median Estimator. Genet. Epidemiol. 2016, 40, 304–314. [Google Scholar] [CrossRef]
- Minelli, C.; Del Greco, M.F.; van der Plaat, D.A.; Bowden, J.; Sheehan, N.A.; Thompson, J. The use of two-sample methods for Mendelian randomization analyses on single large datasets. Leuk. Res. 2021, 50, 1651–1659. [Google Scholar] [CrossRef]
- Bowden, J.; Del Greco, F.M.; Minelli, C.; Zhao, Q.; Lawlor, D.A.; Sheehan, N.A.; Thompson, J.; Smith, G.D. Improving the accuracy of two-sample summary-data Mendelian randomization: Moving beyond the NOME assumption. Leuk. Res. 2018, 48, 728–742. [Google Scholar] [CrossRef]
- Liu, Y.; Jin, C.; Ni, L.-F.; Zheng, T.; Liu, X.-C.; Wang, S.-S.; Huang, H.-J.; Jin, M.-M.; Cheng, B.-W.; Yan, H.-T.; et al. Educational attainment and offspring birth weight: A bidirectional Mendelian randomization study. Front. Genet. 2022, 13, 922382. [Google Scholar] [CrossRef]
- Burgess, S.; Smith, G.D.; Davies, N.M.; Dudbridge, F.; Gill, D.; Glymour, M.M.; Hartwig, F.P.; Kutalik, Z.; Holmes, M.V.; Minelli, C.; et al. Guidelines for performing Mendelian randomization investigations: Update for summer 2023. Wellcome Open Res. 2023, 4, 186. [Google Scholar] [CrossRef]
Characteristics | Female Infertility | p-Value | |
---|---|---|---|
No (n = 1386) | Yes (n = 192) | ||
Age (year) | 32.22 ± 7.65 | 33.46 ± 6.35 | 0.036 |
Race/Hispanic origin, (%) | 0.358 | ||
Mexican American | 11.78 | 11.27 | 0.710 |
Other Hispanic | 8.43 | 11.16 | |
Non-Hispanic White | 56.14 | 56.97 | |
Non-Hispanic Black | 13.1 | 11.97 | |
Other race—including multi-racial | 10.55 | 8.63 | |
Education level, (%) | 0.489 | ||
Less than 9th grade | 2.72 | 1.77 | |
9–11th grade | 6.36 | 9.44 | |
High school graduate/GED or equivalent | 21.49 | 22.78 | |
Some college or AA degree | 32.49 | 32.4 | |
College graduate or above | 36.94 | 33.61 | |
Marital status, (%) | <0.001 | ||
Married/living with partner | 56.83 | 79.14 | |
Widowed/divorced/separated | 8.44 | 7.36 | |
Never married | 34.73 | 13.5 | |
BMI (kg/m2) | 29.36 ± 8.48 | 32.76 ± 9.04 | <0.001 |
Hypertension, (%) | 0.589 | ||
Yes | 11.79 | 10.43 | |
No | 88.21 | 89.57 | |
Hyperlipidemia, (%) | 0.015 | ||
Yes | 13.46 | 20.19 | |
No | 86.54 | 79.81 | |
HbA1c (%) | 5.32 ± 0.59 | 5.57 ± 0.99 | <0.001 |
Exposure | Model 1 1 [OR (95% CI)], p-Value | Model 2 2 [OR (95% CI)], p-Value | Model 3 3 [OR (95% CI)], p-Value |
---|---|---|---|
HbA1c (%) (continuous) | 1.48 (1.21, 1.81), <0.001 | 1.57 (1.25, 1.98), <0.001 | 1.40 (1.15, 1.69), 0.003 |
HbA1c (%) (categories) | |||
<5.7 | Reference | Reference | Reference |
5.7–6.4 | 1.73 (1.09, 2.75), 0.029 | 1.78 (1.03, 3.07), 0.040 | 1.34 (0.76, 2.36), 0.261 |
≥6.5 | 3.62 (1.82, 7.20), 0.001 | 4.43 (2.03, 9.67), 0.001 | 3.32 (1.50, 7.36), 0.007 |
Heterogeneity Test | |||||
---|---|---|---|---|---|
Exposure | Outcome | Method | Q | Q_df | Q_pval |
HbA1c | Female infertility | MR-Egger | 12.21 | 15 | 0.66 |
Inverse-variance weighted | 13.69 | 16 | 0.62 | ||
Female infertility | HbA1c | MR-Egger | 26.25 | 21 | 0.20 |
Inverse-variance weighted | 26.31 | 22 | 0.24 | ||
Directional pleiotropy test | |||||
Exposure | Outcome | Egger intercept | SE | p-value | Global test’s p-value of MR-PRESSO |
HbA1c | Female infertility | 0.012 | 0.01 | 0.24 | 0.66 |
Female infertility | HbA1c | −0.0002 | 0.001 | 0.83 | 0.22 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liao, C.-C.; Lee, C.-I.; Liao, K.-R.; Li, J.-M. Association between Serum Glycated Hemoglobin Levels and Female Infertility: A Cross-Sectional Survey and Genetic Approach. Int. J. Mol. Sci. 2024, 25, 9668. https://doi.org/10.3390/ijms25179668
Liao C-C, Lee C-I, Liao K-R, Li J-M. Association between Serum Glycated Hemoglobin Levels and Female Infertility: A Cross-Sectional Survey and Genetic Approach. International Journal of Molecular Sciences. 2024; 25(17):9668. https://doi.org/10.3390/ijms25179668
Chicago/Turabian StyleLiao, Chung-Chih, Chun-I Lee, Ke-Ru Liao, and Jung-Miao Li. 2024. "Association between Serum Glycated Hemoglobin Levels and Female Infertility: A Cross-Sectional Survey and Genetic Approach" International Journal of Molecular Sciences 25, no. 17: 9668. https://doi.org/10.3390/ijms25179668
APA StyleLiao, C. -C., Lee, C. -I., Liao, K. -R., & Li, J. -M. (2024). Association between Serum Glycated Hemoglobin Levels and Female Infertility: A Cross-Sectional Survey and Genetic Approach. International Journal of Molecular Sciences, 25(17), 9668. https://doi.org/10.3390/ijms25179668