TOPAS-Tissue: A Framework for the Simulation of the Biological Response to Ionizing Radiation at the Multi-Cellular Level
Abstract
:1. Introduction
2. Results
2.1. TOPAS-Tissue: Workflow
2.2. Cell Culture Evolution during the Pre-Irradiation Stage
2.3. Irradiation Stage and Execution Time
2.4. Cell-Survival Curve
3. Discussion
4. Materials and Methods
4.1. Software
4.1.1. CompuCell3D
4.1.2. TOPAS
4.2. TOPAS-Tissue: Simulation Stages and Models
4.2.1. Pre-Irradiation Cell Culture Growth Stage
4.2.2. Irradiation Stage
4.2.3. DSB Assignment
4.2.4. DNA Repair and Cell Response Models
4.2.5. Cell Survival Quantification
4.3. Simulation Setup
4.3.1. PC-3 Cell Culture Phantom Geometric Model
4.3.2. X-ray Irradiation
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Schuemann, J.; McNamara, A.L.; Ramos-Méndez, J.; Perl, J.; Held, K.D.; Paganetti, H.; Incerti, S.; Faddegon, B. TOPAS-nBio: An Extension to the TOPAS Simulation Toolkit for Cellular and Sub-cellular Radiobiology. Radiat. Res. 2019, 191, 125–138. [Google Scholar] [CrossRef] [PubMed]
- Charlton, D.; Nikjoo, H.; Humm, J. Calculation of Initial Yields of Single- and Double-strand Breaks in Cell Nuclei from Electrons, Protons and Alpha Particles. Int. J. Radiat. Biol. 1989, 56, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Tomita, H.; Kai, M.; Kusama, T.; Ito, A. Monte Carlo simulation of DNA strand-break induction in supercoiled plasmid pBR322 DNA from indirect effects. Radiat. Environ. Biophys. 1998, 36, 235–241. [Google Scholar] [CrossRef] [PubMed]
- Friedland, W.; Jacob, P.; Bernhardt, P.; Paretzke, H.G.; Dingfelder, M. Simulation of DNA Damage after Proton Irradiation. Radiat. Res. 2003, 159, 401–410. [Google Scholar] [CrossRef] [PubMed]
- Nikjoo, H.; Emfietzoglou, D.; Liamsuwan, T.; Taleei, R.; Liljequist, D.; Uehara, S. Radiation track, DNA damage and response—A review. Rep. Prog. Phys. 2016, 79, 116601. [Google Scholar] [CrossRef]
- Incerti, S.; Baldacchino, G.; Bernal, M.; Capra, R.; Champion, C.; Francis, Z.; Guèye, P.; Mantero, A.; Mascialino, B.; Moretto, P.; et al. The GEANT4-DNA Project. Int. J. Model. Simul. Sci. Comput. 2010, 01, 157–178. [Google Scholar] [CrossRef]
- Incerti, S.; Kyriakou, I.; Bernal, M.A.; Bordage, M.C.; Francis, Z.; Guatelli, S.; Ivanchenko, V.; Karamitros, M.; Lampe, N.; Lee, S.B.; et al. Geant4-DNA example applications for track structure simulations in liquid water: A report from the Geant4-DNA Project. Med. Phys. 2018, 45, e722–e739. [Google Scholar] [CrossRef]
- Plante, I.; Ponomarev, A.; Patel, Z.; Slaba, T.; Hada, M. RITCARD: Radiation-Induced Tracks, Chromosome Aberrations, Repair and Damage. Radiat. Res. 2019, 192, 282–298. [Google Scholar] [CrossRef]
- Warmenhoven, J.W.; Henthorn, N.T.; Ingram, S.P.; Chadwick, A.L.; Sotiropoulos, M.; Korabel, N.; Fedotov, S.; Mackay, R.I.; Kirkby, K.J.; Merchant, M.J. Insights into the non-homologous end joining pathway and double strand break end mobility provided by mechanistic in silico modelling. DNA Repair 2019, 85, 102743. [Google Scholar] [CrossRef]
- Pfeiffer, P.; Goedecke, W.; Obe, G. Mechanisms of DNA double-strand break repair and their potential to induce chromosomal aberrations. Mutagenesis 2000, 15, 289–302. [Google Scholar] [CrossRef]
- Forster, J.C.; Douglass, M.J.J.; Phillips, W.M.; Bezak, E. Stochastic multicellular modeling of x-ray irradiation, DNA damage induction, DNA free-end misrejoining and cell death. Sci. Rep. 2019, 9, 18888. [Google Scholar] [CrossRef] [PubMed]
- Dos Santos, M.; Clairand, I.; Gruel, G.; Barquinero, J.F.; Incerti, S.; Villagrasa, C. Influence of chromatin condensation on the number of direct DSB damages induced by ions studied using a Monte Carlo code. Radiat. Prot. Dosim. 2014, 161, 469–473. [Google Scholar] [CrossRef] [PubMed]
- Mumtaz, S.; Rana, J.N.; Choi, E.H.; Han, I. Microwave Radiation and the Brain: Mechanisms, Current Status, and Future Prospects. Int. J. Mol. Sci. 2022, 23, 9288. [Google Scholar] [CrossRef] [PubMed]
- Nikjoo, P.O.H. Computational modelling of low-energy electron-induced DNA damage by early physical and chemical events. Int. J. Radiat. Biol. 1997, 71, 467–483. [Google Scholar] [CrossRef] [PubMed]
- Bernal, M.; Bordage, M.; Brown, J.; Davídková, M.; Delage, E.; El Bitar, Z.; Enger, S.; Francis, Z.; Guatelli, S.; Ivanchenko, V.; et al. Track structure modeling in liquid water: A review of the Geant4-DNA very low energy extension of the Geant4 Monte Carlo simulation toolkit. Phys. Medica 2015, 31, 861–874. [Google Scholar] [CrossRef]
- Tran, H.N.; Ramos-Méndez, J.; Shin, W.; Perrot, Y.; Faddegon, B.; Okada, S.; Karamitros, M.; Davídková, M.; Štěpán, V.; Incerti, S.; et al. Assessment of DNA damage with an adapted independent reaction time approach implemented in Geant4-DNA for the simulation of diffusion-controlled reactions between radio-induced reactive species and a chromatin fiber. Med. Phys. 2020, 48, 890–901. [Google Scholar] [CrossRef]
- D-Kondo, N.; Moreno-Barbosa, E.; Štěphán, V.; Stefanová, K.; Perrot, Y.; Villagrasa, C.; Incerti, S.; Alonso, B.D.C.; Schuemann, J.; Faddegon, B.; et al. DNA damage modeled with Geant4-DNA: Effects of plasmid DNA conformation and experimental conditions. Phys. Med. Biol. 2021, 66, 245017. [Google Scholar] [CrossRef]
- Poignant, F.; Plante, I.; Patel, Z.S.; Huff, J.L.; Slaba, T.C. Geometrical Properties of the Nucleus and Chromosome Intermingling Are Possible Major Parameters of Chromosome Aberration Formation. Int. J. Mol. Sci. 2022, 23, 8638. [Google Scholar] [CrossRef]
- Ramos-Méndez, J.; García-García, O.; Domínguez-Kondo, J.; LaVerne, J.A.; Schuemann, J.; Moreno-Barbosa, E.; Faddegon, B. TOPAS-nBio simulation of temperature-dependent indirect DNA strand break yields. Phys. Med. Biol. 2022, 67, 145007. [Google Scholar] [CrossRef]
- Stewart, R.D. Two-lesion kinetic model of double-strand break rejoining and cell killing. Radiat. Res. 2001, 156, 365–378. [Google Scholar] [CrossRef]
- Douglass, M.; Bezak, E.; Penfold, S. Development of a radiation track structure clustering algorithm for the prediction of DNA DSB yields and radiation induced cell death in Eukaryotic cells. Phys. Med. Biol. 2015, 60, 3217–3236. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Feng, Y.; Wang, W.; Yang, C.; Wang, P. An Expanded Multi-scale Monte Carlo Simulation Method for Personalized Radiobiological Effect Estimation in Radiotherapy: A feasibility study. Sci. Rep. 2017, 7, 45019. [Google Scholar] [CrossRef] [PubMed]
- Sakata, D.; Hirayama, R.; Shin, W.-G.; Belli, M.; Tabocchini, M.A.; Stewart, R.D.; Belov, O.; Bernal, M.A.; Bordage, M.-C.; Brown, J.M.; et al. Prediction of DNA rejoining kinetics and cell survival after proton irradiation for V79 cells using Geant4-DNA. Phys. Medica 2023, 105, 102508. [Google Scholar] [CrossRef] [PubMed]
- Belov, O.V.; Krasavin, E.A.; Lyashko, M.S.; Batmunkh, M.; Sweilam, N.H. A quantitative model of the major pathways for radiation-induced DNA double-strand break repair. J. Theor. Biol. 2015, 366, 115–130. [Google Scholar] [CrossRef] [PubMed]
- Sakata, D.; Belov, O.; Bordage, M.-C.; Emfietzoglou, D.; Guatelli, S.; Inaniwa, T.; Ivanchenko, V.; Karamitros, M.; Kyriakou, I.; Lampe, N.; et al. Fully integrated Monte Carlo simulation for evaluating radiation induced DNA damage and subsequent repair using Geant4-DNA. Sci. Rep. 2020, 10, 20788. [Google Scholar] [CrossRef]
- Zhang, T.; Brazhnik, P.; Tyson, J.J. Exploring Mechanisms of the DNA-Damage Response: p53 Pulses and their Possible Relevance to Apoptosis. Cell Cycle 2007, 6, 85–94. [Google Scholar] [CrossRef]
- Wu, M.; Ye, H.; Tang, Z.; Shao, C.; Lu, G.; Chen, B.; Yang, Y.; Wang, G.; Hao, H. p53 dynamics orchestrates with binding affinity to target genes for cell fate decision. Cell Death Dis. 2017, 8, e3130. [Google Scholar] [CrossRef]
- Tsabar, M.; Mock, C.S.; Venkatachalam, V.; Reyes, J.; Karhohs, K.W.; Oliver, T.G.; Regev, A.; Jambhekar, A.; Lahav, G. A Switch in p53 Dynamics Marks Cells That Escape from DSB-Induced Cell Cycle Arrest. Cell Rep. 2020, 32, 107995. [Google Scholar] [CrossRef]
- Wang, P.; Wang, H.-Y.; Gao, X.-J.; Zhu, H.-X.; Zhang, X.-P.; Liu, F.; Wang, W. Encoding and Decoding of p53 Dynamics in Cellular Response to Stresses. Cells 2023, 12, 490. [Google Scholar] [CrossRef]
- Luke, D.A.; Stamatakis, K.A. Systems Science Methods in Public Health: Dynamics, Networks, and Agents. Annu. Rev. Public Health 2012, 33, 357–376. [Google Scholar] [CrossRef]
- Pleyer, J.; Fleck, C. Agent-based models in cellular systems. Front. Phys. 2023, 10, 968409. [Google Scholar] [CrossRef]
- Fink, C.C.; Slepchenko, B.; Moraru, I.I.; Watras, J.; Schaff, J.C.; Loew, L.M. An Image-Based Model of Calcium Waves in Differentiated Neuroblastoma Cells. Biophys. J. 2000, 79, 163–183. [Google Scholar] [CrossRef] [PubMed]
- Kang, S.; Kahan, S.; McDermott, J.; Flann, N.; Shmulevich, I. Biocellion: Accelerating computer simulation of multicellular biological system models. Bioinformatics 2014, 30, 3101–3108. [Google Scholar] [CrossRef] [PubMed]
- Cickovski, T.; Huang, C.; Chaturvedi, R.; Glimm, T.; Hentschel, H.; Alber, M.; Glazier, J.; Newman, S.; Izaguirre, J. A Framework for Three-Dimensional Simulation of Morphogenesis. IEEE/ACM Trans. Comput. Biol. Bioinform. 2005, 2, 273–288. [Google Scholar] [CrossRef] [PubMed]
- Knabe, J.F.; Schilstra, M.J.; Nehaniv, C.L. Evolution and Morphogenesis of Differentiated Multicellular Organisms—Autonomously Generated Diffusion Gradients for Positional Information. In Proceedings of the IEEE Symposium on Artificial Life, Winchester, UK, 5–8 August 2008. [Google Scholar]
- Liu, R.; Higley, K.A.; Swat, M.H.; Chaplain, M.A.J.; Powathil, G.G.; Glazier, J.A. Development of a coupled simulation toolkit for computational radiation biology based on Geant4 and CompuCell3D. Phys. Med. Biol. 2020, 66, 045026. [Google Scholar] [CrossRef] [PubMed]
- Šefl, M.; Incerti, S.; Papamichael, G.; Emfietzoglou, D. Calculation of cellular S-values using Geant4-DNA: The effect of cell geometry. Appl. Radiat. Isot. 2015, 104, 113–123. [Google Scholar] [CrossRef] [PubMed]
- Francis, Z.; Villagrasa, C.; Clairand, I. Simulation of DNA damage clustering after proton irradiation using an adapted DBSCAN algorithm. Comput. Methods Programs Biomed. 2011, 101, 265–270. [Google Scholar] [CrossRef]
- Shibata, A.; Jeggo, P.A. ATM’s Role in the Repair of DNA Double-Strand Breaks. Genes 2021, 12, 1370. [Google Scholar] [CrossRef]
- Porter, A.G.; Jänicke, R.U. Emerging roles of caspase-3 in apoptosis. Cell Death Differ. 1999, 6, 99–104. [Google Scholar] [CrossRef]
- Lahalle, A.; Lacroix, M.; De Blasio, C.; Cissé, M.Y.; Linares, L.K.; Le Cam, L. The p53 Pathway and Metabolism: The Tree That Hides the Forest. Cancers 2021, 13, 133. [Google Scholar] [CrossRef]
- Ma, L.; Wagner, J.; Rice, J.J.; Hu, W.; Levine, A.J.; Stolovitzky, G.A. A plausible model for the digital response of p53 to DNA damage. Proc. Natl. Acad. Sci. USA 2005, 102, 14266–14271. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.-P.; Liu, F.; Cheng, Z.; Wang, W. Cell fate decision mediated by p53 pulses. Proc. Natl. Acad. Sci. USA 2009, 106, 12245–12250. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.-P.; Liu, F.; Wang, W. Two-phase dynamics of p53 in the DNA damage response. Proc. Natl. Acad. Sci. USA 2011, 108, 8990–8995. [Google Scholar] [CrossRef] [PubMed]
- Hu, A.; Zhou, W.; Wu, Z.; Zhang, H.; Li, J.; Qiu, R. Modeling of DNA Damage Repair and Cell Response in Relation to p53 System Exposed to Ionizing Radiation. Int. J. Mol. Sci. 2022, 23, 11323. [Google Scholar] [CrossRef] [PubMed]
- Dolan, D.W.P.; Zupanic, A.; Nelson, G.; Hall, P.; Miwa, S.; Kirkwood, T.B.L.; Shanley, D.P. Integrated Stochastic Model of DNA Damage Repair by Non-homologous End Joining and p53/p21- Mediated Early Senescence Signalling. PLoS Comput. Biol. 2015, 11, e1004246. [Google Scholar] [CrossRef] [PubMed]
- Hat, B.; Kochańczyk, M.; Bogdał, M.N.; Lipniacki, T. Feedbacks, Bifurcations, and Cell Fate Decision-Making in the p53 System. PLoS Comput. Biol. 2016, 12, e1004787. [Google Scholar] [CrossRef]
- Perl, J.; Shin, J.; Schümann, J.; Faddegon, B.; Paganetti, H. TOPAS: An innovative proton Monte Carlo platform for research and clinical applications. Med. Phys. 2012, 39, 6818–6837. [Google Scholar] [CrossRef]
- Faddegon, B.; Ramos-Méndez, J.; Schümann, J.; McNamara, A.; Shin, J.; Perl, J.; Paganetti, H. The TOPAS Tool for Particle Simulation, a Monte Carlo Simulation Tool for Physics, Biology and Clinical Research. Phys. Med. 2020, 72, 114–121. [Google Scholar] [CrossRef]
- Swat, M.H.; Thomas, G.L.; Belmonte, J.M.; Shirinifard, A.; Hmeljak, D.; Glazier, J.A. Multi-scale modeling of tissues using CompuCell3D. Methods Cell Biol. 2012, 110, 325–366. [Google Scholar] [CrossRef]
- Shin, J.; Perl, J.; Schümann, J.; Paganetti, H.; Faddegon, B.A. A modular method to handle multiple time-dependent quantities in Monte Carlo simulations. Phys. Med. Biol. 2012, 57, 3295–3308. [Google Scholar] [CrossRef]
- Wakisaka, Y.; Minami, K.; Okada, N.; Tsubouchi, T.; Hamatani, N.; Yagi, M.; Takashina, M.; Kanai, T. Treatment planning of carbon ion radiotherapy for prostate cancer based on cellular experiments with PC3 human prostate cancer cells. Phys. Medica 2023, 107, 102537. [Google Scholar] [CrossRef] [PubMed]
- Shirinifard, A.; Gens, J.S.; Zaitlen, B.L.; Popławski, N.J.; Swat, M.; Glazier, J.A. 3D Multi-Cell Simulation of Tumor Growth and Angiogenesis. PLoS ONE 2009, 4, e7190. [Google Scholar] [CrossRef] [PubMed]
- Adrian, G.; Konradsson, E.; Lempart, M.; Bäck, S.; Ceberg, C.; Petersson, K. The FLASH effect depends on oxygen concentration. Br. J. Radiol. 2019, 93, 20190702. [Google Scholar] [CrossRef] [PubMed]
- Rudek, B.; McNamara, A.; Ramos-Méndez, J.; Byrne, H.; Kuncic, Z.; Schuemann, J.; Rudek, B.; McNamara, A.; Ramos-Méndez, J.; Byrne, H.; et al. Radio-enhancement by gold nanoparticles and their impact on water radiolysis for x-ray, proton and carbon-ion beams. Phys. Med. Biol. 2019, 64, 175005. [Google Scholar] [CrossRef] [PubMed]
- Zhao, M.; Wang, Y.; Zhao, Y.; He, S.; Zhao, R.; Song, Y.; Cheng, J.; Gong, Y.; Xie, J.; Wang, Y.; et al. Caspase-3 knockout attenuates radiation-induced tumor repopulation via impairing the ATM/p53/Cox-2/PGE2 pathway in non-small cell lung cancer. Aging 2020, 12, 21758–21776. [Google Scholar] [CrossRef]
- Thibaut, Y.; Gonon, G.; Martinez, J.S.; Petit, M.; Vaurijoux, A.; Gruel, G.; Villagrasa, C.; Incerti, S.; Perrot, Y. MINAS TIRITH: A new tool for simulating radiation-induced DNA damage at the cell population level. Phys. Med. Biol. 2023, 68, 034002. [Google Scholar] [CrossRef]
- Brahme, A.; Lorat, Y. Dual Nucleosomal Double-Strand Breaks Are the Key Effectors of Curative Radiation Therapy. Biophysica 2023, 3, 668–694. [Google Scholar] [CrossRef]
- Kohn, K.W. Molecular interaction map of the mammalian cell cycle control and DNA repair systems. Mol. Biol. Cell 1999, 10, 2703–2734. [Google Scholar] [CrossRef]
- Iwamoto, K.; Hamada, H.; Eguchi, Y.; Okamoto, M. Mathematical modeling of cell cycle regulation in response to DNA damage: Exploring mechanisms of cell-fate determination. Biosystems 2011, 103, 384–391. [Google Scholar] [CrossRef]
- Balter, A.; Merks, R.M.H.; Popławski, N.J.; Swat, M.; Glazier, J.A. The Glazier-Graner-Hogeweg Model: Extensions, Future Directions, and Opportunities for Further Study. In Single-Cell-Based Models in Biology and Medicine; Anderson, A.R.A., Chaplain, M.A.J., Rejniak, K.A., Eds.; Mathematics and Biosciences in Interaction; Birkhäuser Basel: Basel, Switzerland, 2007. [Google Scholar]
- Marée, A.F.M.; Grieneisen, V.A.; Hogeweg, P. The Cellular Potts Model and Biophysical Properties of Cells, Tissues and Morphogenesis. In Single-Cell-Based Models in Biology and Medicine; Anderson, A.R.A., Chaplain, M.A.J., Rejniak, K.A., Eds.; Mathematics and Biosciences in Interaction; Birkhäuser Basel: Basel, Switzerland, 2007. [Google Scholar]
- Swat, M.H.; Belmonte, J.; Heiland, R.W.; Zaitlen, B.L.; Glazier, J.A.; Shirinifard, A. CompuCell3D Reference Manual Version 3.7.4. 2014. Available online: https://compucell3d.org/BinDoc/cc3d_binaries/Manuals/PythonScriptingManual_v.3.7.4.pdf (accessed on 15 November 2023).
- Pramanik, D.; Jolly, M.; Bhat, R. Matrix adhesion and remodeling diversifies modes of cancer invasion across spatial scales. J. Theor. Biol. 2021, 524, 110733. [Google Scholar] [CrossRef]
- Nivlouei, S.J.; Soltani, M.; Shirani, E.; Salimpour, M.R.; Travasso, R.; Carvalho, J. A multiscale cell-based model of tumor growth for chemotherapy assessment and tumor-targeted therapy through a 3D computational approach. Cell Prolif. 2022, 55, e13187. [Google Scholar] [CrossRef] [PubMed]
- Agostinelli, S.; Allison, J.; Amako, K.; Apostolakis, J.; Araujo, H.; Arce, P.; Asai, M.; Axen, D.; Banerjee, S.; Barrand, G.; et al. Geant4—A simulation toolkit. Nucl. Instrum. Methods Phys. Res. Sect. A 2003, 506, 250–303. [Google Scholar] [CrossRef]
- Ramos-Mendez, J.A.; Perl, J.; Schuemann, J.; McNamara, A.L.; Paganetti, H.; Faddegon, B.; Faddegon, B.A. Monte Carlo simulation of chemistry following radiolysis with TOPAS-nBio. Phys. Med. Biol. 2018, 63, 105014. [Google Scholar] [CrossRef] [PubMed]
- D-Kondo, J.N.; Garcia-Garcia, O.R.; LaVerne, J.A.; Faddegon, B.; Schuemann, J.; Shin, W.-G.; Ramos-Méndez, J. An integrated Monte Carlo track-structure simulation framework for modeling inter and intra-track effects on homogenous chemistry. Phys. Med. Biol. 2023, 68, 125008. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H.; McNamara, A.L.; McMahon, S.J.; Ramos-Mendez, J.; Henthorn, N.T.; Faddegon, B.; Held, K.D.; Perl, J.; Li, J.; Paganetti, H.; et al. Cellular Response to Proton Irradiation: A Simulation Study with TOPAS-nBio. Radiat. Res. 2020, 194, 9–21. [Google Scholar] [CrossRef]
- Carrasco-Hernandez, J.; Ramos-Méndez, J.; Padilla-Rodal, E.; Avila-Rodriguez, M.A. Cellular lethal damage of 64Cu incorporated in mammalian genome evaluated with Monte Carlo methods. Front. Med. 2023, 10, 1253746. [Google Scholar] [CrossRef]
- Gianlupi, J.F.; Sego, T.J.; Sluka, J.P.; Glazier, J.A. PhenoCellPy: A Python package for biological cell behavior modeling. bioRxiv 2023. [Google Scholar] [CrossRef]
- Rothkamm, K.; Löbrich, M. Evidence for a lack of DNA double-strand break repair in human cells exposed to very low x-ray doses. Proc. Natl. Acad. Sci. USA 2003, 100, 5057–5062. [Google Scholar] [CrossRef]
- Asaithamby, A.; Uematsu, N.; Chatterjee, A.; Story, M.D.; Burma, S.; Chen, D.J. Repair of HZE-Particle-Induced DNA Double-Strand Breaks in Normal Human Fibroblasts. Radiat. Res. 2008, 169, 437–446. [Google Scholar] [CrossRef]
- Hucka, M.; Bergmann, F.T.; Dräger, A.; Hoops, S.; Keating, S.M.; Le Novère, N.; Myers, C.J.; Olivier, B.G.; Sahle, S.; Schaff, J.C.; et al. The Systems Biology Markup Language (SBML): Language Specification for Level 3 Version 2 Core. J. Integr. Bioinform. 2018, 15, 20170081. [Google Scholar] [CrossRef]
- Gómez, H.F.; Hucka, M.; Keating, S.M.; Nudelman, G.; Iber, D.; Sealfon, S.C. MOCCASIN: Converting MATLAB ODE models to SBML. Bioinformatics 2016, 32, 1905–1906. [Google Scholar] [CrossRef] [PubMed]
- Somogyi, E.T.; Bouteiller, J.-M.; Glazier, J.A.; König, M.; Medley, J.K.; Swat, M.H.; Sauro, H.M. libRoadRunner: A high performance SBML simulation and analysis library. Bioinformatics 2015, 31, 3315–3321. [Google Scholar] [CrossRef] [PubMed]
- Bortner, C.D.; Cidlowski, J.A. Uncoupling Cell Shrinkage from Apoptosis Reveals That Na+ Influx Is Required for Volume Loss during Programmed Cell Death. J. Biol. Chem. 2003, 278, 39176–39184. [Google Scholar] [CrossRef] [PubMed]
- Dolfi, S.C.; Chan, L.L.-Y.; Qiu, J.; Tedeschi, P.M.; Bertino, J.R.; Hirshfield, K.M.; Oltvai, Z.N.; Vazquez, A. The metabolic demands of cancer cells are coupled to their size and protein synthesis rates. Cancer Metab. 2013, 1, 20. [Google Scholar] [CrossRef] [PubMed]
- Lammerding, J. Mechanics of the nucleus. Compr. Physiol. 2011, 1, 783–807. [Google Scholar] [CrossRef]
- Faddegon, B.; Blakely, E.A.; Burigo, L.; Censor, Y.; Dokic, I.; Kondo, N.D.; Ortiz, R.; Méndez, J.R.; Rucinski, A.; Schubert, K.; et al. Ionization detail parameters and cluster dose: A mathematical model for selection of nanodosimetric quantities for use in treatment planning in charged particle radiotherapy. Phys. Med. Biol. 2023, 68, 175013. [Google Scholar] [CrossRef]
Type | Medium | Flask | Alive PC-3 | Dead PC-3 |
---|---|---|---|---|
Medium | 0.0 | 0.0 | 1.0 | 10.0 |
Flask | - | 0.0 | 100.0 | 100.0 |
Alive PC-3 | - | - | 10.0 | 1.0 |
Dead PC-3 | - | - | - | 100.0 |
Parameter | Description | Parameter | Description |
---|---|---|---|
direction | Cell’s doubling volume time | ||
direction | Cell’s growth rate | ||
direction | Pre-irradiation period duration | ||
Equivalence from voxels to length units | Average number of DSBs per Gy | ||
Equivalence from MCSs to time units | Number of primary particles | ||
Cell radius | Prescribed dose to the phantom | ||
Cell volume | Fraction of complex DSBs | ||
Nuclear radius |
Parameter | CC3D Units | Metric Value | Parameter | CC3D Units | Metric Value |
---|---|---|---|---|---|
1000 vox | 1000 µm | ------------------- | 49% | ||
1000 vox | 1000 µm | ------------------- | 1.5% | ||
60 vox | 60 µm | ||||
1 vox | 1 µm | Pre-irradiation stage | |||
9 vox | 9 µm | 1 MCS | 2.88 min | ||
3053 vox | 3053 µm3 | 2050 MCSs | 4.1 days | ||
4 vox | 4 µm | 687 MCSs | 33 h | ||
----------------- | 27.5 DSB/Gy | 4.44 vox/MCS | |||
----------------- | 0–8 Gy | Post-irradiation stage | |||
----------------- | /Gy | 1 MCS | 0.5 min | ||
----------------- | 51% | 3960 MCSs | 33 h | ||
0.77 vox/MCS |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
García García, O.R.; Ortiz, R.; Moreno-Barbosa, E.; D-Kondo, N.; Faddegon, B.; Ramos-Méndez, J. TOPAS-Tissue: A Framework for the Simulation of the Biological Response to Ionizing Radiation at the Multi-Cellular Level. Int. J. Mol. Sci. 2024, 25, 10061. https://doi.org/10.3390/ijms251810061
García García OR, Ortiz R, Moreno-Barbosa E, D-Kondo N, Faddegon B, Ramos-Méndez J. TOPAS-Tissue: A Framework for the Simulation of the Biological Response to Ionizing Radiation at the Multi-Cellular Level. International Journal of Molecular Sciences. 2024; 25(18):10061. https://doi.org/10.3390/ijms251810061
Chicago/Turabian StyleGarcía García, Omar Rodrigo, Ramon Ortiz, Eduardo Moreno-Barbosa, Naoki D-Kondo, Bruce Faddegon, and Jose Ramos-Méndez. 2024. "TOPAS-Tissue: A Framework for the Simulation of the Biological Response to Ionizing Radiation at the Multi-Cellular Level" International Journal of Molecular Sciences 25, no. 18: 10061. https://doi.org/10.3390/ijms251810061
APA StyleGarcía García, O. R., Ortiz, R., Moreno-Barbosa, E., D-Kondo, N., Faddegon, B., & Ramos-Méndez, J. (2024). TOPAS-Tissue: A Framework for the Simulation of the Biological Response to Ionizing Radiation at the Multi-Cellular Level. International Journal of Molecular Sciences, 25(18), 10061. https://doi.org/10.3390/ijms251810061