Removal of Hazardous Organic Dyes from Liquid Wastes Using Advanced Nanomaterials
Abstract
:1. Introduction
Nanomaterial | Reference |
---|---|
Heteropolyacids supported on nanocatalysts Nanomaterials Bi-based nanocompounds Graphitic carbon nitride Sr-based nanomaterials Nano-metal oxide-activated carbon TiO2-based nanomaterials Nanoparticle-hybridized polyaniline Metal ferrite-based nanomaterials Metal sulfide-based nanostructures Polymeric nanocomposite membranes Metals and metal oxides in pure form Graphene-based nanomaterials Cellulose-based nanocompounds Biomass-synthesized metallic nanoparticles Nanozymes 2D MXene-based adsorbents Ba-TiO3 nanomaterials Gum-based nanomaterials Chitosan-based nanomaterials Carbon-based nanomaterials | [12] [13,14,15,16,17,18,19] [20,21,22] [23,24] [25] [26] [27,28,29,30] [31] [32] [33,34] [35,36] [37,38,39,40,41] [42,43] [44,45,46] [47] [48,49,50,51] [52,53,54] [55] [56] [57] [58,59] |
2. Nanomaterials and Anionic Organic Dyes
2.1. Adsorption of Anionic Dyes on Nanomaterials
2.2. (Photo)-Catalytic Degradation of Anionic Dyes Using Nanomaterials
2.3. Remarks to the Use of Nanomaterials in the Removal of Anionic Dyes from Solutions
3. Nanomaterials and Cationic Dyes
3.1. Adsorption of Cationic Dyes on Nanomaterials
3.2. Nanomaterials—Forming Membranes for the Removal of Cationic Dyes
3.3. (Photo)-Catalytic Degradation of Cationic Dyes Using Nanomaterials
3.4. Remarks on the Use of Nanomaterials in the Removal of Cationic Dyes from Solutions
Methodology | Cationic Dye | Reference |
---|---|---|
Adsorption | Crystal Violet Basic Fuchsin Golden Yellow, Methylene Blue Basic Red 114 Malachite Green Methylene Blue, Methylene Violet, Brilliant Green Toluidine Blue O Rhodamine B | [108] [109] [110,111,114,116,117,118,119] [111] [113,120] [114] [115] [118] |
Membranes | Methylene Blue | [121] |
(Photo)-catalysis | Methylene Blue Rhodamine B Malachite Green Crystal Violet Toluidine B Rhodamine 6G | [122,123,124,126,127,128,129,130,131,134,135,136,137,138,141,143,147,148,149,150,151,152,154,156,157,160,161,162,163,164,165,166,172,173] [125,126,127,133,134,139,140,141,142,145,146,158,159,162,165,166,170,171] [126,132,144,162] [132,134,153,155] [167] [170] |
Dye | Nanomaterial | Efficiency-Time | Reference |
---|---|---|---|
Methylene Blue Rhodamine B | Mn4(P2O7) Ce-Co,Fe ferrites La-Co,Fe,Ti composite Fe3O4@APF@Ag Mixed Fe,Mn,Cu oxides AgCrO4-rGO CuO-SnO2 NiMn2O4 CO-CQ dots Fe3O4@APF@Ag AgO nanoparticles Fe3O4 nanoparticles g-C3N4 NiMn2O4 Mo,Fe-sulfur-oxide | 99%-30 min 95%-1 h 99%-50 min 90%-3 min 95%-2.5 h 92%-1 h 90%-3 h 68%-3.5 h 100%-25 min 90%-3 min 76%-1 h 85%-12 min 95%-3 h 81%-3.5 h 99.7%-20 min | [124] [127] [131] [141] [143] [147] [151] [159] [163] [141] [142] [146] [158] [159] [168] |
4. Nanomaterials for the Removal of Anionic and Cationic Dyes
4.1. Adsorption of Anionic and Cationic Dyes on Nanomaterials
4.2. Nanomaterials—Forming Membranes for the Removal of Anionic and Cationic Dyes
4.3. (Photo)-Catalytic Degradation of Anionic and Cationic Dyes Using Nanomaterials
4.4. Remarks on the Use of Nanomaterials in the Removal of Anionic and Cationic Dyes from Solutions
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ismail, M.; Akhtar, K.; Khan, M.I.; Kamal, T.; Khan, M.A.; Asiri, A.M.; Seo, J.; Khan, S.B. Pollution, toxicity and carcinogenicity of organic dyes and their catalytic bio-remediation. Curr. Pharm. Des. 2019, 25, 3645–3663. [Google Scholar] [CrossRef]
- Hanafi, M.F.; Norzahir Sapawe, N. A review on the water problem associate with organic pollutants derived from phenol, methyl orange, and remazol brilliant blue dyes. Mater. Today Proc. 2020, 31, A141–A150. [Google Scholar] [CrossRef]
- Mohammadnejad, M.; Alizadeh, S. MnFe2O4-NH2-HKUST-1, MOF magnetic composite, as a novel sorbent for efficient dye removal: Fabrication, characterization and isotherm studies. Sci. Rep. 2024, 14, 9048. [Google Scholar] [CrossRef]
- Periyasamy, A.P. Recent advances in the remediation of textile-dye-containing wastewater: Prioritizing human health and sustainable wastewater treatment. Sustainability 2024, 16, 495. [Google Scholar] [CrossRef]
- Jabbar, Z.H.; Graimed, B.H.; Ammar, S.H.; Taofeeq, H.; Alsunbuli, M.M.B.; Al-Jubouri, S.M.; Abbar, A.H.; M-Ridha, M.J.; Taher, A.G. A critical review describes wastewater photocatalytic detoxification over Bi5O7I-based heterojunction photocatalysts: Characterizations, mechanism insight, and DFT calculations. J. Environ. Chem. Eng. 2024, 12, 112241. [Google Scholar] [CrossRef]
- Haruna, M.S.; Oladapo, B.H.; Mustapha, S.; Scholartica, C.E.; Tijani, J.O.; Abdulkareem, A.S. A review of iron-tungstate nanomaterials: Synthesis methods, physicochemical properties, environmental fate and application for wastewater treatment. Sustain. Chem. Environ. 2024, 5, 100074. [Google Scholar] [CrossRef]
- Ikram, Z.; Azmat, E.; Perviaz, M. Degradation efficiency of organic dyes on CQDs as photocatalysts: A review. ACS Omega 2024, 9, 10017–10029. [Google Scholar] [CrossRef]
- Muzammal, S.; Ahmad, A.; Sheraz, M.; Kim, J.; Ali, S.; Hanif, M.B.; Hussain, I.; Pandiaraj, S.; Alodhayb, A.; Javed, M.S.; et al. Polymer-supported nanomaterials for photodegradation: Unraveling the methylene blue menace. Energy Convers. Manag. X 2024, 22, 100547. [Google Scholar] [CrossRef]
- Tundwal, A.; Kumar, H.; Binoj, B.J.; Sharma, R.; Kumari, R.; Yadav, A.; Kumar, G.; Dhayal, A.; Yadav, A.; Singh, D.; et al. Conducting polymers and carbon nanotubes in the field of environmental remediation: Sustainable developments. Coord. Chem. Rev. 2024, 500, 215533. [Google Scholar] [CrossRef]
- Thayil, R.; Gandi, S.; Parne, S.R.; Kathirvelu, V. Recent advances and perspectives of molybdenum disulfide and molybdenum disulfide based nanocomposites for adsorption and photocatalytic degradation of organic dyes: A review. J. Mater. Sci. 2024, 59, 3225–3252. [Google Scholar] [CrossRef]
- Lanjwani, M.F.; Tuzen, M.; Khuhawar, M.Y.; Saleh, T.A. Trends in photocatalytic degradation of organic dye pollutants using nanoparticles: A review. Inorg. Chem. Commun. 2024, 159, 111613. [Google Scholar] [CrossRef]
- Afshari, M.; Varma, R.S.; Saghanezhad, S.J. Catalytic applications of heteropoly acid-supported nanomaterials in synthetic transformations and environmental remediation. Comments Inorg. Chem. 2023, 43, 129–176. [Google Scholar] [CrossRef]
- Ansari, A.A.; Shamim, M.A.; Khan, A.M.; Anwar, K.; Wani, A.A. Nanomaterials as a cutting edge in the removal of toxic contaminants from water. Mater. Chem. Phys. 2023, 295, 127092. [Google Scholar] [CrossRef]
- Bhattu, M.; Singh, J. Recent advances in nanomaterials based sustainable approaches for mitigation of emerging organic pollutants. Chemosphere 2023, 321, 138072. [Google Scholar] [CrossRef] [PubMed]
- Mathew, A.T.; Saravanakumar, M.P. Remediation of endocrine disrupting compounds and organic dye pollutants through biosorbents in a circular bioeconomy: Prospects and constraints. Environ. Sci. Eng. 2023, F272, 163–175. [Google Scholar] [CrossRef]
- Orimolade, B.O.; Idris, A.O.; Akanji, S.P.; Adekola, F.A.; Azizi, S.; Maaza, M.; Mamba, B. Solar-light-responsive nanomaterials for the photoelectrocatalytic degradation of stubborn pollutants. Coatings 2023, 13, 159. [Google Scholar] [CrossRef]
- Rajabi, M.; Keihankhadiv, S.S.; Tyagi, I.; Karri, R.R.; Chaudhary, M.; Mubarak, N.M.; Chaudhary, S.; Kumar, P.; Singh, P. Comparison and interpretation of isotherm models for the adsorption of dyes, proteins, antibiotics, pesticides and heavy metal ions on different nanomaterials and non-nano materials—A comprehensive review. J. Nano. Chem. 2023, 13, 43–65. [Google Scholar] [CrossRef]
- Monteiro Lívia, G.; Figueiredo Marco, A.G. Technology roadmap: Nanomaterials applied to the tertiary treatment of industrial wastewater contaminated by synthetic organic dyes. Chem. Eng. Trans. 2023, 101, 1–6. [Google Scholar] [CrossRef]
- Ponce, S.; Murillo, H.A.; Alexis, F.; Alvarez-Barreto, J.; Mora, J.R. Green synthesis of nanoparticles mediated by deep eutectic solvents and their applications in water treatment. Sustainability 2023, 15, 9703. [Google Scholar] [CrossRef]
- Aswini, R.; Padmanaban, A.; Vigneshwaran, S.; Valdes, H.; Arunachalam, S.V. A review on versatile nano-photocatalysts for environmental remediation: Carbon-decorated bismuth-based nanomaterials. Nano-Struct. Nano-Objects 2023, 35, 100991. [Google Scholar] [CrossRef]
- Oladipo, A.A.; Mustafa, F.S. Bismuth-based nanostructured photocatalysts for the remediation of antibiotics and organic dyes. Beilstein J. Nanotechnol. 2023, 14, 291–321. [Google Scholar] [CrossRef] [PubMed]
- Linghu, X.; Shu, Y.; Liu, L.; Zhao, Y.; Zhang, J.; Chen, Z.; Shan, D.; Wang, B. Hydro/solvothermally synthesized bismuth tungstate nanocatalysts for enhanced photocatalytic degradation of dyes, antibiotics, and bacteria in wastewater: A review. J. Water Proc. Eng. 2023, 54, 103994. [Google Scholar] [CrossRef]
- Bairamis, F.; Rapti, I.; Konstantinou, I. g-C3N4 based Z-scheme photocatalysts for environmental pollutants removal. Curr. Opin. Green Sustain. Chem. 2023, 40, 100749. [Google Scholar] [CrossRef]
- Umekar, M.S.; Bhusari, G.S.; Bhoyar, T.; Devthade, V.; Kapgate, B.P.; Potbhare, A.P.; Chaudhary, R.G.; Abdala, A.A. Graphitic carbon nitride-based photocatalysts for environmental remediation of organic pollutants. Curr. Nanosci. 2023, 19, 148–169. [Google Scholar] [CrossRef]
- Bashir, M.; Batool, M.; Arif, N.; Tayyab, M.; Zeng, Y.-J.; Nadeem, Z.M. Strontium-based nanomaterials for the removal of organic/inorganic contaminants from water: A review. Coord. Chem. Rev. 2023, 492, 215286. [Google Scholar] [CrossRef]
- Bichave, M.S.; Kature, A.Y.; Koranne, S.V.; Shinde, R.S.; Gongle, A.S.; Choudhari, V.P.; Topare, N.S.; Raut-Jadhav, S.; Bokil, S.A. Nano-metal oxides-activated carbons for dyes removal: A review. Mater. Today Proc. 2023, 77, 19–30. [Google Scholar] [CrossRef]
- Brillas, E.; Garcia-Segura, S. Recent progress of applied TiO2 photoelectrocatalysis for the degradation of organic pollutants in wastewaters. J. Environ. Chem. Eng. 2023, 11, 109635. [Google Scholar] [CrossRef]
- Kanakaraju, D.; Chandrasekaran, A. Recent advances in TiO2/ZnS-based binary and ternary photocatalysts for the degradation of organic pollutants. Sci. Total. Environ. 2023, 868, 161525. [Google Scholar] [CrossRef] [PubMed]
- Puri, N.; Gupta, A. Water remediation using titanium and zinc oxide nanomaterials through disinfection and photo catalysis process: A review. Environ. Res. 2023, 227, 115786. [Google Scholar] [CrossRef]
- Arun, J.; Nachiappan, S.; Rangarajan, G.; Alagappan, R.P.; Gopinath, K.P.; Lichtfouse, E. Synthesis and application of titanium dioxide photocatalysis for energy, decontamination and viral disinfection: A review. Environ. Chem. Lett. 2023, 21, 339–362. [Google Scholar] [CrossRef]
- Fan, Y.; Bai, Z.; Ge, Q.; Jiang, N.; Liu, M.; Cong, H.; Zhang, Y. Synergetic photodegradation via inorganic–organic hybridization strategies: A review on preparations and applications of nanoparticle-hybridized polyaniline photocatalysts. J. Polym. Res. 2023, 30, 8. [Google Scholar] [CrossRef]
- Farhan, A.; Arshad, J.; Rashid, E.U.; Ahmad, H.; Nawaz, S.; Munawar, J.; Zdarta, J.; Jesionowski, T.; Bilal, M. Metal ferrites-based nanocomposites and nanohybrids for photocatalytic water treatment and electrocatalytic water splitting. Chemosphere 2023, 310, 136835. [Google Scholar] [CrossRef] [PubMed]
- Gusain, R.; Kumar, N.; Ray, S.S. Applications of MoS2 nanostructures in wastewater treatment. Springer Ser. Mater. Sci. 2023, 332, 351–374. [Google Scholar] [CrossRef]
- Gadore, V.; Mishra, S.R.; Ahmaruzzaman, M.d. Metal sulphides and their heterojunctions for photocatalytic degradation of organic dyes-a comprehensive review. Environ. Sci. Pollut. Res. 2023, 30, 90410–90457. [Google Scholar] [CrossRef] [PubMed]
- Hani, U. Comprehensive review of polymeric nanocomposite membranes application for water treatment. Alex. Eng. J. 2023, 72, 307–321. [Google Scholar] [CrossRef]
- Suresh, R.; Rajendran, S.; Gnanasekaran, L.; Show, P.L.; Chen, W.-H.; Soto-Moscoso, M. Modified poly(vinylidene fluoride) nanomembranes for dye removal from water–a review. Chemosphere 2023, 322, 138152. [Google Scholar] [CrossRef]
- Hosny, N.M.; Gomaa, I.; Elmahgary, M.G. Adsorption of polluted dyes from water by transition metal oxides: A review. Appl. Surf. Sci. Adv. 2023, 15, 100395. [Google Scholar] [CrossRef]
- Saharan, P.; Kumar, V.; Kaushal, I.; Mittal, A.; Shukla, S.K.; Kumar, D.; Sharma, A.K.; Om, H. A comprehensive review on the metal-based green valorized nanocomposite for the remediation of emerging colored organic waste. Environ. Sci. Pollut. Res. 2023, 30, 45677–45700. [Google Scholar] [CrossRef]
- Shanaah, H.H.; Alzaimoor, E.F.H.; Rashdan, S.; Abdalhafith, A.A.; Kamel, A.H. Photocatalytic degradation and adsorptive removal of emerging organic pesticides using metal oxide and their composites: Recent trends and future perspectives. Sustainability 2023, 15, 7336. [Google Scholar] [CrossRef]
- Umar, E.; Ikram, M.; Haider, J.; Nabgan, W.; Imran, M.; Nazir, G. A state-of-art review of the metal oxide-based nanomaterials effect on photocatalytic degradation of malachite green dyes and a bibliometric analysis. Glob. Chall. 2023, 7, 2300001. [Google Scholar] [CrossRef]
- Ali, J.; Bibi, S.; Jatoi, W.B.; Tuzen, M.; Jakhrani, M.A.; Feng, X.; Saleh, T.A. Green synthesized zinc oxide nanostructures and their applications in dye-sensitized solar cells and photocatalysis: A review. Mater. Today Commun. 2023, 36, 106840. [Google Scholar] [CrossRef]
- Leão, M.B.; Bordin, J.R.; de Matos, C.F. Specific surface area versus adsorptive capacity: An application view of 3D graphene-based materials for the removal of emerging water pollutants. Water Air Soil. Pollut. 2023, 234, 136. [Google Scholar] [CrossRef]
- Ojha, A.; Samriti; Thakur, S.; Prakash, J. Graphene family nanomaterials as emerging sole layered nanomaterials for wastewater treatment: Recent developments, potential hazards, prevention and future prospects. Environ. Adv. 2023, 13, 100402. [Google Scholar] [CrossRef]
- Prasad, C.; Madkhali, N.; Jeong, S.-G.; Malkappa, K.; Choi, H.Y.; Govinda, V. Recent advances in the hybridization of cellulose and semiconductors: Design, fabrication and emerging multidimensional applications: A review. Int. J. Biol. Macromol. 2023, 233, 123551. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, Y.; Xu, W.; Wu, H.; Shao, Y.; Han, X.; Zhou, M.; Gu, P.; Li, Z. Preparation methods of cellulose nanocrystal and its application in treatment of environmental pollution: A mini-review. Colloids Interface Sci. Commun. 2023, 53, 100707. [Google Scholar] [CrossRef]
- Li, S.; He, G.; Huang, J. Self-assembly on natural cellulose: Towards high-efficient catalysts. Curr. Opin. Colloid Interface Sci. 2023, 63, 101655. [Google Scholar] [CrossRef]
- Shahid-ul-Islam; Bairagi, S.; Kamali, M.R. Review on green biomass-synthesized metallic nanoparticles and composites and their photocatalytic water purification applications: Progress and perspectives. Chem. Eng. J. Adv. 2023, 14, 100460. [Google Scholar] [CrossRef]
- Singh, R.; Umapathi, A.; Patel, G.; Patra, C.; Malik, U.; Bhargava, S.K.; Daima, H.K. Nanozyme-based pollutant sensing and environmental treatment: Trends, challenges, and perspectives. Sci. Total. Environ. 2023, 854, 158771. [Google Scholar] [CrossRef]
- Suresh, R.; Rajendran, S.; Khoo, K.S.; Soto-Moscoso, M. Enzyme immobilized nanomaterials: An electrochemical bio-sensing and biocatalytic degradation properties toward organic pollutants. Top. Catal. 2023, 66, 691–706. [Google Scholar] [CrossRef]
- Wang, M.; Zhu, P.; Liu, S.; Chen, Y.; Liang, D.; Liu, Y.; Chen, W.; Du, L.; Wu, C. Application of nanozymes in environmental monitoring, management, and protection. Biosensors 2023, 13, 314. [Google Scholar] [CrossRef]
- Yang, T.; Liu, X.; Zeng, Z.; Wang, X.; Zhang, P.; Feng, B.; Tian, K.; Qing, T. Efficient and recyclable degradation of organic dye pollutants by CeO2@ZIF-8 nanozyme-based non-photocatalytic system. Environ. Pollut. 2023, 316, 120643. [Google Scholar] [CrossRef]
- Solangi, N.H.; Karri, R.R.; Mubarak, N.M.; Mazari, S.A.; Jatoi, A.S.; Koduru, J.R. Emerging 2D MXene-based adsorbents for hazardous pollutants removal. Desalination 2023, 549, 116314. [Google Scholar] [CrossRef]
- Chinnasamy, C.; Perumal, N.; Choubey, A.; Rajendran, S. Recent advancements in MXene-based nanocomposites as photocatalysts for hazardous pollutant degradation-a review. Environ. Res. 2023, 233, 116459. [Google Scholar] [CrossRef]
- Massoumılari, Ş.; Velioǧlu, S. Can MXene be the effective nanomaterial family for the membrane and adsorption technologies to reach a sustainable green world? ACS Omega 2023, 8, 29859–29909. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Jia, Y.; Wu, W.; Pei, C.; Zhu, G.; Wu, Z.; Zhang, L.; Fan, W.; Wu, Z. Review on strategies toward efficient piezocatalysis of BaTiO3 nanomaterials for wastewater treatment through harvesting vibration energy. Nano Energy 2023, 113, 108507. [Google Scholar] [CrossRef]
- Ahmadian, M.; Derakhshankhah, H.; Jaymand, M. Biosorptive removal of organic dyes using natural gums-based materials: A comprehensive review. J. Ind. Eng. Chem. 2023, 124, 102–131. [Google Scholar] [CrossRef]
- Chelu, M.; Musuc, A.M.; Popa, M.; Calderon Moreno, J.M. Chitosan hydrogels for water purification applications. Gels 2023, 9, 664. [Google Scholar] [CrossRef]
- Ingrassia, E.B.; Lemos, E.S.; Escudero, L.B. Treatment of textile wastewater using carbon-based nanomaterials as adsorbents: A review. Environ. Sci. Pollut. Res. 2023, 30, 91649–91675. [Google Scholar] [CrossRef] [PubMed]
- Jha, S.; Gaur, R.; Shahabuddin, S.; Tyagi, I. Biochar as sustainable alternative and green adsorbent for the remediation of noxious pollutants: A comprehensive review. Toxics 2023, 11, 117. [Google Scholar] [CrossRef]
- Amrhar, O.; Lee, H.-S.; Lgaz, H.; Berisha, A.; Ebenso, E.E.; Cho, Y. Computational insights into the adsorption mechanisms of anionic dyes on the rutile TiO2 (1 1 0) surface: Combining SCC-DFT tight binding with quantum chemical and molecular dynamics simulations. J. Mol. Liq. 2023, 377, 121554. [Google Scholar] [CrossRef]
- Aydin Urucu, O.; Deniz, S.; Kahraman, N.; Çakmakçi, E. Itaconic acid-derived reactive protic ionic liquid (PIL)-containing superabsorbent green hydrogel adsorbent for the removal of anionic textile dyes. Mater. Today Commun. 2023, 36, 106867. [Google Scholar] [CrossRef]
- Chen, X.; Chen, Y.; Zhang, L.; Liu, Z.; Qiu, E.; Liu, Q.; Regulacio, M.D.; Lin, C.; Yang, D.-P. Hydrophilic ZnO/C nanocomposites with superior adsorption, photocatalytic, and photo-enhanced antibacterial properties for synergistic water purification. J. Colloid Interface Sci. 2023, 648, 535–550. [Google Scholar] [CrossRef] [PubMed]
- Deniz, S. Efficient and environmentally friendly removal of azo textile dye using a low-cost adsorbent: Kinetic and reuse studies with application to textile effluent. Mater. Today Commun. 2023, 35, 106433. [Google Scholar] [CrossRef]
- Eizi, R.; Bastami, T.R.; Mahmoudi, V.; Ayati, A.; Babaei, H. Facile ultrasound-assisted synthesis of CuFe-Layered double hydroxides/g-C3N4 nanocomposite for alizarin red S sono-sorption. J. Taiwan Inst. Chem. Eng. 2023, 145, 104844. [Google Scholar] [CrossRef]
- Hai, D.T.; Phuong, N.T.; Cong, P.X.; Nam, N.H.; Thu, L.P.; Trang, N.T.T.; Thom, N.T.; Nam, P.T.; Osial, M.; Thanh, D.T.M. Hydroxyapatite/superparamagnetic iron oxide nanoparticles nanocomposite for Congo Red adsorption. Desalination Water Treat. 2023, 298, 184–198. [Google Scholar] [CrossRef]
- Karyab, H.; Ghasemi, M.; Ghotbinia, F.; Nazeri, N. Efficiency of chitosan nanoparticle with polyaluminum chloride in dye removal from aqueous solutions: Optimization through response surface methodology (RSM) and central composite design (CCD). Int. J. Biol. Macromol. 2023, 249, 125977. [Google Scholar] [CrossRef]
- Laxmi Deepak Bhatlu, M.; Athira, P.S.; Jayan, N.; Barik, D.; Dennison, M.S. Preparation of breadfruit leaf biochar for the application of Congo Red dye removal from aqueous solution and optimization of factors by RSM-BBD. Adsorp. Sci. Technol. 2023, 2023, 7369027. [Google Scholar] [CrossRef]
- Mahmoud, M.E.; Moneim El-Ghanam, A.; Saad, S.R. Fast and efficient adsorptive capture of Congo red and Erythromycin pollutants by a novel nanobiosorbent from crosslinked nanosilica with nanobiochar and chitosan. Inorg. Chem. Commun. 2023, 158, 111557. [Google Scholar] [CrossRef]
- Patil, D.J.; Behera, S.N. Synthesizing nanoparticles of zinc and copper ferrites and examining their potential to remove various organic dyes through comparative studies of kinetics, isotherms, and thermodynamics. Environ. Monit. Assess. 2023, 195, 591. [Google Scholar] [CrossRef]
- Qi, C.; Zhao, M.; Fang, T.; Zhu, Y.; Wang, P.; Xie, A.; Shen, Y. Multifunctional hollow porous Fe3O4@N-C nanocomposites as anodes of lithium-ion battery, adsorbents and surface-enhanced Raman scattering substrates. Molecules 2023, 28, 5183. [Google Scholar] [CrossRef]
- Qin, Z.; Dong, K.; Zhang, Y.; Jiang, Y.; Mo, L.; Xiao, S. Noval green sodium alginate/gellan gum aerogel with 3D hierarchical porous structure for highly efficient and selective removal of Congo red from water. Biores. Technol. 2023, 370, 128576. [Google Scholar] [CrossRef] [PubMed]
- Rubangakene, N.O.; Elwardany, A.; Fujii, M.; Sekiguchi, H.; Elkady, M.; Shokry, H. Biosorption of Congo Red dye from aqueous solutions using pristine biochar and ZnO biochar from green pea peels. Chem. Eng. Res. Des. 2023, 189, 636–651. [Google Scholar] [CrossRef]
- Vuong, N.-M.-T.; Nguyen, P.-T.; Nguyen, T.K.O.; Nguyen, D.B.; Tran, T.-M.-D.; Oanh, L.T.K.; Nguyen, T.-B.; Pham, T.-T.; Lin, K.-Y.A.; Bui, X.-T. Application of nano zero-valent iron particles coated by carboxymethyl cellulose for removal of Congo red dye in aqueous solution. Case Stud. Chem. Environ. Eng. 2023, 8, 100469. [Google Scholar] [CrossRef]
- Zhu, R.; Zhang, L.; Zhang, Y.; Zhang, P.; Jia, Y.; Cheng, Q.; Wu, W.; Li, J. Two-dimensional acetate-based light lanthanide fluoride nanomaterials: An ultrahigh adsorption capacity and salt-tolerance endowed by surface acetates exchange. Appl. Surf. Sci. 2023, 621, 156842. [Google Scholar] [CrossRef]
- Aaga, G.F.; Anshebo, S.T. Green synthesis of highly efficient and stable copper oxide nanoparticles using an aqueous seed extract of Moringa stenopetala for sunlight-assisted catalytic degradation of Congo red and Alizarin red S. Heliyon 2023, 9, e16067. [Google Scholar] [CrossRef]
- Afaq, M.; Basha, B.; Warsi, M.F.; Shahid, M.; Alrowaili, Z.A.; Al-Buriahi, M.S.; Yousaf, S. Fabrication of ZnO-CuFe2O4-CNTs ternary nanocomposite for harmful organic effluents degradation by sunlight irradiation. Mater. Sci. Eng. B Solid State Mater. Adv. Technol. 2023, 292, 116444. [Google Scholar] [CrossRef]
- Ashfaq, M.; Ali, A.; Abbood, N.K.; Panchal, S.; Akram, N.; Saeed, M.; Doshi, O.P.; Ali, F.; Muhammad, S.; Sameeh, M.Y.; et al. Enhanced photocatalytic activity of the Bi2O3-NiO heterojunction for the degradation of methyl orange under irradiation of sunlight. Water 2023, 15, 3182. [Google Scholar] [CrossRef]
- Barhoi, A.; Khan, A.A.; Mahto, B.; Bisoyi, A.; Hussain, S. Chelating agent-assisted-Bi2WO6 nanostructured materials for electron transfer-driven ultrafast catalytic reduction of organic and inorganic contaminants. ChemNanoMat 2023, 9, e202300181. [Google Scholar] [CrossRef]
- Borah, D.; Mishra, V.; Debnath, R.; Ghosh, K.; Gogoi, D.; Rout, J.; Pandey, P.; Ghosh, N.N.; Bhattacharjee, C.R. Facile green synthesis of highly stable, water dispersible carbohydrate conjugated Ag, Au and Ag-Au biocompatible nanoparticles: Catalytic and antimicrobial activity. Mater. Today Commun. 2023, 37, 107096. [Google Scholar] [CrossRef]
- Chabalala, M.B.; Zikalala, S.A.a; Ndlovu, L.; Mamba, G.; Mamba, B.; Nxumalo, E.N. A green synthetic approach for the morphological control of ZnO-Ag using β-cyclodextrin and honey for photocatalytic degradation of bromophenol blue. Chem. Eng. Res. Des. 2023, 197, 307–322. [Google Scholar] [CrossRef]
- Cui, L.; Wen, J.; Deng, Q.; Du, X.; Tang, T.; Li, M.; Xiao, J.; Jiang, L.; Hu, G.; Cao, X.; et al. Improving the photocatalytic activity of Ti3C2 MXene by surface modification of N doped. Materials 2023, 16, 2836. [Google Scholar] [CrossRef] [PubMed]
- Dilawar, S.; Albalawi, K.; Khan, A.U.; Tahir, K.; Zaki, M.E.A.; Musad, S.E.A.; Almarhoon, Z.M.; Althagafi, T.M.; El-Zahhar, A.A.; El-Bialy, E. Rapid photodegradation of toxic organic compounds and photo inhibition of bacteria in the presence of novel hydrothermally synthesized Ag/Mn–ZnO nanomaterial. Environ. Res. 2023, 231, 116093. [Google Scholar] [CrossRef] [PubMed]
- Ding, W.; Luo, J.-X.; Gu, Q.; Liu, Z.-H. Ultrathin 2D ZnGa-borate-LDH nanosheets for boosting dye-sensitized photocatalytic coupled reaction of H2 production with pollutant degradation. Colloids Surf. A Physicochem. Eng. Asp. 2023, 657, 130575. [Google Scholar] [CrossRef]
- Dumbrava, A.; Matei, C.; Diacon, A.; Moscalu, F.; Berger, D. Novel ZnO-biochar nanocomposites obtained by hydrothermal method in extracts of Ulva lactuca collected from Black Sea. Ceram. Int. 2023, 49, 10003–10013. [Google Scholar] [CrossRef]
- El Mragui, A.; Aadnan, I.; Zegaoui, O.; Esteves da Silva, J.C.G. Physico-chemical characterization and photocatalytic activity assessment under UV-A and visible-light irradiation of iron-doped TiO2 nanoparticles. Arab. J. Chem. 2023, 16, 105331. [Google Scholar] [CrossRef]
- Franco, R.T.; Silva, A.L.; Licea, Y.E.; Alzamora, M.; Sánchez, D.R.; Carvalho, N.M.F. Effect of Camellia sinensis origin and heat treatment in the iron oxides nanomaterials composition and Fenton degradation of methyl orange. J. Braz. Chem. Soc. 2023, 34, 694–704. [Google Scholar] [CrossRef]
- Hadi, A. Synthesis and characteristics of Y2O3/SiO2/GO hybrid nanoceramics for photo-degradation of organic dyes. Opt. Quantum Electron. 2023, 55, 551. [Google Scholar] [CrossRef]
- Huang-Mu, L.; Devanesan, S.; Farhat, K.; Kim, W.; Sivarasan, G. Improving the efficiency of metal ions doped Fe2O3 nanoparticles: Photocatalyst for removal of organic dye from aqueous media. Chemosphere 2023, 337, 139229. [Google Scholar] [CrossRef]
- Jayaprakash, K.; Sivasamy, A. Polymeric graphitic carbon nitride layers decorated with erbium oxide and enhanced photocatalytic performance under visible light irradiation. Environ. Sci. Pollut. Res. 2023, 30, 52561–52575. [Google Scholar] [CrossRef]
- Khan, Y.; Sharafat, U.; Gul, S.; Khan, M.I.; Ismail, M.; Khan, M.A.; Younus, R.; Khan, S.B. Novel in situ synthesis of quaternary core-shell metallic sulfide nanocomposites for degradation of organic dyes and hydrogen production. Green Process. Synth. 2023, 12, 20228128. [Google Scholar] [CrossRef]
- Latif, S.; Abdulaziz, F.; Alanazi, A.M.; Alsehli, A.H.; Alsowayigh, M.M.; Alanazi, A.A. Effect of H2O2@CuONPs in the UV light-induced removal of organic pollutant Congo Red dye: Investigation into mechanism with additional biomedical study. Molecules 2023, 28, 410. [Google Scholar] [CrossRef] [PubMed]
- Lebière, P.G.; Ivan, R.; Pérez del Pino, A.; Logofatu, C.; Negrila, C.; György, E. Boron and nitrogen co-doped carbon-based nanomaterials/nickel oxide/hydroxide hybrids for sunlight induced photocatalytic water cleaning. Colloids Surf. A Physicochem. Eng. Asp. 2023, 676, 132159. [Google Scholar] [CrossRef]
- Liu, S.; Bu, Y.; Cheng, S.; Tao, Y.; Hong, W. Preparation of g-C3N5/g-C3N4 heterojunction for methyl orange photocatalytic degradation: Mechanism analysis. J. Water Proc. Eng. 2023, 54, 104019. [Google Scholar] [CrossRef]
- Ma, A.; Liao, X.; Qian, H.; Liu, J.; Liu, H.; Ren, S. An attapulgite composite with high degradation performance for Congo red without using oxidants and photoexcitation. Mater. Sci. Eng. B 2023, 296, 116628. [Google Scholar] [CrossRef]
- Mbarek, W.B.; Al Harbi, M.; Hammami, B.; Khitouni, M.; Escoda, L.; Suñol, J.-J. Nanostructured Mn–Ni powders produced by high-energy ball-milling for water decontamination from RB5 dye. Crystals 2023, 13, 879. [Google Scholar] [CrossRef]
- Medina, M.J.B.; Bueno, J.J.P.; Rodríguez, C.H.; Pérez, A.X.M.; López, M.L.M.; Chacón, J.G.B.; López, C.M.; Robles, M.R.G.; Oza, G. Heterogeneous photocatalysis using electroless deposition of Ni/NiO nanoparticles on silicon nanowires for the degradation of methyl orange. Curr. Nanosci. 2023, 19, 432–443. [Google Scholar] [CrossRef]
- Meteab, M.H.; Hashim, A.; Rabee, B.H. Synthesis and tailoring the morphological, optical, electronic and photodegradation characteristics of PS–PC/MnO2–SiC quaternary nanostructures. Opt. Quantum Electron. 2023, 55, 187. [Google Scholar] [CrossRef]
- Monje, D.S.; Mercado, D.F.; Mesa, G.A.P.; Valencia, G.C. Carbon dots decorated magnetite nanocomposite obtained using yerba mate useful for remediation of textile wastewater through a photo-Fenton treatment: Ilex paraguariensis as a platform of environmental interest—Part 2. Environ. Sci. Pollut. Res. 2023, 30, 3070–3087. [Google Scholar] [CrossRef]
- Nirmal Rajeev, Y.; Maria Magdalane, C.; Hepsibha, S.; Ramalingam, G.; Arjun Kumar, B.; Bhushan Kumar, L.; Sambasivam, S. Europium decorated hierarchical TiO2 heterojunction nanostructure with enhanced UV light photocatalytic activity for degradation of toxic industrial effluent. Inorg. Chem. Commun. 2023, 157, 111339. [Google Scholar] [CrossRef]
- Pandith, A.; Jayaprakash, G.K.; ALOthman, Z.A. Surface-modified CuO nanoparticles for photocatalysis and highly efficient energy storage devices. Environ. Sci. Pollut. Res. 2023, 30, 43320–43330. [Google Scholar] [CrossRef]
- Ramaraj, B.R.; Mahalingam, U.; Ramasamy, P.; Pearce, J.M.; Mayandi, J.; Mahalingam, A. Environmental remediation of real textile dyeing wastewater under visible light and inactivation of pathogenic bacteria using ZnO/CuO nano-needles. Phys. Status Solidi A 2023, 220, 2200607. [Google Scholar] [CrossRef]
- Sabur, D.A.; Hashim, A.; Habeeb, M.A. Fabrication and exploration the structural and optical properties of Sb2O3-GO nanostructures doped PMMA-PC for photodegradation of pollutants dyes. Opt. Quantum Electron. 2023, 55, 457. [Google Scholar] [CrossRef]
- Sathya Priya, B.; Aruchamy, K.; Oh, T.H.; Avula, B.; Hasan, I.; Shanthi, M. Synthesis of solar light active reduced graphene oxide-ZnS nanomaterial for photocatalytic degradation and antibacterial applications. Micromachines 2023, 14, 1324. [Google Scholar] [CrossRef]
- Shoran, S.; Sharma, A.; Chaudhary, S. Visible light enhanced photocatalytic degradation of organic pollutants with SiO2/g-C3N4 nanocomposite for environmental applications. Environ. Sci. Pollut. Res. 2023, 30, 98732–98746. [Google Scholar] [CrossRef]
- Singh, A.K.; Giannakoudakis, D.A.; Arkas, M.; Triantafyllidis, K.S.; Nair, V. Composites of lignin-based biochar with BiOCl for photocatalytic water treatment: RSM studies for process optimization. Nanomaterials 2023, 13, 735. [Google Scholar] [CrossRef]
- Sudhalakshmi, J.; Rajathi, K. Fabrication of eco-friendly hybrid active imidazole based ionic liquid embedded cadmium oxide-TiO2 catalyst for photoelectrocatalytic and hydrophobic properties. Asian J. Chem. 2023, 35, 1827–1835. [Google Scholar] [CrossRef]
- Zamani, W.; Rastgar, S.; Hedayati, A. Capability of TiO2 and Fe3O4 nanoparticles loaded onto Algae (Scendesmus sp.) as a novel bio-magnetic photocatalyst to degration of Red195 dye in the sonophotocatalytic treatment process under ultrasonic/UVA irradiation. Sci. Rep. 2023, 13, 18182. [Google Scholar] [CrossRef]
- Alka; Kumar, S.; Kumari, P. Sulfonatocalix [6]arene-decorated magnetite nanomaterials for the removal of organic pollutants from wáter. Int. J. Environ. Sci. Technol. 2023, 20, 4467–4482. [Google Scholar] [CrossRef]
- Al-Wasidi, A.S.; Khairy, M.; Abdulkhair, B.Y.; Abdelrahman, E.A. Efficient disposal of basic fuchsin dye from aqueous media using ZrO2/MgMn2O4/Mg(Mg0.333Mn1.333)O4 as a novel and facilely synthesized nanocomposite. Inorganics 2023, 11, 363. [Google Scholar] [CrossRef]
- Aziz, T.; Farid, A.; Chinnam, S.; Haq, F.; Kiran, M.; Wani, A.; Alothman, Z.A.; Aljuwayid, A.M.; Habila, M.A.; Akhtar, M.S. Synthesis, characterization and adsorption behavior of modified cellulose nanocrystals towards different cationic dyes. Chemosphere 2023, 321, 137999. [Google Scholar] [CrossRef]
- El-Aziz, M.E.A.; Youssef, A.M.; Kamal, K.H.; Kelnar, I.; Kamel, S. Preparation and performance of bionanocomposites based on grafted chitosan, GO and TiO2-NPs for removal of lead ions and Basic-red 46. Carbohydr. Polym. 2023, 305, 120571. [Google Scholar] [CrossRef] [PubMed]
- Guo, F.; Guo, S.; Niu, Y.; Qiu, G.; Guo, Y.; Li, Y.; Chen, L.; Zhang, Y.; Wu, J. Efficient removal of methylene blue via two-step modification hazelnut shell biochar: Process intensification, kinetics and thermodynamics. J. Ind. Eng. Chem. 2023, 125, 105–116. [Google Scholar] [CrossRef]
- Hashem, A.A.; Mahmoud, S.A.; Geioushy, R.A.; Fouad, O.A. Adsorption of malachite green dye over synthesized calcium silicate nanopowders from waste materials. Mater. Sci. Eng. B 2023, 295, 116605. [Google Scholar] [CrossRef]
- Konopatsky, A.S.; Kalinina, V.V.; Savchenko, A.S.; Leybo, D.V.; Sukhanova, E.V.; Baidyshev, V.S.; Popov, Z.I.; Bondarev, A.V.; Polčák, J.; Shtansky, D.V. Structure, magnetic and adsorption properties of novel FePt/h-BN heteromaterials. Nano Res. 2023, 16, 1473–1481. [Google Scholar] [CrossRef]
- Lee, H.; Heo, M.H.; Jeong, H.; Kim, S.Y.; Yuk, J.S.; Park, S.H.; Shin, J. Water-redispersible and high-yield α-chitin nanocrystals isolated using electron-beam irradiation as adsorbents to remove heavy metals and dye. Nanoscale 2023, 15, 10990–11004. [Google Scholar] [CrossRef]
- Nouri, A.; Ang, W.L.; Mahmoudi, E.; Chua, S.F.; Mohammad, A.W.; Benamor, A.; Ba-Abbad, M.M.; Leo, C.P. Decoration of polylactic acid on graphene oxide for efficient adsorption of methylene blue and tetracycline. Chemosphere 2023, 322, 138219. [Google Scholar] [CrossRef]
- Quach, T.P.T.; Doan, L. Surface modifications of superparamagnetic iron oxide nanoparticles with polyvinyl alcohol, chitosan, and graphene oxide as Methylene Blue adsorbents. Coatings 2023, 13, 1333. [Google Scholar] [CrossRef]
- Salahshoori, I.; Jorabchi, M.N.; Ghasemi, S.; Mirnezami, S.M.S.; Nobre, M.A.L.; Khonakdar, H.A. Assessing cationic dye adsorption mechanisms on MIL-53 (Al) nanostructured MOF materials using quantum chemical and molecular simulations: Toward environmentally sustainable wastewater treatment. J. Water Proc. Eng. 2023, 55, 104081. [Google Scholar] [CrossRef]
- Wang, L.; Xue, G.; Ye, T.; Li, J.; Liu, C.; Liu, J.; Ma, P. Zn-modified biochar preparation from solvent free in-situ pyrolysis and its removal of methylene blue. Diam. Relat. Mater. 2023, 140, 110438. [Google Scholar] [CrossRef]
- Wang, M.; Jiao, Y.; Li, N.; Su, Y. Synthesis of a SiO2-MgO composite material derived from yellow phosphorus slag with excellent malachite green adsorption activity. J. Alloys Compd. 2023, 969, 172344. [Google Scholar] [CrossRef]
- Zhu, K.; Mohammed, S.; Tang, H.; Xie, Z.; Fang, S.; Liu, S. ZIF-67/SA@PVDF ultrafiltration membrane with simultaneous adsorption and catalytic oxidation for dyes. Sustainability 2023, 15, 2879. [Google Scholar] [CrossRef]
- Alenad, A.M.; Waheed, M.S.; Aman, S.; Ahmad, N.; Khan, A.R.; Khosa, R.Y.; Ansari, M.Z.; Khan, S.A.; Farid, H.M.T.; Taha, T.A.M. Visible light driven Ni doped hematite for photocatalytic reduction of noxious methylene blue. Mater. Res. Bull. 2023, 165, 112306. [Google Scholar] [CrossRef]
- Algarni, S.A.; Aman, S.; Ahmad, N.; Khan, S.A.; Farid, H.M.T.; Taha, T.A.M. Processing of Nb doped hematite for visible light photocatalytic reduction of noxious methylene blue. Optik 2023, 287, 171097. [Google Scholar] [CrossRef]
- Alizadeh, N.; Salimi, A. Simultaneous adsorption and catalytic degradation of methylene blue dye over recyclable Mn4(P2O7)3 nanoflakes: Mechanism and efficiency. Environ. Nanotechnol. Monit. Manag. 2023, 20, 100806. [Google Scholar] [CrossRef]
- Al-nayili, A.; Khayoon, H.A.; Alshamsi, H.A.; Cata Saady, N.M. A novel bimetallic (Au-Pd)-decorated reduced graphene oxide nanocomposite enhanced Rhodamine B photocatalytic degradation under solar irradiation. Mater. Today Sustain. 2023, 24, 100512. [Google Scholar] [CrossRef]
- Bandaru, S.G.; Yathapu, S.; Sathiraju, A.; Ganghishetti, B.; Mangalarapu, T.B.; Singh, A.K. Photoluminescence and photocatalytic studies of rice water and papaya fruit extract-encapsulated cadmium sulfide nanoparticles. J. Korean Ceram. Soc. 2023, 60, 183–202. [Google Scholar] [CrossRef]
- Basfer, N.M.; Al-Harbi, N. Structural, optical and photocatalytic activity of Ce3+ doped Co–Mg nanoparticles for wastewater treatment applications. J. King Saud Univ. Sci. 2023, 35, 102436. [Google Scholar] [CrossRef]
- Bhatti, M.A.; Tahira, A.; Hullio, A.A.; Aftab, U.; Nafady, A.; Vigolo, B.; Ibupoto, Z.H. Oxygenated terminals of milky sap of Calotropis procera transformed 1D ZnO structure to 0D nanoparticles for enhanced photocatalytic degradation of malachite green and methylene blue. J. Mater. Sci. Mater. Electron. 2023, 34, 929. [Google Scholar] [CrossRef]
- Biswakarma, D.; Dey, N.; Bhattacharya, S. Hydrogel nanocomposite towards optical sensing of spermine in biomedical and real-life food samples and remediation of toxic dyes from wastewater. Langmuir 2023, 39, 11610–11620. [Google Scholar] [CrossRef]
- Chellapandi, T.; Roopan, S.M.; Madhumitha, G. Interfacial charge transfer of Carrisa edulis fruit extract capped Co3O4 nanoparticles on the surface of MK30: An efficient photocatalytic removal of methylthioninium chloride and tetracycline organic pollutants. Environ. Res. 2023, 219, 115052. [Google Scholar] [CrossRef]
- Dang, H.T.M.; Nguyen, M.T.T.; Tran, L.T.; Tran, H.V.; Huynh, C. Synthesis and photocatalytic activity of a lanthanum doped CoFe2O4/TiO2 nanocomposite for photodegradation of methylene blue organic dye. J. Chem. Res. 2023, 47, 17475198221151152. [Google Scholar] [CrossRef]
- Dhiman, P.; Rana, G.; Kumar, A.; Dawi, E.A.; Sharma, G. Rare earth doped ZnO nanoparticles as spintronics and photo catalyst for degradation of pollutants. Molecules 2023, 28, 2838. [Google Scholar] [CrossRef] [PubMed]
- Dinker, M.K.; Raut, S.S.; Kulkarni, P.S. Application of ionic mesoporous silica in selective recovery of tungstate ions through column adsorption and subsequent photocatalytic degradation of an organic dye. Environ. Sci. Nano 2023, 10, 1883–1896. [Google Scholar] [CrossRef]
- Dos Santos, D.F.; Santiago, A.G.; Teodoro, M.D.; Motta, F.V.; Bomio, M.R.D. Investigation of the photocatalytic and optical properties of the SrMoO4/g-C3N4 heterostructure obtained via sonochemical synthesis with temperature control. J. Environ. Manag. 2023, 325, 116396. [Google Scholar] [CrossRef]
- Ehsan, M.d.F.; Barai, H.R.; Islam, M.d.M.; Susan, M.d.A.B.H.; Joo, S.W.; Miran, M.S. ZnO nanocomposites supported by acid-activated kaolinite as photocatalysts for the enhanced photodegradation of an organic dye. Mater. Today Commun. 2023, 36, 106563. [Google Scholar] [CrossRef]
- El-Shafai, N.M.; Masoud, M.S.; Ramadan, M.S.; El-Mehasseb, I. Engineering design of n/p-type nano heterojunctions loaded on cotton cellulose nanocrystal surface: Removal of pollutants and supercapacitors applications. J. Energy Storage 2023, 58, 106341. [Google Scholar] [CrossRef]
- Gadge, A.S.; Janbandhu, S.Y.; Sukhadeve, G.K.; Kumar, R.; Gajbhiye, C.D.; Gedam, R.S. TiO2 nanoparticles for Methylene Blue dye degradation: Effect of calcination temperature. ECS J. Solid State Sci. Technol. 2023, 12, 086004. [Google Scholar] [CrossRef]
- Huang, P.; Fang, W.; Yang, L.; Sun, Y.; Yang, H.; Chen, X.-Z.; Zeng, H. Ultralong hydroxyapatite nanowires-based flow-through reactor with high loading of silver nanoparticles for fast continuous catalytic reduction of organic dyes and disinfection of wastewater. Chem. Eng. J. 2023, 475, 146305. [Google Scholar] [CrossRef]
- Ivanov, K.V.; Noskov, A.V.; Alekseeva, O.V.; Agafonov, A.V. Effect of annealing conditions on the physicochemical and photocatalytic properties of a nanopowder based on Fe2TiO5. Mater. Chem. Phys. 2023, 299, 127493. [Google Scholar] [CrossRef]
- Jiang, J.; Liang, Y.; Wang, H.; Zhao, J.; Hu, J.; Wang, M. In situ mineralization of akageneite (β-FeOOH) on cotton for water purification via Fenton-like reaction. Fibers Polym. 2023, 24, 1641–1648. [Google Scholar] [CrossRef]
- Jiang, W.; Xu, Q.; Bu, F.; Wei, Y.; Wang, Y.; Wang, Z.; Jiang, Y. Fabrication of Fe3O4@APF magnetic nanospheres with tunable core–shell structure: An effective carrier and reducing agent for Ag nanoparticles. J. Inorg. Organomet. Polym. Mater. 2023, 33, 2562–2573. [Google Scholar] [CrossRef]
- Karthik, P.; Ravichandran, S.; Sasikala, V.; Prakash, N.; Mukkannan, A.; Rajesh, J. Effective photodegradation of organic water pollutants by the facile synthesis of Ag2O nanoparticles. Surf. Interfaces 2023, 40, 103088. [Google Scholar] [CrossRef]
- Kaya, M.T.; Calimli, M.H.; Nas, M.S. Degradation of methylene blue with a novel Fe3O4/Mn3O4/CuO nanomaterial under sonocatalytic conditions. Res. Chem. Intermed. 2023, 49, 2549–2568. [Google Scholar] [CrossRef]
- Ma, A.; Qian, H.; Liu, H.; Ren, S. Degradation of malachite green by g-C3N4-modified magnetic attapulgite composites under visible-light conditions. Environ. Sci. Pollut. Res. 2023, 30, 96360–96375. [Google Scholar] [CrossRef] [PubMed]
- Ma, D.; Pan, S.; Tan, M.; He, G.; Zhao, J. Shape-controlled synthesis of varied bismuth nanostructures and their size-dependent photocatalytic removal of organic dyes under visible light irradiation. Opt. Mater. 2023, 145, 114433. [Google Scholar] [CrossRef]
- Magomedova, A.; Isaev, A.; Orudzhev, F.; Alikhanov, N.; Emirov, R.; Rabadanov, M.; Mingshan, Z. Electrochemical synthesis of superparamagnetic Fe3O4 nanoparticles for the photo-Fenton oxidation of Rhodamine B. ChemistrySelect 2023, 8, e202301694. [Google Scholar] [CrossRef]
- Malathy, A.; Manikandan, V.; Devanesan, S.; Farhat, K.; Priyadharsan, A.; Ragavendran, C.; Ragupathy, S.; Ranjith, R.; Sivakumar, S. Development of biohybrid Ag2CrO4/rGO based nanocomposites with stable flotation properties as enhanced photocatalyst for sewage treatment and antibiotic-conjugated for antibacterial evaluation. Int. J. Biol. Macromol. 2023, 244, 125303. [Google Scholar] [CrossRef]
- Maru, M.T.; Gonfa, B.A.; Zelekew, O.A.; Fakrudeen, S.P.; Ananda Murthy, H.C.; Bekele, E.T.; Sabir, F.K. Effect of Musa acuminata peel extract on synthesis of ZnO/CuO nanocomposites for photocatalytic degradation of methylene blue. Green Chem. Lett. Rev. 2023, 16, 2232383. [Google Scholar] [CrossRef]
- Munusamy, S.; Venkatesan, R.; Divya, S.; Gnanamoorthy, G.; Narayanan, V.; Vivekananthan, V.; Ansar, S.; Oh, T.-H.; Kim, S.-C. Electrochemical and photochemical characteristics of organic dyes and biological molecules at conducting polymer-modified electrodes of indium oxide-polypyrrole nanohybrids. Mater. Sci. Eng. B 2023, 297, 116761. [Google Scholar] [CrossRef]
- Negem, M.; Miller, D.; Irvine, J.; Heakal, F.E.-T. Water/oil nanoemulsion-based synthesis of BixSn6-2xSy (0.33≤×≤2.95) semiconductor QDs for efficient photocatalytic degradation of MB dye. Environ. Sci. Pollut. Res. 2023, 30, 58998–59012. [Google Scholar] [CrossRef]
- Perumal, V.; Uthrakumar, R.; Chinnathambi, M.; Inmozhi, C.; Robert, R.; Rajasaravanan, M.E.; Raja, A.; Kaviyarasu, K. Electron-hole recombination effect of SnO2–CuO nanocomposite for improving methylene blue photocatalytic activity in wastewater treatment under visible light. J. King Saud Univ. Sci. 2023, 35, 102388. [Google Scholar] [CrossRef]
- Raveendran Nair, P.; Rosa Santiago Ramirez, C.; Angel Gracia Pinilla, M.; Krishnan, B.; Avellaneda Avellaneda, D.; Fabian Cienfuegos Pelaes, R. Black titanium dioxide nanocolloids by laser irradiation in liquids for visible light photo-catalytic/electrochemical applications. Appl. Surf. Sci. 2023, 623, 157096. [Google Scholar] [CrossRef]
- Saeed, M.; Pecho, R.D.C.; Panchal, S.; Alhag, S.K.; Al-Shuraym, L.A.; Al Syaad, K.M.; Bhutta, U.H. Synthesis of Ag-OMS catalyst for sunlight-assisted photodegradation of Crystal Violet dye. Water 2023, 15, 2480. [Google Scholar] [CrossRef]
- Saif, N.; Tariq, A.; Intisar, A.; Batool, Z.; Arshad, M.; ur Rehman, A.; Kousar, R. Green synthesis of SnO2 nanorods and Mo–SnO2 nanocomposite for efficient sunlight driven organic dye photodegradation in aqueous solution. Mater. Chem. Phys. 2023, 305, 127920. [Google Scholar] [CrossRef]
- Sasikala, V.; Karthik, P.; Ravichandran, S.; Prakash, N.; Rajesh, J.; Mukkannan, A. Effective removal of organic dyes using novel MnWO4 incorporated CA/PCL nanocomposite membranes. Surf. Interfaces 2023, 40, 103008. [Google Scholar] [CrossRef]
- Selvaraj, S.; Natesan, K.; Bhargav, P.B.; Nafis, A. Revolutionizing water treatment: Exploring the efficacy of MoS2/BN/rGO ternary nanocomposite in organic dye treated water for OER and HER applications. J. Water Proc. Eng. 2023, 54, 104033. [Google Scholar] [CrossRef]
- Sepúlveda, M.; Saldan, I.; Mahnaz, A.; Cicmancova, V.; Michalicka, J.; Hromadko, L.; Bulánek, R.; Sopha, H.; Macak, J.M. Magnetically guidable single TiO2 nanotube photocatalyst: Structure and photocatalytic properties. Ceram. Int. 2023, 49, 6764–6771. [Google Scholar] [CrossRef]
- Sewnet, A.; Alemayehu, E.; Abebe, M.; Mani, D.; Thomas, S.; Kalarikkal, N.; Lennartz, B. Single-step synthesis of graphitic carbon nitride nanomaterials by directly calcining the mixture of urea and thiourea: Application for Rhodamine B (RhB) dye degradation. Nanomaterials 2023, 13, 762. [Google Scholar] [CrossRef] [PubMed]
- Shahanas, T.; Harichandran, G. PEG mediated NiMn2O4 nanomaterials as a nano catalyst for peroxidase mimetic activity and photocatalytic degradation. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2023, 303, 123212. [Google Scholar] [CrossRef]
- Soltani, S.; Gacem, A.; Choudhary, N.; Yadav, V.K.; Alsaeedi, H.; Modi, S.; Patel, A.; Khan, S.H.; Cabral-Pinto, M.M.S.; Yadav, K.K.; et al. Scallion peel mediated synthesis of zinc oxide nanoparticles and their applications as nano fertilizer and photocatalyst for removal of organic pollutants from wastewater. Water 2023, 15, 1672. [Google Scholar] [CrossRef]
- Suganthi, S.; Vignesh, S.; Raj, V.; Manoharadas, S.; Pandiaraj, S.; Kim, H. Synergistic influence of vanadium pentoxide-coupled graphitic carbon nitride composite for photocatalytic degradation of organic pollutant: Stability and involved Z-scheme mechanism. Environ. Res. 2023, 231, 116288. [Google Scholar] [CrossRef] [PubMed]
- Sukhadeve, G.K.; Gedam, R.S. Visible light assisted photocatalytic degradation of mixture of reactive ternary dye solution by Zn–Fe co-doped TiO2 nanoparticles. Chemosphere 2023, 341, 139990. [Google Scholar] [CrossRef]
- Syed, N.; Feng, Y.; Fahad, R.; Huang, J.; Mahar, F.K. Carbon-based composite nanofibers for photocatalytic degradation of methylene blue dye under visible light. Polym. Adv. Technol. 2023, 34, 2286–2297. [Google Scholar] [CrossRef]
- Tahir, M.Y.; Sillanpaa, M.; Almutairi, T.M.; Mohammed, A.A.A.; Ali, S. Excellent photocatalytic and antibacterial activities of bio-activated carbon decorated magnesium oxide nanoparticles. Chemosphere 2023, 312, 137327. [Google Scholar] [CrossRef] [PubMed]
- Thambidurai, R.; Gobi, G.; Chandrasekar, M.; Uthrakumar, R.; Inmozhi, C.; Kaviyarasu, K. ZnO nanocomposites containing Cd are synthesized with high photodegradation potential for wastewater treatment. J. King Saud Univ. Sci. 2023, 35, 102915. [Google Scholar] [CrossRef]
- Thambidurai, R.; Gobi, G.; Uthrakumar, R.; Inmozhi, C.; Kaviyarasu, K. Characterizations of MnO2 doped TiO2 nanostructures and effective degradation of methylene blue dye under visible light irradiation. Dig. J. Nanomater. Biostructures 2023, 18, 869–879. [Google Scholar] [CrossRef]
- Venkatesan, D.; Umasankar, S.; Mangesh, V.L.; Krishnan, P.; Tamizhdurai, P.; Kumaran, R.; Baskaralingam, P. Removal of Toluidine blue in water using green synthesized nanomaterials. S. Afr. J. Chem. Eng. 2023, 45, 42–50. [Google Scholar] [CrossRef]
- Wang, Q.; Lu, J.; Yu, M.; Li, H.; Lin, X.; Nie, J.; Lan, N.; Wang, Z. Sulfur vacancy rich MoS2/FeMoO4 composites derived from MIL-53(Fe) as PMS activator for efficient elimination of dye: Nonradical 1O2 dominated mechanism. Environ. Pollut. 2023, 333, 121990. [Google Scholar] [CrossRef]
- Wu, H.; Yang, Q.; Wang, J.; Zhou, H.; Qin, S.; Pan, J.; Li, C. Preparation of CuO nanosheet array thin film with controlled morphology for SERS and photocatalysis. New J. Chem. 2023, 47, 6602–6611. [Google Scholar] [CrossRef]
- Yang, M.; Jin, H.; Gui, R. Ag+-doped boron quantum dots with enhanced stability and fluorescence enabling versatile practicality in visual detection, sensing, imaging and photocatalytic degradation. J. Colloid Interface Sci. 2023, 639, 49–58. [Google Scholar] [CrossRef]
- Zhang, Q.; Wang, D.; Yu, R.; Luo, L.; Li, W.; Cheng, J.; Zhang, Y. Excellent photocatalytic degradation of rhodamine B over Bi2O3supported on Zn-MOF nanocomposites under visible light. Green Proc. Synth. 2023, 12, 20228123. [Google Scholar] [CrossRef]
- Zhao, W.K.; Ma, Z.Q.; Zheng, J.Y.; Han, C.B.; Zhou, K.L.; Hao, M.Y.; Fang, D.C.; Xia, Y.; Yan, H. Dual-functional MnS2/MnO2 heterostructure catalyst for efficient acidic hydrogen evolution reaction and assisted degradation of organic wastewater. J. Energy Chem. 2023, 87, 215–224. [Google Scholar] [CrossRef]
- Zheng, J.Y.; He, J.; Han, C.B.; Huang, G.; Sun, B.C.; Zhao, W.K.; Wang, Y.; Sun, L.; Si, J.; Yan, H. Adsorption-enhanced catalytic oxidation for long-lasting dynamic degradation of organic dyes by porous manganese-based biopolymeric catalyst. Int. J. Biol. Macromol. 2023, 237, 124152. [Google Scholar] [CrossRef] [PubMed]
- Basta, A.H.; Lotfy, V.F. Sustainable development of pulping by-product for limiting its pollution risk and production new aerogel-based carbon nanostructures for dyes adsorption. J. Clean. Prod. 2023, 428, 139275. [Google Scholar] [CrossRef]
- Hua, Z.; Tang, L.; Wu, M.; Fu, J. Graphene hydrogel improves S. putrefaciens’ biological treatment of dye wastewater: Impacts of extracellular electron transfer and function of c-type cytochromes. Environ. Res. 2023, 236, 116739. [Google Scholar] [CrossRef]
- Li, X.-Y.; Wang, W.-R.; Xue, R.-C.; Chen, P.-Y.; Wang, Y.; Yu, L.-P. Carbon dots/silica nanoaggregates for highly efficient adsorption of alizarin red S and malachite green dyes. New J. Chem. 2023, 47, 8965–8973. [Google Scholar] [CrossRef]
- Oviedo, L.R.; Oviedo, V.R.; Dalla Nora, L.D.; da Silva, W.L. Adsorption of organic dyes onto nanozeolites: A machine learning study. Sep. Purif. Technol. 2023, 315, 123712. [Google Scholar] [CrossRef]
- Poornachandhra, C.; Jayabalakrishnan, R.M.; Balasubramanian, G.; Lakshmanan, A.; Selvakumar, S.; Maheswari, M.; John, J.E. Coconut husk fiber: A low-cost bioresource for the synthesis of high-value nanocellulose. Biointerface Res. Appl. Chem. 2023, 13, 504. [Google Scholar] [CrossRef]
- Sharma, A.; Mittal, R.; Sharma, P.; Pal, K.; Mona, S. Sustainable approach for adsorptive removal of cationic and anionic dyes by titanium oxide nanoparticles synthesized biogenically using algal extract of Spirulina. Nanotechnology 2023, 34, 485301. [Google Scholar] [CrossRef]
- Kallem, P.; Elashwah, N.; Bharath, G.; Hegab, H.M.; Hasan, S.W.; Banat, F. Zwitterion-grafted 2D MXene (Ti3C2TX) nanocomposite membranes with improved water permeability and self-cleaning properties. ACS Appl. Nano Mater. 2023, 6, 607–621. [Google Scholar] [CrossRef]
- Lim, J.H.X.; Goh, K.; Ng, D.Y.F.; Chew, J.; Wang, R. Layer-by-layer hierarchically structured nanofibrous membrane scaffolds incorporating metal-organic framework and carbon nanotube adsorbents for high-performance versatile organic solvent recovery. J. Clean. Prod. 2023, 404, 136925. [Google Scholar] [CrossRef]
- Natesan, G.; Rajappan, K. GO–CuO nanocomposites assimilated into CA–PES polymer membrane in adsorptive removal of organic dyes from wastewater. Environ. Sci. Pollut. Res. 2023, 30, 42658–42678. [Google Scholar] [CrossRef]
- Zhao, D.L.; Jin, H.; Zhao, Q.; Xu, Y.; Shen, L.; Lin, H.; Chung, T.-S. Smart integration of MOFs and CQDs to fabricate defect-free and self-cleaning TFN membranes for dye removal. J. Membr. Sci. 2023, 679, 121706. [Google Scholar] [CrossRef]
- Aadil, M.; Kousar, T.; Hussain, M.; Somaily, H.H.; Abdulla, A.K.; Muhammad, E.R.; Al-Abbad, E.A.; Salam, M.A.; Albukhari, S.M.; Baamer, D.F.; et al. Generation of mesoporous n-p-n (ZnO–CuO–CeO2) heterojunction for highly efficient photodegradation of micro-organic pollutants. Ceram. Int. 2023, 49, 4846–4854. [Google Scholar] [CrossRef]
- Ahmad, I.; Safdar, M.; Yasmin, N.; Iftikhar, A.; Kalsoom, A.; Khalid, S.; Shams, Z.E.; Mirza, M. Rare earth ions (La3+,Nd3+) substituted cobalt–strontium spinel ferrites for photocatalytic degradation of textile dyes. Water Pract. Technol. 2023, 18, 1742–1755. [Google Scholar] [CrossRef]
- Alp, E.; Borazan, İ. The production of highly efficient visible-light-driven electrospun α-Fe2O3 photocatalyst through modifying iron source material for wastewater treatment applications. J. Chin. Chem. Soc. 2023, 70, 1510–1520. [Google Scholar] [CrossRef]
- Bibi, S.; Shah, S.S.; Muhammad, F.; Siddiq, M.; Kiran, L.; Aldossari, S.A.; Sheikh Salek Mushab, M.; Sarwar, S. Cu-doped mesoporous TiO2 photocatalyst for efficient degradation of organic dye via visible light photocatalysis. Chemosphere 2023, 339, 139583. [Google Scholar] [CrossRef]
- Desseigne, M.; Chevallier, V.; Madigou, V.; Coulet, M.-V.; Heintz, O.; Ait Ahsaine, H.; Arab, M. Plasmonic photocatalysts based on Au nanoparticles and WO3 for visible light-induced photocatalytic activity. Catalysts 2023, 13, 1333. [Google Scholar] [CrossRef]
- Devendrapandi, G.; Padmanaban, D.; Thanikasalam, R.; Panneerselvam, A.; Palraj, R.; Rajabathar, J.R.; Rajendiran, N.; Balu, R.; Oh, T.H.; Ramasundaram, S. Direct sunlight induced room temperature synthesis of anticancer and catalytic silver nanoparticles by shrimp shell waste derived chitosan. Int. J. Biol. Macromol. 2023, 252, 126205. [Google Scholar] [CrossRef]
- Elumalai, G.; Maruthai, J.; Jayaraman, K.; Ramachandran, K.; Mathiyalagan, K. Basella alba leaves-assisted eco-fabrication of Ag/ZnO nanocomposites for anti-bactericidal activity and catalytic degradation of anthropogenic pollutants. Chem. Eng. Technol. 2023, 46, 363–372. [Google Scholar] [CrossRef]
- Koca, F.D.; Muhy, H.M.; Halici, M.G. Synthesis of hybrid Cu nanoflowers by using Tornabea scutellifera lichen extract, and evaluation of their dye degredation, and antioxidant activities. S. Afr. J. Bot. 2023, 160, 394–401. [Google Scholar] [CrossRef]
- Kumar, A.; Rawat, R.K.; Chauhan, P. Hierarchical α-MoO3: A versatile eco-friendly material for humidity-assisted ammonia sensing and efficient catalytic activity in wastewater treatment. Colloids Surf. A Physicochem. Eng. Asp. 2023, 676, 132147. [Google Scholar] [CrossRef]
- Lei, H.; Cui, X.; Jia, X.; Qi, J.; Wang, Z.; Chen, W. Enhanced tribocatalytic degradation of organic pollutants by ZnO nanoparticles of high crystallinity. Nanomaterials 2023, 13, 46. [Google Scholar] [CrossRef] [PubMed]
- Long, L.; Xu, K.; Bing Tan, K.; Cai, D.; Yang, Y.; Zhou, S.-F.; Zhan, G. Highly active Mn-Cu bimetallic oxide catalyst assembled as 3D-printed monolithic agitating paddles for advanced oxidation process. Chem. Eng. Sci. 2023, 266, 118278. [Google Scholar] [CrossRef]
- Lu, Y.; Qin, X.; Hong, J. Synergistic effects of multiple heterojunctions and dopant atom for enhancing the photocatalytic activity of C-modified Zn-doped TiO2 nanofiber film. Coatings 2023, 13, 647. [Google Scholar] [CrossRef]
- Mansur, A.A.P.; Custódio, D.A.C.; Dorneles, E.M.S.; Coura, F.M.; Carvalho, I.C.; Lage, A.P.; Mansur, H.S. Nanoplexes of ZnS quantum dot-poly-L-lysine/iron oxide nanoparticle-carboxymethylcellulose for photocatalytic degradation of dyes and antibacterial activity in wastewater treatment. Int. J. Biol. Macromol. 2023, 231, 123363. [Google Scholar] [CrossRef]
- Maro, C.A.G.; Gálvez, H.E.G.; Olivas, O.J.N.; Morales, M.L.; Hernández, D.V.; Flores, H.G.; Carmona, V.M.O.; Chinchillas, M.J.C. Peumus boldus used in the synthesis of ZnO semiconductor nanoparticles and their evaluation in organic contaminants. Materials 2023, 16, 4344. [Google Scholar] [CrossRef]
- Najafidoust, A.; Haghighi, M.; Abbasi Asl, E.; Bananifard, H. Sono-precipitation dispersion of CuO-doped ZnO nanostructures over SiO2-aerogel for photo-removal of methylene blue, congo red and methyl orange from wastewater. J. Ind. Eng. Chem. 2023, 131, 346–359. [Google Scholar] [CrossRef]
- Nascimento Júnior, W.J.; de Aguiar, G.H.; Landers, R.; Vieira, M.G.A.; Motta Sobrinho, M.A. Potential of the main magnetic iron oxides synthesized over graphene oxide in integrated adsorption and photocatalysis of inorganic and organic emergent contaminants. Colloids Surf. A Physicochem. Eng. Asp. 2023, 671, 131647. [Google Scholar] [CrossRef]
- Nayak, R.R.; Gupta, T.; Chauhan, R.P. Organic waste peel–assisted synthesis of ZnSe nanoparticles for solar-driven photocatalytic degradation of cationic and anionic dye. Environ. Sci. Pollut. Res. 2023, 30, 88167–88179. [Google Scholar] [CrossRef]
- Özcan, S.; Süngü Akdoğan, Ç.Z.; Polat, M.; Kip, Ç.; Tuncel, A. A new multimodal magnetic nanozyme and a reusable peroxymonosulfate oxidation catalyst: Manganese oxide coated-monodisperse-porous and magnetic core-shell microspheres. Chemosphere 2023, 341, 140034. [Google Scholar] [CrossRef] [PubMed]
- Rahmatian, N.; Abbasi, S.; Tavakkoli Yaraki, M.; Abbasi, N. Echinophora platyloba extract-mediated green synthesis of silver nanoparticles: Fine-tuning the size towards enhanced catalytic and antibacterial properties. J. Mol. Liq. 2023, 391, 123327. [Google Scholar] [CrossRef]
- Rani, M.; Keshu; Shanker, U. Efficient visible light photocatalytic organic colorants elimination performance induced by biosynthesized titanium dioxide coupled cadmium sulfide nanostructures. Int. J. Environ. Sci. Technol. 2023, 20, 5491–5508. [Google Scholar] [CrossRef]
- Safo, K.; Noby, H.; Mitsuhara, M.; Naragino, H.; El-Shazly, A.H. H2O2 assisted steel slag nanocomposite for degradation of organic pollutant in an advanced oxidation process for suspension and Spin-Coated mode. Environ. Nanotechnol. Monit. Manag. 2023, 20, 100836. [Google Scholar] [CrossRef]
- Shaik, M.R.; Aldhuwayhi, F.N.; Al-Mohaimeed, A.M.; Hatshan, M.R.; Kuniyil, M.; Adil, S.F.; Khan, M. Morphology controlled deposition of vanadium oxide (VOx) nanoparticles on the surface of highly reduced graphene oxide for the photocatalytic degradation of hazardous organic dyes. Materials 2023, 16, 6340. [Google Scholar] [CrossRef] [PubMed]
- Song, C.-L.; Li, Z.; Zhang, Y.-N.; Zhang, G.; Yang, Y.-W. Hydrazide–pillar [5]arene-mediated silver nanoparticles for highly efficient reductive degradation of organic dyes. Supramol. Mater. 2023, 2, 100035. [Google Scholar] [CrossRef]
- Torres-Torres, K.; Nash-Montes, V.I.; Luciano-Velázquez, J.; Bailón-Ruiz, S.J. Photocatalysis degradation of Remazol Brilliant Blue R and Brilliant Green by zinc-based nanomaterials. MRS Adv. 2023, 8, 392–396. [Google Scholar] [CrossRef]
- Stanley, R.; Balu, S.K.; Alphas, J.J.; Manisha Vidyavathy, S. Super-efficient photocatalytic degradation of methylene blue, methyl orange and rhodamine B dyes using low-cost ZnO–MgO nanocomposite under natural sunlight and its bactericidal activity. Res. Chem. Intermed. 2023, 49, 2583–2602. [Google Scholar] [CrossRef]
- Yadav, S.; Rani, N.; Saini, K. Coupling ZnO with CuO for efficient organic pollutant removal. Environ. Sci. Pollut. Res. 2023, 30, 71984–72008. [Google Scholar] [CrossRef]
- Yousefi, F.; Haghighi, M.; Shabani, M. Potato-on-rod like of Z-scheme plasmon Ag2CrO4-Ag2Mo2O7 heterojunction nanophotocatalyst with high stability and accelerated photo-degradation evolution of organic contaminants. Environ. Res. 2023, 236, 116853. [Google Scholar] [CrossRef]
- Zhao, S.-Z.; Yang, Y.; Lu, R.; Wang, Y.; Huang, H.-L.; Hu, Y.-D.; Rodriguez, R.D.; Chen, J.-J. Bi2O3/Bi2O2.33@ECNF: A recyclable material for efficient adsorption and photocatalytic degradation of organic contaminants. Colloids Surf. A Physicochem. Eng. Asp. 2023, 674, 131912. [Google Scholar] [CrossRef]
Cycle | Adsorption | Sono-Sorption |
---|---|---|
1st 2nd 3rd 4th | 78.4 60.4 59.9 57.4 | 96.2 87.6 76.5 74.7 |
Nanoparticle | Alizarin Red S | Thiazol Yellog G | Congo Red | Methyl Orange |
---|---|---|---|---|
ZnFe2O4 CuFe2O4 | 54.6 46.4 | 37.0 30.1 | 29.8 21.9 | 26.8 20.8 |
Methodology | Anionic Dye | Reference |
---|---|---|
Adsorption | Acid Yellow 36, Acid Orange 6 Reactive Red 21, Reactive Blue 19 Congo Red Alizarin Red S Reactive Yellow 145, Reactive Red 195 a Various (industrial wastewater) Methyl Orange Congo Red, Brilliant Blue G-250 | [60] [60] [61,63,106] [62,64,65,67,68,71,72,73,74] [66] [69] [70] [74] |
(Photo)-catalysis | Congo Red, Alizarin Red S Methyl Orange Brilliant Blue Reactive Red, Orange II Orange G Congo Red,Methyl Red Reactive Black 5 AR88 Napthol Blue Black Auramine O, Xylenol Orange Tripan Blue Red 195 | [74,75,78,82,83,84,90,91,94,99,101] [77,78,79,81,82,85,86,87,92,93,96,97,98,102,105] [80] [88] [89] [90] [95] [100] [103] [104] [106] [107] |
Dye | Nanomaterial | Efficiency/Time | Reference |
---|---|---|---|
Congo Red Methyl Orange Reactive Red Orange II Tripan Blue | Cu oxide nanoparticles ZnO-CuFe2O4-CNTs Eu-TiO2 N-Ti3C2MXene Y2O3-SiO2 Various nanomaterials Carbon dots Biochar-BiOCl Ag-Fe2O3 Ag-Fe2O3 Cd,Ti oxides-Ionic liquid | 93%/2 h 82%/2 h 97%/75 min 98%/20 min 52%/45 min 67%/3 h 98%/7 h 100%/1 h 98%/2 h 98%/2 h 100%/1 h | [75] [76] [99] [81] [87] [95] [98] [105] [88] [88] [106] |
Temperature, °C | Dye Uptake, mg/g |
---|---|
No calcination 500 700 | 239.8 178.4 93.2 |
Sample | Methylene Blue | Methylene Violet | Brilliant Green |
---|---|---|---|
Boron nitride as-synthesized FPB FPB annealed at 500 °C FPB annealed at 700 °C | 100 74.3 77.5 66.4 | 100 80 71.7 79.9 | 41.7 100 100 100 |
Material | 0 h | 10 min | 0.25 h | 1 h | 3 h |
---|---|---|---|---|---|
SnS Bi0.3Sn5.34S5.8 BiSn4S5.5 | 0 0 0 | no data no data 100 | 68 43 100 | 86 50 100 | 93 82 100 |
Nanomaterial | Congo Red | Rhodamine B |
---|---|---|
Co0.5Sr0.5Fe2O4 Co0.5Sr0.5La0.06Fe1.94O4 Co0.5Sr0.5Nd0.06Fe1.94O4 | 73 81 90 | 45 67 85 |
Dye | % Efficiency |
---|---|
Methylene Blue Methyl Red Rhodamine B Congo Red Acid Blue 25 Methyl Orange | 85.8 74.5 70.5 58.7 45.2 40.4 |
Methodology | Dyes | Reference |
---|---|---|
Adsorption | Methylene Blue, Brilliant Blue Methyl Orange, Methylene Blue Alizarin Red S, Malachite Green Crystal Violet, Acridine Orange MB, CR, CV, MR Methyl Orange, Malachite Green | [174] [175] [176] [177] [178] [179] |
Membranes | Congo Red, Methylene Blue MO, RB, MB MB, RhB, MO, CR MB, MeB, MO | [180] [181] [182] [183] |
(Photo)-catalysis | Crystal Violet, Methyl Orange Congo Red, Rhodamine B Rhodamine B, Methyl Orange Congo Red, Methylene Blue MB, RhB, MO Methylene Blue, Methyl Orange Methylene Blue, Brilliant Blue RhB, MV, MeB, MO MB, RhB, EY, GV MB, MO, RhB, MG MB, MO, CR, RhB MB, MO, CR MB, CV, TY MB, CR, RhB, MeR MB, MeR, RhB, CR, AB25, MO MB, RhB, Rh6G, MO RBBR, BG NO, RhB, CV, MO Methyl Orange, Rhodamine B | [184] [185,203] [186] [187,200] [188,189,197,201,208,209] [190,192,205] [191] [193] [194] [195] [196] [198] [199] [202] [204] [206] [207] [210] [211] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alguacil, F.J.; Alonso, M.; Robla, J.I. Removal of Hazardous Organic Dyes from Liquid Wastes Using Advanced Nanomaterials. Int. J. Mol. Sci. 2024, 25, 9671. https://doi.org/10.3390/ijms25179671
Alguacil FJ, Alonso M, Robla JI. Removal of Hazardous Organic Dyes from Liquid Wastes Using Advanced Nanomaterials. International Journal of Molecular Sciences. 2024; 25(17):9671. https://doi.org/10.3390/ijms25179671
Chicago/Turabian StyleAlguacil, Francisco Jose, Manuel Alonso, and Jose Ignacio Robla. 2024. "Removal of Hazardous Organic Dyes from Liquid Wastes Using Advanced Nanomaterials" International Journal of Molecular Sciences 25, no. 17: 9671. https://doi.org/10.3390/ijms25179671
APA StyleAlguacil, F. J., Alonso, M., & Robla, J. I. (2024). Removal of Hazardous Organic Dyes from Liquid Wastes Using Advanced Nanomaterials. International Journal of Molecular Sciences, 25(17), 9671. https://doi.org/10.3390/ijms25179671