Magnetic Hyperthermia in Glioblastoma Multiforme Treatment
Abstract
:1. Introduction
1.1. General Aspects
1.2. Physical Theory of Magnetic Hyperthermia
2. Magnetic Nanoparticles Used in MHT Treatment for GBM
2.1. Synthesis Routes for MNP Manufacture Used in MHT
2.2. Strategies Adopted to Improve MHT Heat Performance
3. In Vitro and In Vivo Studies for MHT Application in the GBM Treatment
3.1. In Vitro Studies
3.2. In Vivo Studies
Mnps/Injection Zone | Cell Lines/Number of Inoculated Cells | AMF Conditions–H (Oe), f (kHz), Treatment Time | Number of AMF Cycles and Time between AMF Cycles | Animal Model | Animal Particularities | Ref. |
---|---|---|---|---|---|---|
Fe3O4 cationic liposomes combined with HSP70 gene therapy/Subcutaneous zone/Combined therapy MHT + Immunotherapy | T-9/1 × 106 cells | 384 Oe/118 kHz/30 min | 1,2,3 cycles/24 h | F344 (Fisher) rats | Female/6-week-old | [132] |
Fe3O4 cationic liposomes/Subcutaneous site placed at left femoral region/Single MHT therapy | T-9/1 × 107 cells | 384 Oe/118 kHz/30 min | 1,2,3 cycles/24 h | F344 rats | Female/7-week-old | [141] |
Fe3O4 cationic liposomes/Subcutaneous site placed at left and right femoral region/Single MHT therapy | T-9/1 × 107 cells | 384 Oe/118 kHz/30 min | 3 cycles/24 h | F344 rats | Female/7-week-old | [142] |
Specific tumor antibody fragment conjugated with Fe3O4 magnetic liposomes/Subcutaneous femoral zone/Combined therapy MHT + Immunotherapy | U251-SP/2 × 105 cells | 384 Oe/118 kHz/30 min | 3 cycles/24 h | KSN nude mice | Albino athymic nude mice/Female/4-week-old | [144] |
Aminosilane-coated MNPs, dextran-coated MNPs/Subcutaneous anterior part of the brain/Single MHT therapy | RG-2/1 × 105 cells | 0 ÷ 226.2 Oe/100 kHz/40 min | 1 cycle | F344 rats | Male | [143] |
MNPs functionalized with aCD133/Subcutaneous in mouse striatum/Combined therapy MHT + Immunotherapy | CT-2A/2 × 105 cells | 2513.27 Oe/very low frequency field/2 h/day | 7 cycles in 7 days | C57 mice | C57 black 8 mice/Female/22-week-old | [151] |
Carboxymethylcellulose (CMC)–Fe3O4 MNPs/Single MHT Therapy | T-9/5 × 106 cells | 380 Oe/88.9 kHz/30 min | 3 cycles/24 h | F344 rats | Female/4-week-old | [146] |
Magnetoliposomes/Subcutaneous in the animal back/Single MHT Therapy | GL-261/1 × 107 cells | Group 1: 11 ÷ 27 mT/198 kHz/-; Group 3: 22 ÷ 31 mT, 22 ÷ 27 mT/198 kHz/-; Group 5: 27 mT/198 kHz/- | Group 1: 11 and 15 sessions; Group 3: 7 and 15 sessions. Group 5: 4 to 10 sessions | C57/BL6 mice | Female/6-week-old | [31] |
Chains of magnetosomes/Intracranial inoculation of glioma cells based on craniotomy/Single MHT Therapy | U87-Luc/2 × 105 cells | 30 mT/198 kHz/30 min | 12 ÷ 15 cycles | CD-1 nude mice | Female/7-week-old | [147] |
Non-pyrogenic magnetosomes coated with poly-l-lysine/Intracranial inoculation of glioma cells based on craniotomy/Single MHT Therapy | U87-Luc/2 × 105 cells | 27 mT/202 kHz/30 min | 27 cycles | Charles River pathogen-free athymic nude mice | Female, 18 g/5-week-old | [149] |
Fe3O4 magnetic liposomes combined with TNF–α gene therapy/Right flank/Combined therapy MHT + Immunotherapy | U251-SP/3 × 107 cells | 384 Oe/118 kHz/30 min | 1 cycle | Athymic nude mice | Female/4-week-old | [145] |
Fe3O4/Subcutaneous space/Single MHT therapy | U251/1 × 107 cells | -/200 kHz/60 min | 2 cycles | Nude mice | Male | [152] |
γ–Fe2O3 coated with dextran/Bregma region/Single MHT therapy | C6/8 × 106 cells | 138.2 Oe/150 kHz/20 min | 1 cycle | Wistar rats | Male | [153] |
Amino-silane coated superparamagnetic Fe3O4 nanoparticles/Motor cortex/Single MHT therapy | C6/1 × 106 cells | 300 Gauss/309 kHz/30 min | 3 cycles | Wistar rats | Male | [139] |
Fe(Salen)/Leg/Combined therapy MHT + Chemotherapy | U251/1 × 107 cells | 31 mT/280 kHz/- | 1 cycle | Balb.c nu/nu mice | Female/6-week-old | [150] |
4. MHT Therapy in Combination with Other Therapies
Combined Therapy Type | Implant/MNPs | AMF Conditions | Therapy Parameters | Study Type | Cell Line/Animal Characteristics/Humans | Remarks | Ref. |
---|---|---|---|---|---|---|---|
RT + MHT | Fe-Pt implant, 1.8 mm diameter, 15 ÷ 20 mm length | 240 kHz/induction coil with a 30 cm diameter | Interstitial hyperthermia temperature between 44 ÷ 46 °C and 30 ÷ 60 min/2 or 3 per week combined with RT | In vivo | Human/7 cases of metastatic brain tumor | Interstitial magnetic hyperthermia combined with RT is an efficient way to treat intracranial metastases. Complete healing in 2 patients | [170] |
Silver nanoparticle (AgNP)-mediated RT with MHT based on γ–Fe2O3 MNPs | 40 kHz/100 kA/m | Hyperthermia temperature of 42 °C for 15 min/Combined with 0 ÷ 6 Gy | In vitro | U251 | Radio- and thermos-sensitivity on U251. The lowest cell survival rate was obtained under AMF application and ionizing radiation of 6 Gy | [171] | |
Fe3O4 core of 12 nm diameter with aminosilane coating/Magnetic fluid MFL AS1 (NanoTherm® AS1; MagForce Nanotechnologies) with 112 mg/mL MNPs concentration | 100 kHz/2 ÷ 15 kA/m | Hyperthermia temperature of 43 °C/six semi-weekly sessions/1 h each thermotherapy session/Combined with 30 Gy biologically equivalent median dose administrated fractionated as 5 × 2 Gy per week | In vivo–Clinical trial | Human/66 patients (59 with recurrent GBM) | An important increase in the overall survival rate was noticed in the case of this combined therapy that uses a low radiotherapy dosage | [169] | |
Chemotherapy + MHT | Fe3O4 MNPs and 5-FU were encapsulated within chitosan nanoparticles | 180 kHz/35 kA/m/10 kW induction heating system coupled with a 9-turn coil 5 cm in diameter | First MHT was applied for 20 min followed by 2 MHT sessions with a 1-day pause | In vitro | A-172 | The combined nanoparticles were successfully internalized by A-172 cells, and, through a combination of the two treatments, cell apoptosis was obtained. Apoptosis was confirmed by densification of the cytoplasm, cell shrinkage, and tighter packing of cell organelles | [193] |
Magnetic core–shell MNP-mediated delivery of a mitochondria-targeting pro-apoptotic amphipathic tail-anchoring peptide (ATAP) | 300 kHz/5 kA/m | A temperature of 43 °C was obtained after the MNPs-ATAP-treated cells were subjected to MHT for 45 min | In vitro | U87 MG | The MNPs-ATAP system in combination with MHT conducted to an important apoptotic effect related to induced mitochondrial dysfunction of cancer cells | [194] | |
Magnetoliposomes with encapsulated doxorubicin | 3.5 MHz/30 kA/m/applied 20 min | At a temperature of 43 °C, the encapsulated chemotherapeutic drug was released in a guided way | In vitro/In vivo | C6/Adult Sprague Dawley rat | The in vitro experiments demonstrated that the cell viability decreased to 79.2% for only MHT treatment, to 47.4% for only doxorubicin effect, and for a combination of the two strategies, it reached a value of 17.3%. Regarding the in vivo study, an enhanced effect of tumor volume growth inhibition followed by a full regression of the tumor was achieved | [150] | |
PTT + MHT+ Immunotherapy | Core–shell Fe3O4@Au MNPs combined with chemotherapeutic antibody Cetuximab (C225) | 230 kHz/30 A/3 cycles of AMF | AMF cycles were combined with three irradiation sessions with NIR laser light (635 nm, 0.3 W/cm2)/30 min each/24 h pause | In vitro | U251 | In comparison with the control group, tumor growth was inhibited in the case of the combined strategy. The high affinity of C225 towards cancer cell receptors generated increased cell uptake for MNPs | [205] |
PTT + MHT | Citric-acid-coated iron oxide MNPs that were encapsulated in cationic liposomes containing 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), dimethyldioctadecyl ammonium bromide (DDAB), cholesterol (CH), cationic lipid dimethyldioctadecyl ammonium bromide (DDAB) | 5 kHz/- | AMF session was combined with NIR laser action (808 nm, 1.8 W/cm2). A temperature of 56 °C was achieved | In vitro | U87 | Cationic magnetoliposomes exhibited a promising effect in killing the cancer cells when PTT was combined with MHT | [206] |
Mn-doped magnetic nanoclusters | 405 kHz/168 Oe/20 min | AMF session was combined with the effect of a near-infrared continuous laser (750 nm) | In vitro | C6 | The combination between MHT and PTT generated an increased toxicity to cancer cells by ROS-mediated apoptosis. The SAR value of the Mn-doped nanocluster was about 600 W/g | [140] | |
PDT + MHT | Chloroaluminum-phthalocyanine (0.05 mg/mL) encapsulated-magnetic nanoemulsion | 1 MHz/40 Oe | The MHT therapy was combined with PDT (670 nm wavelength, 700 mJ/cm2 energy density) | In vitro | U87 MG, T98G | Cell viability was found to decrease by 70% for this combined strategy, and only by 15% for MHT applied as single therapy | [212,213] |
Immunotherapy + MHT | Fe3O4 liposomes in conjunction with HSP70 | 118 kHz/384 Oe | The MHT treatment was combined with immunotherapy based on HSP70 | In vitro/In vivo | T-9/Fisher rat | Important tumor regression combined with enhanced tumor immunity was achieved | [132] |
Fe3O4 liposomes in conjunction with TNF–α gene therapy | 118 kHz/384 Oe | The MHT treatment was combined with immunotherapy based on TNF-α | In vitro/In vivo | U251-SP/mice | The TNF–α property to inhibit neovascular apparition and to damage the GBM blood vessels combined with MHT led to efficient tumor volume reduction | [145] | |
Fe3O4 MNPs combined with targeted heat shock protein 90 inhibition (HSP 90) (17-DMAG) | 335 kHz/175 Oe | HSP90 was overexpressed for both cell lines compared to control samples under the MHT effect | In vitro | C6, U87-MG | Through the use of 17-DMAG, an HSP90 inhibition was noticed, and glioma cell sensitivity to MHT was increased | [219] |
5. Clinical Studies of MHT in the Case of Patients with GBM
6. Challenges and Future Perspectives
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nagai, H.; Kim, Y.H. Cancer Prevention from the Perspective of Global Cancer Burden Patterns. J. Thorac. Dis. 2017, 9, 448–451. [Google Scholar] [CrossRef] [PubMed]
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global Cancer Statistics 2018: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef] [PubMed]
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer Statistics, 2020. CA Cancer J. Clin. 2020, 70, 7–30. [Google Scholar] [CrossRef] [PubMed]
- Siegel, R.L.; Giaquinto, A.N.; Jemal, A. Cancer Statistics, 2024. CA Cancer J. Clin. 2024, 74, 12–49. [Google Scholar] [CrossRef] [PubMed]
- European Cancer Statistics: A Comprehensive Overview. Available online: https://beatcancer.eu/resources/science/article/european-cancer-statistics-a-comprehensive-overview/ (accessed on 8 May 2024).
- Why Inaction Could Raise Cancer Deaths in Africa to 1m per Year. Available online: https://www.theeastafrican.co.ke/tea/science-health/why-inaction-could-raise-cancer-deaths-in-africa-to-1m-per-year-4520486 (accessed on 8 May 2024).
- Rajan, A.; Sahu, N.K. Review on Magnetic Nanoparticle-Mediated Hyperthermia for Cancer Therapy. J. Nanopart. Res. 2020, 22, 319. [Google Scholar] [CrossRef]
- Coombes, R.C. Drug Testing in the Patient: Toward Personalized Cancer Treatment. Sci. Transl. Med. 2015, 7, 284ps10. [Google Scholar] [CrossRef]
- Vaupel, P.; Mayer, A. Hypoxia in Cancer: Significance and Impact on Clinical Outcome. Cancer Metastasis Rev. 2007, 26, 225–239. [Google Scholar] [CrossRef]
- Tan, A.C.; Ashley, D.M.; López, G.Y.; Malinzak, M.; Friedman, H.S.; Khasraw, M. Management of Glioblastoma: State of the Art and Future Directions. CA Cancer J. Clin. 2020, 70, 299–312. [Google Scholar] [CrossRef]
- Stupp, R.; Mason Warren, P.; van den Bent Martin, J.; Weller, M.; Fisher, B.; Taphoorn Martin, J.B.; Belanger, K.; Brandes Alba, A.; Marosi, C.; Bogdahn, U.; et al. Radiotherapy plus Concomitant and Adjuvant Temozolomide for Glioblastoma. N. Engl. J. Med. 2005, 352, 987–996. [Google Scholar] [CrossRef]
- Alcantara Llaguno, S.R.; Wang, Z.; Sun, D.; Chen, J.; Xu, J.; Kim, E.; Hatanpaa, K.J.; Raisanen, J.M.; Burns, D.K.; Johnson, J.E.; et al. Adult Lineage-Restricted CNS Progenitors Specify Distinct Glioblastoma Subtypes. Cancer Cell 2015, 28, 429–440. [Google Scholar] [CrossRef]
- Poot, E.; Maguregui, A.; Brunton, V.G.; Sieger, D.; Hulme, A.N. Targeting Glioblastoma through Nano- and Micro-Particle-Mediated Immune Modulation. Bioorg. Med. Chem. 2022, 72, 116913. [Google Scholar] [CrossRef] [PubMed]
- Verhaak, R.G.W.; Hoadley, K.A.; Purdom, E.; Wang, V.; Qi, Y.; Wilkerson, M.D.; Miller, C.R.; Ding, L.; Golub, T.; Mesirov, J.P.; et al. Integrated Genomic Analysis Identifies Clinically Relevant Subtypes of Glioblastoma Characterized by Abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell 2010, 17, 98–110. [Google Scholar] [CrossRef] [PubMed]
- Broekman, M.L.; Maas, S.L.N.; Abels, E.R.; Mempel, T.R.; Krichevsky, A.M.; Breakefield, X.O. Multidimensional Communication in the Microenvirons of Glioblastoma. Nat. Rev. Neurol. 2018, 14, 482–495. [Google Scholar] [CrossRef] [PubMed]
- Yao, M.; Li, S.; Wu, X.; Diao, S.; Zhang, G.; He, H.; Bian, L.; Lu, Y. Cellular Origin of Glioblastoma and Its Implication in Precision Therapy. Cell. Mol. Immunol. 2018, 15, 737–739. [Google Scholar] [CrossRef] [PubMed]
- Ostrom, Q.T.; Gittleman, H.; Truitt, G.; Boscia, A.; Kruchko, C.; Barnholtz-Sloan, J.S. CBTRUS Statistical Report: Primary Brain and Other Central Nervous System Tumors Diagnosed in the United States in 2011–2015. Neuro Oncol. 2018, 20, iv1–iv86. [Google Scholar] [CrossRef]
- Leece, R.; Xu, J.; Ostrom, Q.T.; Chen, Y.; Kruchko, C.; Barnholtz-Sloan, J.S. Global Incidence of Malignant Brain and Other Central Nervous System Tumors by Histology, 2003–2007. Neuro Oncol. 2017, 19, 1553–1564. [Google Scholar] [CrossRef]
- Fisher, J.L.; Schwartzbaum, J.A.; Wrensch, M.; Wiemels, J.L. Epidemiology of Brain Tumors. Neurol. Clin. 2007, 25, 867–890. [Google Scholar] [CrossRef]
- Boraschi, D.; Castellano, L.R.C.; Italiani, P. Editorial: Interaction of Nanomaterials with the Immune System: Role in Nanosafety and Nanomedicine. Front. Immunol. 2017, 8, 1688. [Google Scholar] [CrossRef]
- Marchesan, S.; Prato, M. Nanomaterials for (Nano)Medicine. ACS Med. Chem. Lett. 2013, 4, 147–149. [Google Scholar] [CrossRef]
- Paltanea, G.; Manescu, V.; Antoniac, I.; Antoniac, A.; Nemoianu, I.V.; Robu, A.; Dura, H. A Review of Biomimetic and Biodegradable Magnetic Scaffolds for Bone Tissue Engineering and Oncology. Int. J. Mol. Sci. 2023, 24, 4312. [Google Scholar] [CrossRef]
- Antoniac, I. Biologically Responsive Biomaterials for Tissue Engineering; Springer Series in Biomaterials Science and Engineering; Springer: New York, NY, USA, 2013; Volume 1, ISBN 978-1-4614-4327-8. [Google Scholar]
- Mohan, A.G.; Ciurea, A.V.; Antoniac, I.; Manescu, V.; Bodog, A.; Maghiar, O.; Marcut, L.; Ghiurau, A.; Bodog, F. Cranioplasty after Two Giant Intraosseous Angiolipomas of the Cranium: Case Report and Literature Review. Healthcare 2022, 10, 655. [Google Scholar] [CrossRef] [PubMed]
- Cojocaru, F.D.; Balan, V.; Popa, M.I.; Lobiuc, A.; Antoniac, A.; Antoniac, I.V.; Verestiuc, L. Biopolymers—Calcium Phosphates Composites with Inclusions of Magnetic Nanoparticles for Bone Tissue Engineering. Int. J. Biol. Macromol. 2019, 125, 612–620. [Google Scholar] [CrossRef] [PubMed]
- Chaturvedi, V.K.; Singh, A.; Singh, V.K.; Singh, M.P. Cancer Nanotechnology: A New Revolution for Cancer Diagnosis and Therapy. Curr. Drug Metab. 2019, 20, 416–429. [Google Scholar] [CrossRef]
- Elsherbini, A.A.; Saber, M.; Aggag, M.; El-Shahawy, A.; Shokier, H.A. Laser and Radiofrequency-Induced Hyperthermia Treatment via Gold-Coated Magnetic Nanocomposites. Int. J. Nanomed. 2011, 6, 2155–2165. [Google Scholar] [CrossRef]
- Perlman, O.; Weitz, I.S.; Azhari, H. Target Visualisation and Microwave Hyperthermia Monitoring Using Nanoparticle-Enhanced Transmission Ultrasound (NETUS). Int. J. Hyperth. 2018, 34, 773–785. [Google Scholar] [CrossRef]
- Kaczmarek, K.; Hornowski, T.; Dobosz, B.; Józefczak, A. Influence of Magnetic Nanoparticles on the Focused Ultrasound Hyperthermia. Materials 2018, 11, 1607. [Google Scholar] [CrossRef] [PubMed]
- Nozhat, Z.; Wang, S.; Mushtaq, A.; Deng, T.; Iqbal, M.Z.; Kong, X. Temozolomide Loaded Fe3O4@SiO2 Nanoparticles for MR-Imaging Directed Synergistic Therapy of Glioblastoma Multiforme in Vitro. Mater. Today Commun. 2024, 38, 108289. [Google Scholar] [CrossRef]
- Le Fèvre, R.; Durand-Dubief, M.; Chebbi, I.; Mandawala, C.; Lagroix, F.; Valet, J.-P.; Idbaih, A.; Adam, C.; Delattre, J.-Y.; Schmitt, C.; et al. Enhanced Antitumor Efficacy of Biocompatible Magnetosomes for the Magnetic Hyperthermia Treatment of Glioblastoma. Theranostics 2017, 7, 4618–4631. [Google Scholar] [CrossRef]
- Cheng, Y.; Muroski, M.E.; Petit, D.C.M.C.; Mansell, R.; Vemulkar, T.; Morshed, R.A.; Han, Y.; Balyasnikova, I.V.; Horbinski, C.M.; Huang, X.; et al. Rotating Magnetic Field Induced Oscillation of Magnetic Particles for in Vivo Mechanical Destruction of Malignant Glioma. J. Control. Release 2016, 223, 75–84. [Google Scholar] [CrossRef]
- Dutz, S.; Hergt, R. Magnetic Nanoparticle Heating and Heat Transfer on a Microscale: Basic Principles, Realities and Physical Limitations of Hyperthermia for Tumour Therapy. Int. J. Hyperth. 2013, 29, 790–800. [Google Scholar] [CrossRef]
- Gavrila, H.; Chiriac, H.; Ciureanu, P.; Ionita, V.; Yelon, A. Magnetism Tenhic Si Aplicat; Editura Academiei Romane: Bucharest, Romania, 2000. [Google Scholar]
- Manescu Paltanea, V.; Paltanea, G.; Antoniac, I.; Vasilescu, M. Magnetic Nanoparticles Used in Oncology. Materials 2021, 14, 5948. [Google Scholar] [CrossRef] [PubMed]
- Gavilán, H.; Avugadda, S.K.; Fernández-Cabada, T.; Soni, N.; Cassani, M.; Mai, B.T.; Chantrell, R.; Pellegrino, T. Magnetic Nanoparticles and Clusters for Magnetic Hyperthermia: Optimizing Their Heat Performance and Developing Combinatorial Therapies to Tackle Cancer. Chem. Soc. Rev. 2021, 50, 11614–11667. [Google Scholar] [CrossRef]
- Ruta, S.; Chantrell, R.; Hovorka, O. Unified Model of Hyperthermia via Hysteresis Heating in Systems of Interacting Magnetic Nanoparticles. Sci. Rep. 2015, 5, 9090. [Google Scholar] [CrossRef]
- Rosensweig, R.E. Heating Magnetic Fluid with Alternating Magnetic Field. J. Magn. Magn. Mater. 2002, 252, 370–374. [Google Scholar] [CrossRef]
- Shliomis, M.I.; Stepanov, V.I. Theory of the Dynamic Susceptibility of Magnetic Fluids. In Advances in Chemical Physics; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 1994; pp. 1–30. ISBN 978-0-470-14146-5. [Google Scholar]
- Fannin, P.C. An Experimental Observation of the Dynamic Behaviour of Ferrofluids. J. Magn. Magn. Mater. 1994, 136, 49–58. [Google Scholar] [CrossRef]
- Torres, T.E.; Lima, E.; Calatayud, M.P.; Sanz, B.; Ibarra, A.; Fernández-Pacheco, R.; Mayoral, A.; Marquina, C.; Ibarra, M.R.; Goya, G.F. The Relevance of Brownian Relaxation as Power Absorption Mechanism in Magnetic Hyperthermia. Sci. Rep. 2019, 9, 3992. [Google Scholar] [CrossRef] [PubMed]
- Mehdaoui, B.; Meffre, A.; Carrey, J.; Lachaize, S.; Lacroix, L.; Gougeon, M.; Chaudret, B.; Respaud, M. Optimal Size of Nanoparticles for Magnetic Hyperthermia: A Combined Theoretical and Experimental Study. Adv. Funct. Mater. 2011, 21, 4573–4581. [Google Scholar] [CrossRef]
- Chantrell, R.W.; Walmsley, N.; Gore, J.; Maylin, M. Calculations of the Susceptibility of Interacting Superparamagnetic Particles. Phys. Rev. B 2000, 63, 024410. [Google Scholar] [CrossRef]
- Mamiya, H. Recent Advances in Understanding Magnetic Nanoparticles in AC Magnetic Fields and Optimal Design for Targeted Hyperthermia. J. Nanomater. 2013, 2013, 752973. [Google Scholar] [CrossRef]
- Hergt, R.; Dutz, S.; Müller, R.; Zeisberger, M. Magnetic Particle Hyperthermia: Nanoparticle Magnetism and Materials Development for Cancer Therapy. J. Phys. Condens. Matter 2006, 18, S2919. [Google Scholar] [CrossRef]
- Thiesen, B.; Jordan, A. Clinical Applications of Magnetic Nanoparticles for Hyperthermia. Int. J. Hyperth. 2008, 24, 467–474. [Google Scholar] [CrossRef] [PubMed]
- Mahmoudi, K.; Bouras, A.; Bozec, D.; Ivkov, R.; Hadjipanayis, C. Magnetic Hyperthermia Therapy for the Treatment of Glioblastoma: A Review of the Therapy’s History, Efficacy and Application in Humans. Int. J. Hyperth. 2018, 34, 1316–1328. [Google Scholar] [CrossRef]
- Obaidat, I.M.; Issa, B.; Haik, Y. Magnetic Properties of Magnetic Nanoparticles for Efficient Hyperthermia. Nanomaterials 2015, 5, 63–89. [Google Scholar] [CrossRef] [PubMed]
- Bordet, A.; Lacroix, L.-M.; Fazzini, P.-F.; Carrey, J.; Soulantica, K.; Chaudret, B. Magnetically Induced Continuous CO2 Hydrogenation Using Composite Iron Carbide Nanoparticles of Exceptionally High Heating Power. Angew. Chem. Int. Ed. Engl. 2016, 55, 15894–15898. [Google Scholar] [CrossRef]
- Meffre, A.; Mehdaoui, B.; Kelsen, V.; Fazzini, P.F.; Carrey, J.; Lachaize, S.; Respaud, M.; Chaudret, B. A Simple Chemical Route toward Monodisperse Iron Carbide Nanoparticles Displaying Tunable Magnetic and Unprecedented Hyperthermia Properties. Nano Lett. 2012, 12, 4722–4728. [Google Scholar] [CrossRef]
- Lee, J.-H.; Jang, J.-T.; Choi, J.-S.; Moon, S.H.; Noh, S.-H.; Kim, J.-W.; Kim, J.-G.; Kim, I.-S.; Park, K.I.; Cheon, J. Exchange-Coupled Magnetic Nanoparticles for Efficient Heat Induction. Nat. Nanotechnol. 2011, 6, 418–422. [Google Scholar] [CrossRef] [PubMed]
- Caruntu, D.; Caruntu, G.; O’Connor, C.J. Magnetic Properties of Variable-Sized Fe3O4 Nanoparticles Synthesized from Non-Aqueous Homogeneous Solutions of Polyols. J. Phys. D Appl. Phys. 2007, 40, 5801. [Google Scholar] [CrossRef]
- Pradhan, P.; Giri, J.; Banerjee, R.; Bellare, J.; Bahadur, D. Cellular Interactions of Lauric Acid and Dextran-Coated Magnetite Nanoparticles. J. Magn. Magn. Mater. 2007, 311, 282–287. [Google Scholar] [CrossRef]
- Roca, A.G.; Morales, M.P.; O’Grady, K.; Serna, C.J. Structural and Magnetic Properties of Uniform Magnetite Nanoparticles Prepared by High Temperature Decomposition of Organic Precursors. Nanotechnology 2006, 17, 2783–2788. [Google Scholar] [CrossRef]
- Guardia, P.; Labarta, A.; Batlle, X. Tuning the Size, the Shape, and the Magnetic Properties of Iron Oxide Nanoparticles. J. Phys. Chem. C 2011, 115, 390–396. [Google Scholar] [CrossRef]
- Guardia, P.; Riedinger, A.; Nitti, S.; Pugliese, G.; Marras, S.; Genovese, A.; Materia, M.E.; Lefevre, C.; Manna, L.; Pellegrino, T. One Pot Synthesis of Monodisperse Water Soluble Iron Oxide Nanocrystals with High Values of the Specific Absorption Rate. J. Mater. Chem. B 2014, 2, 4426–4434. [Google Scholar] [CrossRef] [PubMed]
- Guardia, P.; Di Corato, R.; Lartigue, L.; Wilhelm, C.; Espinosa, A.; Garcia-Hernandez, M.; Gazeau, F.; Manna, L.; Pellegrino, T. Water-Soluble Iron Oxide Nanocubes with High Values of Specific Absorption Rate for Cancer Cell Hyperthermia Treatment. ACS Nano 2012, 6, 3080–3091. [Google Scholar] [CrossRef] [PubMed]
- Das, R.; Alonso, J.; Nemati Porshokouh, Z.; Kalappattil, V.; Torres, D.; Phan, M.-H.; Garaio, E.; García, J.Á.; Sanchez Llamazares, J.L.; Srikanth, H. Tunable High Aspect Ratio Iron Oxide Nanorods for Enhanced Hyperthermia. J. Phys. Chem. C 2016, 120, 10086–10093. [Google Scholar] [CrossRef]
- Sun, H.; Chen, B.; Jiao, X.; Jiang, Z.; Qin, Z.; Chen, D. Solvothermal Synthesis of Tunable Electroactive Magnetite Nanorods by Controlling the Side Reaction. J. Phys. Chem. C 2012, 116, 5476–5481. [Google Scholar] [CrossRef]
- Hugounenq, P.; Levy, M.; Alloyeau, D.; Lartigue, L.; Dubois, E.; Cabuil, V.; Ricolleau, C.; Roux, S.; Wilhelm, C.; Gazeau, F.; et al. Iron Oxide Monocrystalline Nanoflowers for Highly Efficient Magnetic Hyperthermia. J. Phys. Chem. C 2012, 116, 15702–15712. [Google Scholar] [CrossRef]
- Di Corato, R.; Espinosa, A.; Lartigue, L.; Tharaud, M.; Chat, S.; Pellegrino, T.; Ménager, C.; Gazeau, F.; Wilhelm, C. Magnetic Hyperthermia Efficiency in the Cellular Environment for Different Nanoparticle Designs. Biomaterials 2014, 35, 6400–6411. [Google Scholar] [CrossRef]
- Fantechi, E.; Roca, A.G.; Sepúlveda, B.; Torruella, P.; Estradé, S.; Peiró, F.; Coy, E.; Jurga, S.; Bastús, N.G.; Nogués, J.; et al. Seeded Growth Synthesis of Au–Fe3O4 Heterostructured Nanocrystals: Rational Design and Mechanistic Insights. Chem. Mater. 2017, 29, 4022–4035. [Google Scholar] [CrossRef]
- Lak, A.; Niculaes, D.; Anyfantis, G.C.; Bertoni, G.; Barthel, M.J.; Marras, S.; Cassani, M.; Nitti, S.; Athanassiou, A.; Giannini, C.; et al. Facile Transformation of FeO/Fe3O4 Core-Shell Nanocubes to Fe3O4 via Magnetic Stimulation. Sci. Rep. 2016, 6, 33295. [Google Scholar] [CrossRef]
- Walter, A.; Garofalo, A.; Parat, A.; Jouhannaud, J.; Pourroy, G.; Voirin, E.; Laurent, S.; Bonazza, P.; Taleb, J.; Billotey, C.; et al. Validation of a Dendron Concept to Tune Colloidal Stability, MRI Relaxivity and Bioelimination of Functional Nanoparticles. J. Mater. Chem. B 2015, 3, 1484–1494. [Google Scholar] [CrossRef]
- Niculaes, D.; Lak, A.; Anyfantis, G.C.; Marras, S.; Laslett, O.; Avugadda, S.K.; Cassani, M.; Serantes, D.; Hovorka, O.; Chantrell, R.; et al. Asymmetric Assembling of Iron Oxide Nanocubes for Improving Magnetic Hyperthermia Performance. ACS Nano 2017, 11, 12121–12133. [Google Scholar] [CrossRef]
- Persano, S.; Das, P.; Pellegrino, T. Magnetic Nanostructures as Emerging Therapeutic Tools to Boost Anti-Tumour Immunity. Cancers 2021, 13, 2735. [Google Scholar] [CrossRef] [PubMed]
- Chaneac, C.; Duchateau, A.; Abou-Hassan, A. Synthetic Formation of Iron Oxides. In Iron Oxides; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2016; pp. 225–242. ISBN 978-3-527-69139-5. [Google Scholar]
- Park, S.; Kim, C.-H.; Lee, W.-J.; Sung, S.; Yoon, M.-H. Sol-Gel Metal Oxide Dielectrics for All-Solution-Processed Electronics. Mater. Sci. Eng. R Rep. 2017, 114, 1–22. [Google Scholar] [CrossRef]
- Nkurikiyimfura, I.; Wang, Y.; Safari, B.; Nshingabigwi, E. Temperature-Dependent Magnetic Properties of Magnetite Nanoparticles Synthesized via Coprecipitation Method. J. Alloys Compd. 2020, 846, 156344. [Google Scholar] [CrossRef]
- Qi, H.; Yan, B.; Li, C. Preparation and Magnetic Properties of Magnetite Nanoparticles by Sol-Gel Method. In Proceedings of the 2010 3rd International Nanoelectronics Conference (INEC), Hong Kong, China, 3–8 January 2010; pp. 888–889. [Google Scholar]
- Karaagac, O.; Kockar, H. Effect of Synthesis Parameters on the Properties of Superparamagnetic Iron Oxide Nanoparticles. J. Supercond. Nov. Magn. 2012, 25, 2777–2781. [Google Scholar] [CrossRef]
- Marciello, M.; Connord, V.; Veintemillas-Verdaguer, S.; Vergés, M.A.; Carrey, J.; Respaud, M.; Serna, C.J.; Morales, M.P. Large Scale Production of Biocompatible Magnetite Nanocrystals with High Saturation Magnetization Values through Green Aqueous Synthesis. J. Mater. Chem. B 2013, 1, 5995–6004. [Google Scholar] [CrossRef]
- Vergés, M.A.; Costo, R.; Roca, A.G.; Marco, J.F.; Goya, G.F.; Serna, C.J.; Morales, M.P. Uniform and Water Stable Magnetite Nanoparticles with Diameters around the Monodomain–Multidomain Limit. J. Phys. D Appl. Phys. 2008, 41, 134003. [Google Scholar] [CrossRef]
- Antoniac, I.; Cernea, A.; Petcu, C.; Laptoiu, D.; Tabaras, D.; Tecu, C.; Antoniac, A.; Gradinaru, S. Synthesis and Characterization of Coated Iron Oxide Nanoparticles Produced for Drug Delivery in Viscoelastic Solution. Rev. Chim. 2020, 71, 145–154. [Google Scholar] [CrossRef]
- Laptoiu, D.; Marinescu, R.; Balan, C.; Antoniac, I. Rheologic Properties of Some Current Hyaluronic Acid Products for Viscosupplimentation—New Trends for Amelioration. Mater. Plast. 2015, 52, 500–503. [Google Scholar]
- Cavalu, S.; Kamel, E.; Laslo, V.; Fritea, L.; Costea, T.; Antoniac, I.V.; Vasile, E.; Antoniac, A.; Semenescu, A.; Mohan, A.; et al. Eco-Friendly, Facile and Rapid Way for Synthesis of Selenium Nanoparticles Production, Structural and Morphological Characterisation. Rev. Chim. 2018, 68, 2963–2966. [Google Scholar] [CrossRef]
- Antoniac, I.; Matei, E.; Munteanu, C. Advanced Eco-Technologies and Materials for Environmental and Health Application. Environ. Eng. Manag. J. 2016, 15, 953. [Google Scholar] [CrossRef]
- Bae, K.H.; Park, M.; Do, M.J.; Lee, N.; Ryu, J.H.; Kim, G.W.; Kim, C.; Park, T.G.; Hyeon, T. Chitosan Oligosaccharide-Stabilized Ferrimagnetic Iron Oxide Nanocubes for Magnetically Modulated Cancer Hyperthermia. ACS Nano 2012, 6, 5266–5273. [Google Scholar] [CrossRef] [PubMed]
- Lin, X.; Ji, G.; Liu, Y.; Huang, Q.; Yang, Z.; Du, Y. Formation Mechanism and Magnetic Properties of Hollow Fe3O4 Nanospheres Synthesized without Any Surfactant. CrystEngComm 2012, 14, 8658–8663. [Google Scholar] [CrossRef]
- Tian, Y.; Yu, B.; Li, X.; Li, K. Facile Solvothermal Synthesis of Monodisperse Fe3O4 Nanocrystals with Precise Size Control of One Nanometre as Potential MRI Contrast Agents. J. Mater. Chem. 2011, 21, 2476–2481. [Google Scholar] [CrossRef]
- Ahmadi, S.; Chia, C.-H.; Zakaria, S.; Saeedfar, K.; Asim, N. Synthesis of Fe3O4 Nanocrystals Using Hydrothermal Approach. J. Magn. Magn. Mater. 2012, 324, 4147–4150. [Google Scholar] [CrossRef]
- Das, R.; Rinaldi-Montes, N.; Alonso, J.; Amghouz, Z.; Garaio, E.; García, J.A.; Gorria, P.; Blanco, J.A.; Phan, M.H.; Srikanth, H. Boosted Hyperthermia Therapy by Combined AC Magnetic and Photothermal Exposures in Ag/Fe3O4 Nanoflowers. ACS Appl. Mater. Interfaces 2016, 8, 25162–25169. [Google Scholar] [CrossRef] [PubMed]
- Gonzales-Weimuller, M.; Zeisberger, M.; Krishnan, K.M. Size-Dependant Heating Rates of Iron Oxide Nanoparticles for Magnetic Fluid Hyperthermia. J. Magn. Magn. Mater. 2009, 321, 1947–1950. [Google Scholar] [CrossRef] [PubMed]
- Salas, G.; Casado, C.; Teran, F.J.; Miranda, R.; Serna, C.J.; Morales, M.P. Controlled Synthesis of Uniform Magnetite Nanocrystals with High-Quality Properties for Biomedical Applications. J. Mater. Chem. 2012, 22, 21065–21075. [Google Scholar] [CrossRef]
- De La Presa, P.; Luengo, Y.; Multigner, M.; Costo, R.; Morales, M.P.; Rivero, G.; Hernando, A. Study of Heating Efficiency as a Function of Concentration, Size, and Applied Field in γ-Fe2O3 Nanoparticles. J. Phys. Chem. C 2012, 116, 25602–25610. [Google Scholar] [CrossRef]
- Kallumadil, M.; Tada, M.; Nakagawa, T.; Abe, M.; Southern, P.; Pankhurst, Q.A. Suitability of Commercial Colloids for Magnetic Hyperthermia. J. Magn. Magn. Mater. 2009, 321, 1509–1513. [Google Scholar] [CrossRef]
- Bullivant, J.P.; Zhao, S.; Willenberg, B.J.; Kozissnik, B.; Batich, C.D.; Dobson, J. Materials Characterization of Feraheme/Ferumoxytol and Preliminary Evaluation of Its Potential for Magnetic Fluid Hyperthermia. Int. J. Mol. Sci. 2013, 14, 17501–17510. [Google Scholar] [CrossRef]
- Kolen’ko, Y.V.; Bañobre-López, M.; Rodríguez-Abreu, C.; Carbó-Argibay, E.; Sailsman, A.; Piñeiro-Redondo, Y.; Cerqueira, M.F.; Petrovykh, D.Y.; Kovnir, K.; Lebedev, O.I.; et al. Large-Scale Synthesis of Colloidal Fe3O4 Nanoparticles Exhibiting High Heating Efficiency in Magnetic Hyperthermia. J. Phys. Chem. C 2014, 118, 8691–8701. [Google Scholar] [CrossRef]
- Salas, G.; Camarero, J.; Cabrera, D.; Takacs, H.; Varela, M.; Ludwig, R.; Dähring, H.; Hilger, I.; Miranda, R.; Morales, M.D.P.; et al. Modulation of Magnetic Heating via Dipolar Magnetic Interactions in Monodisperse and Crystalline Iron Oxide Nanoparticles. J. Phys. Chem. C 2014, 118, 19985–19994. [Google Scholar] [CrossRef]
- Avolio, M.; Gavilán, H.; Mazario, E.; Brero, F.; Arosio, P.; Lascialfari, A.; Puerto Morales, M. Elongated Magnetic Nanoparticles with High-Aspect Ratio: A Nuclear Relaxation and Specific Absorption Rate Investigation. Phys. Chem. Chem. Phys. 2019, 21, 18741–18752. [Google Scholar] [CrossRef]
- Gavilán, H.; Simeonidis, K.; Myrovali, E.; Mazarío, E.; Chubykalo-Fesenko, O.; Chantrell, R.; Balcells, L.; Angelakeris, M.; Morales, M.P.; Serantes, D. How Size, Shape and Assembly of Magnetic Nanoparticles Give Rise to Different Hyperthermia Scenarios. Nanoscale 2021, 13, 15631–15646. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.; Lee, N.; Park, M.; Kim, B.H.; An, K.; Hyeon, T. Synthesis of Uniform Ferrimagnetic Magnetite Nanocubes. J. Am. Chem. Soc. 2009, 131, 454–455. [Google Scholar] [CrossRef]
- Chen, R.; Christiansen, M.G.; Anikeeva, P. Maximizing Hysteretic Losses in Magnetic Ferrite Nanoparticles via Model-Driven Synthesis and Materials Optimization. ACS Nano 2013, 7, 8990–9000. [Google Scholar] [CrossRef]
- Lee, K.; Lee, S.; Oh, M.C.; Ahn, B. Alkaline Metal Reagent-Assisted Synthesis of Monodisperse Iron Oxide Nanostructures. Metals 2018, 8, 107. [Google Scholar] [CrossRef]
- Nemati, Z.; Alonso, J.; Martinez, L.M.; Khurshid, H.; Garaio, E.; Garcia, J.A.; Phan, M.H.; Srikanth, H. Enhanced Magnetic Hyperthermia in Iron Oxide Nano-Octopods: Size and Anisotropy Effects. J. Phys. Chem. C 2016, 120, 8370–8379. [Google Scholar] [CrossRef]
- Caruntu, D.; Caruntu, G.; Chen, Y.; O’Connor, C.J.; Goloverda, G.; Kolesnichenko, V.L. Synthesis of Variable-Sized Nanocrystals of Fe3O4 with High Surface Reactivity. Chem. Mater. 2004, 16, 5527–5534. [Google Scholar] [CrossRef]
- Araújo-Barbosa, S.; Morales, M.A. Nanoparticles of Ni1−xCux Alloys for Enhanced Heating in Magnetic Hyperthermia. J. Alloys Compd. 2019, 787, 935–943. [Google Scholar] [CrossRef]
- Salati, A.; Ramazani, A.; Almasi Kashi, M. Tuning Hyperthermia Properties of FeNiCo Ternary Alloy Nanoparticles by Morphological and Magnetic Characteristics. J. Magn. Magn. Mater. 2020, 498, 166172. [Google Scholar] [CrossRef]
- Sathya, A.; Guardia, P.; Brescia, R.; Silvestri, N.; Pugliese, G.; Nitti, S.; Manna, L.; Pellegrino, T. CoxFe3–xO4 Nanocubes for Theranostic Applications: Effect of Cobalt Content and Particle Size. Chem. Mater. 2016, 28, 1769–1780. [Google Scholar] [CrossRef]
- Del Sol-Fernández, S.; Portilla-Tundidor, Y.; Gutiérrez, L.; Odio, O.F.; Reguera, E.; Barber, D.F.; Morales, M.P. Flower-like Mn-Doped Magnetic Nanoparticles Functionalized with Avβ3-Integrin-Ligand to Efficiently Induce Intracellular Heat after Alternating Magnetic Field Exposition, Triggering Glioma Cell Death. ACS Appl. Mater. Interfaces 2019, 11, 26648–26663. [Google Scholar] [CrossRef]
- Bordet, A.; Landis, R.F.; Lee, Y.; Tonga, G.Y.; Soulantica, K.; Rotello, V.M.; Chaudret, B. Water-Dispersible and Biocompatible Iron Carbide Nanoparticles with High Specific Absorption Rate. ACS Nano 2019, 13, 2870–2878. [Google Scholar] [CrossRef]
- Evans, G.R.; Masullo, L.N. Manganese Toxicity. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2024. [Google Scholar]
- Crossgrove, J.; Zheng, W. Manganese Toxicity upon Overexposure. NMR Biomed. 2004, 17, 544–553. [Google Scholar] [CrossRef]
- Peres, T.V.; Schettinger, M.R.C.; Chen, P.; Carvalho, F.; Avila, D.S.; Bowman, A.B.; Aschner, M. Manganese-Induced Neurotoxicity: A Review of Its Behavioral Consequences and Neuroprotective Strategies. BMC Pharmacol. Toxicol. 2016, 17, 57. [Google Scholar] [CrossRef]
- Kulshreshtha, D.; Ganguly, J.; Jog, M. Manganese and Movement Disorders: A Review. JMD 2021, 14, 93–102. [Google Scholar] [CrossRef]
- Tarnacka, B.; Jopowicz, A.; Maślińska, M. Copper, Iron, and Manganese Toxicity in Neuropsychiatric Conditions. Int. J. Mol. Sci. 2021, 22, 7820. [Google Scholar] [CrossRef] [PubMed]
- Tillman, L. Manganese Toxicity and Effects on Polarized Hepatocytes. Biosci. Horiz. Int. J. Stud. Res. 2018, 11, hzy012. [Google Scholar] [CrossRef]
- Andrade, R.G.D.; Ferreira, D.; Veloso, S.R.S.; Santos-Pereira, C.; Castanheira, E.M.S.; Côrte-Real, M.; Rodrigues, L.R. Synthesis and Cytotoxicity Assessment of Citrate-Coated Calcium and Manganese Ferrite Nanoparticles for Magnetic Hyperthermia. Pharmaceutics 2022, 14, 2694. [Google Scholar] [CrossRef]
- Silveira-Alves Jr, E.; Bezerra, F.C.; Guerra, R.A.; Zufelato, N.; Martins, C.S.; Desordi, J.C.; Caires, A.R.L.; Bakuzis, A.F.; Gonçalves, P.J. Coupling of Cationic Porphyrins on Manganese Ferrite Nanoparticles: A Potential Multifunctional Nanostructure for Theranostics Applications. J. Photochem. Photobiol. A Chem. 2023, 438, 114551. [Google Scholar] [CrossRef]
- Anithkumar, M.; Rajan S, A.; Khan, A.; Kaczmarek, B.; Michalska-Sionkowska, M.; Łukowicz, K.; Osyczka, A.M.; Gupta, J.; Sahu, N.K. Glucose Oxidase-Loaded MnFe2O4 Nanoparticles for Hyperthermia and Cancer Starvation Therapy. ACS Appl. Nano Mater. 2023, 6, 2605–2614. [Google Scholar] [CrossRef]
- Casula, M.F.; Conca, E.; Bakaimi, I.; Sathya, A.; Materia, M.E.; Casu, A.; Falqui, A.; Sogne, E.; Pellegrino, T.; Kanaras, A.G. Manganese Doped-Iron Oxide Nanoparticle Clusters and Their Potential as Agents for Magnetic Resonance Imaging and Hyperthermia. Phys. Chem. Chem. Phys. 2016, 18, 16848–16855. [Google Scholar] [CrossRef] [PubMed]
- Del Sol Fernández, S.; Odio, O.F.; Crespo, P.M.; Pérez, E.O.; Salas, G.; Gutiérrez, L.; Morales, M.D.P.; Reguera, E. Tunable Control of the Structural Features and Related Physical Properties of MnxFe3–xO4 Nanoparticles: Implication on Their Heating Performance by Magnetic Hyperthermia. J. Phys. Chem. C 2022, 126, 10110–10128. [Google Scholar] [CrossRef]
- Poon, K.; Gupta, A.; Price, W.S.; Zreiqat, H.; Singh, G. Manganese Oxide Nanoplatforms for Disease Diagnosis and Treatment: Progress, Challenges and Opportunities. Coord. Chem. Rev. 2024, 500, 215548. [Google Scholar] [CrossRef]
- Patil, S.A.; Gavandi, T.C.; Londhe, M.V.; Salunkhe, A.B.; Jadhav, A.K.; Khot, V.M. Manganese Iron Oxide Nanoparticles for Magnetic Hyperthermia, Antibacterial and ROS Generation Performance. J. Clust. Sci. 2024, 35, 1405–1415. [Google Scholar] [CrossRef]
- Jang, J.; Nah, H.; Lee, J.-H.; Moon, S.H.; Kim, M.G.; Cheon, J. Critical Enhancements of MRI Contrast and Hyperthermic Effects by Dopant-Controlled Magnetic Nanoparticles. Angew. Chem. Int. Ed. Engl. 2009, 48, 1234–1238. [Google Scholar] [CrossRef] [PubMed]
- Yoo, D.; Jeong, H.; Noh, S.-H.; Lee, J.-H.; Cheon, J. Magnetically Triggered Dual Functional Nanoparticles for Resistance-Free Apoptotic Hyperthermia. Angew. Chem. Int. Ed. Engl. 2013, 52, 13047–13051. [Google Scholar] [CrossRef]
- Balakrishnan, P.B.; Silvestri, N.; Fernandez-Cabada, T.; Marinaro, F.; Fernandes, S.; Fiorito, S.; Miscuglio, M.; Serantes, D.; Ruta, S.; Livesey, K.; et al. Exploiting Unique Alignment of Cobalt Ferrite Nanoparticles, Mild Hyperthermia, and Controlled Intrinsic Cobalt Toxicity for Cancer Therapy. Adv. Mater. 2020, 32, 2003712. [Google Scholar] [CrossRef]
- Rogosnitzky, M.; Branch, S. Gadolinium-Based Contrast Agent Toxicity: A Review of Known and Proposed Mechanisms. Biometals 2016, 29, 365–376. [Google Scholar] [CrossRef]
- Blasco-Perrin, H.; Glaser, B.; Pienkowski, M.; Peron, J.M.; Payen, J.L. Gadolinium Induced Recurrent Acute Pancreatitis. Pancreatology 2013, 13, 88–89. [Google Scholar] [CrossRef] [PubMed]
- Terzi, C.; Sökmen, S. Acute Pancreatitis Induced by Magnetic-Resonance-Imaging Contrast Agent. Lancet 1999, 354, 1789–1790. [Google Scholar] [CrossRef] [PubMed]
- Unal, O.; Arslan, H. Cardiac Arrest Caused by IV Gadopentetate Dimeglumine. Am. J. Roentgenol. 1999, 172, 1141. [Google Scholar] [CrossRef]
- Jiang, P.-S.; Tsai, H.-Y.; Drake, P.; Wang, F.-N.; Chiang, C.-S. Gadolinium-Doped Iron Oxide Nanoparticles Induced Magnetic Field Hyperthermia Combined with Radiotherapy Increases Tumour Response by Vascular Disruption and Improved Oxygenation. Int. J. Hyperth. 2017, 33, 770–778. [Google Scholar] [CrossRef]
- Avugadda, S.K.; Soni, N.; Rodrigues, E.M.; Persano, S.; Pellegrino, T. Protease-Mediated T1 Contrast Enhancement of Multilayered Magneto-Gadolinium Nanostructures for Imaging and Magnetic Hyperthermia. ACS Appl. Mater. Interfaces 2024, 16, 6743–6755. [Google Scholar] [CrossRef] [PubMed]
- Nauman, M.; Alnasir, M.H.; Hamayun, M.A.; Wang, Y.; Shatruk, M.; Manzoor, S. Size-Dependent Magnetic and Magnetothermal Properties of Gadolinium Silicide Nanoparticles. RSC Adv. 2020, 10, 28383–28389. [Google Scholar] [CrossRef]
- Mameli, V.; Musinu, A.; Ardu, A.; Ennas, G.; Peddis, D.; Niznansky, D.; Sangregorio, C.; Innocenti, C.; Thanh, N.T.K.; Cannas, C. Studying the Effect of Zn-Substitution on the Magnetic and Hyperthermic Properties of Cobalt Ferrite Nanoparticles. Nanoscale 2016, 8, 10124–10137. [Google Scholar] [CrossRef]
- Noh, S.-H.; Na, W.; Jang, J.-T.; Lee, J.-H.; Lee, E.J.; Moon, S.H.; Lim, Y.; Shin, J.-S.; Cheon, J. Nanoscale Magnetism Control via Surface and Exchange Anisotropy for Optimized Ferrimagnetic Hysteresis. Nano Lett. 2012, 12, 3716–3721. [Google Scholar] [CrossRef] [PubMed]
- Guardia, P.; Nitti, S.; Materia, M.E.; Pugliese, G.; Yaacoub, N.; Greneche, J.-M.; Lefevre, C.; Manna, L.; Pellegrino, T. Gold–Iron Oxide Dimers for Magnetic Hyperthermia: The Key Role of Chloride Ions in the Synthesis to Boost the Heating Efficiency. J. Mater. Chem. B 2017, 5, 4587–4594. [Google Scholar] [CrossRef]
- Espinosa, A.; Bugnet, M.; Radtke, G.; Neveu, S.; Botton, G.A.; Wilhelm, C.; Abou-Hassan, A. Can Magneto-Plasmonic Nanohybrids Efficiently Combine Photothermia with Magnetic Hyperthermia? Nanoscale 2015, 7, 18872–18877. [Google Scholar] [CrossRef]
- Hanini, A.; Lartigue, L.; Gavard, J.; Schmitt, A.; Kacem, K.; Wilhelm, C.; Gazeau, F.; Chau, F.; Ammar, S. Thermosensitivity Profile of Malignant Glioma U87-MG Cells and Human Endothelial Cells Following γ-Fe2O3 NPs Internalization and Magnetic Field Application. RSC Adv. 2016, 6, 15415–15423. [Google Scholar] [CrossRef]
- Hanini, A.; Lartigue, L.; Gavard, J.; Kacem, K.; Wilhelm, C.; Gazeau, F.; Chau, F.; Ammar, S. Zinc Substituted Ferrite Nanoparticles with Zn0.9Fe2.1O4 Formula Used as Heating Agents for in Vitro Hyperthermia Assay on Glioma Cells. J. Magn. Magn. Mater. 2016, 416, 315–320. [Google Scholar] [CrossRef]
- Sanz, B.; Calatayud, M.P.; Torres, T.E.; Fanarraga, M.L.; Ibarra, M.R.; Goya, G.F. Magnetic Hyperthermia Enhances Cell Toxicity with Respect to Exogenous Heating. Biomaterials 2017, 114, 62–70. [Google Scholar] [CrossRef] [PubMed]
- Ito, A.; Shinkai, M.; Honda, H.; Yoshikawa, K.; Saga, S.; Wakabayashi, T.; Yoshida, J.; Kobayashi, T. Heat Shock Protein 70 Expression Induces Antitumor Immunity during Intracellular Hyperthermia Using Magnetite Nanoparticles. Cancer Immunol. Immunother. 2003, 52, 80–88. [Google Scholar] [CrossRef] [PubMed]
- Shinkai, M.; Yanase, M.; Honda, H.; Wakabayashi, T.; Yoshida, J.; Kobayashi, T. Intracellular Hyperthermia for Cancer Using Magnetite Cationic Liposomes: In Vitro Study. Jpn. J. Cancer Res. 1996, 87, 1179–1183. [Google Scholar] [CrossRef]
- Meenach, S.A.; Hilt, J.Z.; Anderson, K.W. Poly(Ethylene Glycol)-Based Magnetic Hydrogel Nanocomposites for Hyperthermia Cancer Therapy. Acta Biomater. 2010, 6, 1039–1046. [Google Scholar] [CrossRef]
- Ramirez-Nuñez, A.L.; Jimenez-Garcia, L.F.; Goya, G.F.; Sanz, B.; Santoyo-Salazar, J. In Vitro Magnetic Hyperthermia Using Polyphenol-Coated Fe3O4@γFe2O3 Nanoparticles from Cinnamomun verum and Vanilla planifolia: The Concert of Green Synthesis and Therapeutic Possibilities. Nanotechnology 2018, 29, 074001. [Google Scholar] [CrossRef]
- Hamdous, Y.; Chebbi, I.; Mandawala, C.; Le Fèvre, R.; Guyot, F.; Seksek, O.; Alphandéry, E. Biocompatible Coated Magnetosome Minerals with Various Organization and Cellular Interaction Properties Induce Cytotoxicity towards RG-2 and GL-261 Glioma Cells in the Presence of an Alternating Magnetic Field. J. Nanobiotechnol. 2017, 15, 74. [Google Scholar] [CrossRef]
- Gupta, R.; Sharma, D. Biofunctionalization of Magnetite Nanoparticles with Stevioside: Effect on the Size and Thermal Behaviour for Use in Hyperthermia Applications. Int. J. Hyperth. 2019, 36, 301–311. [Google Scholar] [CrossRef]
- Mandawala, C.; Chebbi, I.; Durand-Dubief, M.; Le Fèvre, R.; Hamdous, Y.; Guyot, F.; Alphandéry, E. Biocompatible and Stable Magnetosome Minerals Coated with Poly-l-Lysine, Citric Acid, Oleic Acid, and Carboxy-Methyl-Dextran for Application in the Magnetic Hyperthermia Treatment of Tumors. J. Mater. Chem. B 2017, 5, 7644–7660. [Google Scholar] [CrossRef]
- Rego, G.; Nucci, M.; Mamani, J.; Oliveira, F.; Marti, L.; Filgueiras, I.; Ferreira, J.; Real, C.; Faria, D.; Espinha, P.; et al. Therapeutic Efficiency of Multiple Applications of Magnetic Hyperthermia Technique in Glioblastoma Using Aminosilane Coated Iron Oxide Nanoparticles: In Vitro and In Vivo Study. Int. J. Mol. Sci. 2020, 21, 958. [Google Scholar] [CrossRef] [PubMed]
- Gupta, R.; Sharma, D. Manganese-Doped Magnetic Nanoclusters for Hyperthermia and Photothermal Glioblastoma Therapy. ACS Appl. Nano Mater. 2020, 3, 2026–2037. [Google Scholar] [CrossRef]
- Yanase, M.; Shinkai, M.; Honda, H.; Wakabayashi, T.; Yoshida, J.; Kobayashi, T. Intracellular Hyperthermia for Cancer Using Magnetite Cationic Liposomes: An in Vivo Study. Jpn. J. Cancer Res. 1998, 89, 463–470. [Google Scholar] [CrossRef] [PubMed]
- Yanase, M.; Shinkai, M.; Honda, H.; Wakabayashi, T.; Yoshida, J.; Kobayashi, T. Antitumor Immunity Induction by Intracellular Hyperthermia Using Magnetite Cationic Liposomes. Jpn. J. Cancer Res. 1998, 89, 775–782. [Google Scholar] [CrossRef]
- Jordan, A.; Scholz, R.; Maier-Hauff, K.; Van Landeghem, F.K.H.; Waldoefner, N.; Teichgraeber, U.; Pinkernelle, J.; Bruhn, H.; Neumann, F.; Thiesen, B.; et al. The Effect of Thermotherapy Using Magnetic Nanoparticles on Rat Malignant Glioma. J. Neurooncol. 2006, 78, 7–14. [Google Scholar] [CrossRef]
- Le, B.; Shinkai, M.; Kitade, T.; Honda, H.; Yoshida, J.; Wakabayashi, T.; Kobayashi, T. Preparation of Tumor-Specific Magnetoliposomes and Their Application for Hyperthermia. J. Chem. Eng. Jpn. JCEJ 2001, 34, 66–72. [Google Scholar] [CrossRef]
- Ito, A.; Shinkai, M.; Honda, H.; Kobayashi, T. Heat-Inducible TNF-α Gene Therapy Combined with Hyperthermia Using Magnetic Nanoparticles as a Novel Tumor-Targeted Therapy. Gene Ther. 2001, 8, 649–654. [Google Scholar] [CrossRef]
- Ohno, T.; Wakabayashi, T.; Takemura, A.; Yoshida, J.; Ito, A.; Shinkai, M.; Honda, H.; Kobayashi, T. Effective Solitary Hyperthermia Treatment of Malignant Glioma Using Stick Type CMC-Magnetite. In Vivo Study. J. Neuro-Oncol. 2002, 56, 233–239. [Google Scholar] [CrossRef]
- Alphandéry, E.; Idbaih, A.; Adam, C.; Delattre, J.-Y.; Schmitt, C.; Guyot, F.; Chebbi, I. Chains of Magnetosomes with Controlled Endotoxin Release and Partial Tumor Occupation Induce Full Destruction of Intracranial U87-Luc Glioma in Mice under the Application of an Alternating Magnetic Field. J. Control. Release 2017, 262, 259–272. [Google Scholar] [CrossRef]
- Alphandéry, E.; Lijeour, L.; Lalatonne, Y.; Motte, L. Different Signatures between Chemically and Biologically Synthesized Nanoparticles in a Magnetic Sensor: A New Technology for Multiparametric Detection. Sens. Actuators B Chem. 2010, 147, 786–790. [Google Scholar] [CrossRef]
- Alphandéry, E.; Idbaih, A.; Adam, C.; Delattre, J.-Y.; Schmitt, C.; Guyot, F.; Chebbi, I. Development of Non-Pyrogenic Magnetosome Minerals Coated with Poly-l-Lysine Leading to Full Disappearance of Intracranial U87-Luc Glioblastoma in 100% of Treated Mice Using Magnetic Hyperthermia. Biomaterials 2017, 141, 210–222. [Google Scholar] [CrossRef] [PubMed]
- Ohtake, M.; Umemura, M.; Sato, I.; Akimoto, T.; Oda, K.; Nagasako, A.; Kim, J.-H.; Fujita, T.; Yokoyama, U.; Nakayama, T.; et al. Hyperthermia and Chemotherapy Using Fe(Salen) Nanoparticles Might Impact Glioblastoma Treatment. Sci. Rep. 2017, 7, 42783. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Montes, J.-R.; Porceddu, P.-F.; Drucker-Colín, R.; Moratalla, R.; Martinez-Murillo, R. P022 Evidence That Functionalized Ferromagnetic Microparticles with CD133 Antigen Decreases Glioblastoma Multiforme Growth in Vivo and in Vitro by Magnetic Field Induced Hyperthermia. Clin. Neurophysiol. 2017, 128, e21. [Google Scholar] [CrossRef]
- Xu, H.; Zong, H.; Ma, C.; Ming, X.; Shang, M.; Li, K.; He, X.; Cao, L. Evaluation of Nano-Magnetic Fluid on Malignant Glioma Cells. Oncol. Lett. 2017, 13, 677–680. [Google Scholar] [CrossRef] [PubMed]
- Rabias, I.; Tsitrouli, D.; Karakosta, E.; Kehagias, T.; Diamantopoulos, G.; Fardis, M.; Stamopoulos, D.; Maris, T.G.; Falaras, P.; Zouridakis, N.; et al. Rapid Magnetic Heating Treatment by Highly Charged Maghemite Nanoparticles on Wistar Rats Exocranial Glioma Tumors at Microliter Volume. Biomicrofluidics 2010, 4, 024111. [Google Scholar] [CrossRef] [PubMed]
- Hanahan, D.; Weinberg, R.A. The Hallmarks of Cancer. Cell 2000, 100, 57–70. [Google Scholar] [CrossRef]
- Hanahan, D.; Weinberg, R.A. Hallmarks of Cancer: The Next Generation. Cell 2011, 144, 646–674. [Google Scholar] [CrossRef]
- Horsman, M.R.; Overgaard, J. Hyperthermia: A Potent Enhancer of Radiotherapy. Clin. Oncol. (R. Coll. Radiol.) 2007, 19, 418–426. [Google Scholar] [CrossRef]
- Overgaard, J. The Heat Is (Still) on--the Past and Future of Hyperthermic Radiation Oncology. Radiother. Oncol. 2013, 109, 185–187. [Google Scholar] [CrossRef]
- Nielsen, O.S. Effect of Fractionated Hyperthermia on Hypoxic Cells in Vitro. Int. J. Radiat. Biol. Relat. Stud. Phys. Chem. Med. 1981, 39, 73–82. [Google Scholar] [CrossRef]
- Ruiz-Garcia, H.; Ramirez-Loera, C.; Malouff, T.D.; Seneviratne, D.S.; Palmer, J.D.; Trifiletti, D.M. Novel Strategies for Nanoparticle-Based Radiosensitization in Glioblastoma. Int. J. Mol. Sci. 2021, 22, 9673. [Google Scholar] [CrossRef] [PubMed]
- Vaupel, P.W.; Kelleher, D.K. Pathophysiological and Vascular Characteristics of Tumours and Their Importance for Hyperthermia: Heterogeneity Is the Key Issue. Int. J. Hyperth. 2010, 26, 211–223. [Google Scholar] [CrossRef] [PubMed]
- Song, C.W. Effect of Local Hyperthermia on Blood Flow and Microenvironment: A Review. Cancer Res. 1984, 44, 4721s–4730s. [Google Scholar] [PubMed]
- Tannock, I.F.; Rotin, D. Acid pH in Tumors and Its Potential for Therapeutic Exploitation. Cancer Res. 1989, 49, 4373–4384. [Google Scholar]
- Datta, N.R.; Puric, E.; Klingbiel, D.; Gomez, S.; Bodis, S. Hyperthermia and Radiation Therapy in Locoregional Recurrent Breast Cancers: A Systematic Review and Meta-Analysis. Int. J. Radiat. Oncol. Biol. Phys. 2016, 94, 1073–1087. [Google Scholar] [CrossRef]
- Franckena, M. Review of Radiotherapy and Hyperthermia in Primary Cervical Cancer. Int. J. Hyperth. 2012, 28, 543–548. [Google Scholar] [CrossRef]
- Gillette, E.L.; Ensley, B.A. Effect of Heating Order on Radiation Response of Mouse Tumor and Skin. Int. J. Radiat. Oncol. Biol. Phys. 1979, 5, 209–213. [Google Scholar] [CrossRef]
- Overgaard, J. Simultaneous and Sequential Hyperthermia and Radiation Treatment of an Experimental Tumor and Its Surrounding Normal Tissue in Vivo. Int. J. Radiat. Oncol. Biol. Phys. 1980, 6, 1507–1517. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, O.S.; Overgaard, J. Importance of Preheating Temperature and Time for the Induction of Thermotolerance in a Solid Tumour in Vivo. Br. J. Cancer 1982, 46, 894–903. [Google Scholar] [CrossRef]
- Chang, D.; Lim, M.; Goos, J.A.C.M.; Qiao, R.; Ng, Y.Y.; Mansfeld, F.M.; Jackson, M.; Davis, T.P.; Kavallaris, M. Biologically Targeted Magnetic Hyperthermia: Potential and Limitations. Front. Pharmacol. 2018, 9, 831. [Google Scholar] [CrossRef]
- Maier-Hauff, K.; Ulrich, F.; Nestler, D.; Niehoff, H.; Wust, P.; Thiesen, B.; Orawa, H.; Budach, V.; Jordan, A. Efficacy and Safety of Intratumoral Thermotherapy Using Magnetic Iron-Oxide Nanoparticles Combined with External Beam Radiotherapy on Patients with Recurrent Glioblastoma Multiforme. J. Neurooncol. 2011, 103, 317–324. [Google Scholar] [CrossRef] [PubMed]
- Kida, Y.; Ishiguri, H.; Ichimi, K.; Kobayashi, T. Hyperthermia of metastatic brain tumor with implant heating system: A preliminary clinical results. No Shinkei Geka 1990, 18, 521–526. [Google Scholar]
- Jiang, H.; Wang, C.; Guo, Z.; Wang, Z.; Liu, L. Silver Nanocrystals Mediated Combination Therapy of Radiation with Magnetic Hyperthermia on Glioma Cells. J. Nanosci. Nanotechnol. 2012, 12, 8276–8281. [Google Scholar] [CrossRef] [PubMed]
- Vilas-Boas, V.; Carvalho, F.; Espiña, B. Magnetic Hyperthermia for Cancer Treatment: Main Parameters Affecting the Outcome of In Vitro and In Vivo Studies. Molecules 2020, 25, 2874. [Google Scholar] [CrossRef]
- Eynali, S.; Khoei, S.; Khoee, S.; Esmaelbeygi, E. Evaluation of the Cytotoxic Effects of Hyperthermia and 5-Fluorouracil-Loaded Magnetic Nanoparticles on Human Colon Cancer Cell Line HT-29. Int. J. Hyperth. 2017, 33, 327–335. [Google Scholar] [CrossRef] [PubMed]
- Moros, M.; Idiago-López, J.; Asín, L.; Moreno-Antolín, E.; Beola, L.; Grazú, V.; Fratila, R.M.; Gutiérrez, L.; de la Fuente, J.M. Triggering Antitumoural Drug Release and Gene Expression by Magnetic Hyperthermia. Adv. Drug Deliv. Rev. 2019, 138, 326–343. [Google Scholar] [CrossRef]
- Datta, N.R.; Krishnan, S.; Speiser, D.E.; Neufeld, E.; Kuster, N.; Bodis, S.; Hofmann, H. Magnetic Nanoparticle-Induced Hyperthermia with Appropriate Payloads: Paul Ehrlich’s “Magic (Nano)Bullet” for Cancer Theranostics? Cancer Treat. Rev. 2016, 50, 217–227. [Google Scholar] [CrossRef] [PubMed]
- Kumari, R.; Sunil, D.; Ningthoujam, R.S. Hypoxia-Responsive Nanoparticle Based Drug Delivery Systems in Cancer Therapy: An up-to-Date Review. J. Control. Release 2020, 319, 135–156. [Google Scholar] [CrossRef]
- Sharma, A.; Arambula, J.F.; Koo, S.; Kumar, R.; Singh, H.; Sessler, J.L.; Kim, J.S. Hypoxia-Targeted Drug Delivery. Chem. Soc. Rev. 2019, 48, 771–813. [Google Scholar] [CrossRef]
- Guo, X.; Cheng, Y.; Zhao, X.; Luo, Y.; Chen, J.; Yuan, W.-E. Advances in Redox-Responsive Drug Delivery Systems of Tumor Microenvironment. J. Nanobiotechnol. 2018, 16, 74. [Google Scholar] [CrossRef]
- Mai, B.T.; Balakrishnan, P.B.; Barthel, M.J.; Piccardi, F.; Niculaes, D.; Marinaro, F.; Fernandes, S.; Curcio, A.; Kakwere, H.; Autret, G.; et al. Thermoresponsive Iron Oxide Nanocubes for an Effective Clinical Translation of Magnetic Hyperthermia and Heat-Mediated Chemotherapy. ACS Appl. Mater. Interfaces 2019, 11, 5727–5739. [Google Scholar] [CrossRef] [PubMed]
- Li, T.J.; Huang, C.C.; Ruan, P.W.; Chuang, K.Y.; Huang, K.J.; Shieh, D.B.; Yeh, C.S. In Vivo Anti-Cancer Efficacy of Magnetite Nanocrystal—Based System Using Locoregional Hyperthermia Combined with 5-Fluorouracil Chemotherapy. Biomaterials 2013, 34, 7873–7883. [Google Scholar] [CrossRef] [PubMed]
- Bulbake, U.; Doppalapudi, S.; Kommineni, N.; Khan, W. Liposomal Formulations in Clinical Use: An Updated Review. Pharmaceutics 2017, 9, 12. [Google Scholar] [CrossRef] [PubMed]
- Dou, Y.; Hynynen, K.; Allen, C. To Heat or Not to Heat: Challenges with Clinical Translation of Thermosensitive Liposomes. J. Control. Release 2017, 249, 63–73. [Google Scholar] [CrossRef] [PubMed]
- Nardecchia, S.; Sánchez-Moreno, P.; de Vicente, J.; Marchal, J.A.; Boulaiz, H. Clinical Trials of Thermosensitive Nanomaterials: An Overview. Nanomaterials 2019, 9, 191. [Google Scholar] [CrossRef]
- Discher, D.E.; Ahmed, F. Polymersomes. Annu. Rev. Biomed. Eng. 2006, 8, 323–341. [Google Scholar] [CrossRef]
- Guo, H.; Chen, W.; Sun, X.; Liu, Y.-N.; Li, J.; Wang, J. Theranostic Magnetoliposomes Coated by Carboxymethyl Dextran with Controlled Release by Low-Frequency Alternating Magnetic Field. Carbohydr. Polym. 2015, 118, 209–217. [Google Scholar] [CrossRef] [PubMed]
- Babincová, N.; Sourivong, P.; Babinec, P.; Bergemann, C.; Babincová, M.; Durdík, Š. Applications of Magnetoliposomes with Encapsulated Doxorubicin for Integrated Chemotherapy and Hyperthermia of Rat C6 Glioma. Z. Naturforsch. C J. Biosci. 2018, 73, 265–271. [Google Scholar] [CrossRef]
- Mai, B.T.; Conteh, J.S.; Gavilán, H.; Di Girolamo, A.; Pellegrino, T. Clickable Polymer Ligand-Functionalized Iron Oxide Nanocubes: A Promising Nanoplatform for ‘Local Hot Spots’ Magnetically Triggered Drug Release. ACS Appl. Mater. Interfaces 2022, 14, 48476–48488. [Google Scholar] [CrossRef]
- Hayashi, K.; Nakamura, M.; Miki, H.; Ozaki, S.; Abe, M.; Matsumoto, T.; Sakamoto, W.; Yogo, T.; Ishimura, K. Magnetically Responsive Smart Nanoparticles for Cancer Treatment with a Combination of Magnetic Hyperthermia and Remote-Control Drug Release. Theranostics 2014, 4, 834–844. [Google Scholar] [CrossRef]
- Farzin, A.; Etesami, S.A.; Quint, J.; Memic, A.; Tamayol, A. Magnetic Nanoparticles in Cancer Therapy and Diagnosis. Adv. Healthc. Mater. 2020, 9, e1901058. [Google Scholar] [CrossRef]
- Veloso, S.R.S.; Andrade, R.G.D.; Castanheira, E.M.S. Review on the Advancements of Magnetic Gels: Towards Multifunctional Magnetic Liposome-Hydrogel Composites for Biomedical Applications. Adv. Colloid Interface Sci. 2021, 288, 102351. [Google Scholar] [CrossRef] [PubMed]
- Din, F.U.; Jin, S.G.; Choi, H.-G. Particle and Gel Characterization of Irinotecan-Loaded Double-Reverse Thermosensitive Hydrogel. Polymers 2021, 13, 551. [Google Scholar] [CrossRef]
- Verma, J.; Lal, S.; Van Noorden, C.J. Nanoparticles for Hyperthermic Therapy: Synthesis Strategies and Applications in Glioblastoma. Int. J. Nanomed. 2014, 9, 2863–2877. [Google Scholar] [CrossRef]
- Zamora-Mora, V.; Fernández-Gutiérrez, M.; González-Gómez, Á.; Sanz, B.; Román, J.S.; Goya, G.F.; Hernández, R.; Mijangos, C. Chitosan Nanoparticles for Combined Drug Delivery and Magnetic Hyperthermia: From Preparation to in Vitro Studies. Carbohydr. Polym. 2017, 157, 361–370. [Google Scholar] [CrossRef]
- Shah, B.P.; Pasquale, N.; De, G.; Tan, T.; Ma, J.; Lee, K.-B. Core-Shell Nanoparticle-Based Peptide Therapeutics and Combined Hyperthermia for Enhanced Cancer Cell Apoptosis. ACS Nano 2014, 8, 9379–9387. [Google Scholar] [CrossRef]
- Noh, S.; Moon, S.H.; Shin, T.-H.; Lim, Y.; Cheon, J. Recent Advances of Magneto-Thermal Capabilities of Nanoparticles: From Design Principles to Biomedical Applications. Nano Today 2017, 13, 61–76. [Google Scholar] [CrossRef]
- Espinosa, A.; Kolosnjaj-Tabi, J.; Abou-Hassan, A.; Plan Sangnier, A.; Curcio, A.; Silva, A.K.A.; Di Corato, R.; Neveu, S.; Pellegrino, T.; Liz-Marzán, L.M.; et al. Magnetic (Hyper)Thermia or Photothermia? Progressive Comparison of Iron Oxide and Gold Nanoparticles Heating in Water, in Cells, and In Vivo. Adv. Funct. Mater. 2018, 28, 1803660. [Google Scholar] [CrossRef]
- Chen, Y.; Li, L.; Chen, W.; Chen, H.; Yin, J. Near-Infrared Small Molecular Fluorescent Dyes for Photothermal Therapy. Chin. Chem. Lett. 2019, 30, 1353–1360. [Google Scholar] [CrossRef]
- Bohren, C.F.; Huffman, D.R. Absorption and Scattering of Light by Small Particles; John Wiley & Sons: Hoboken, NJ, USA, 2008; ISBN 978-3-527-61816-3. [Google Scholar]
- Kreibig, U.; Vollmer, M. Optical Properties of Metal Clusters; Springer Series in Materials Science; Springer: Berlin/Heidelberg, Germany, 1995; Volume 25, ISBN 978-3-642-08191-0. [Google Scholar]
- Pissuwan, D.; Valenzuela, S.M.; Cortie, M.B. Therapeutic Possibilities of Plasmonically Heated Gold Nanoparticles. Trends Biotechnol. 2006, 24, 62–67. [Google Scholar] [CrossRef]
- Bao, Z.; Liu, X.; Liu, Y.; Liu, H.; Zhao, K. Near-Infrared Light-Responsive Inorganic Nanomaterials for Photothermal Therapy. Asian J. Pharm. Sci. 2016, 11, 349–364. [Google Scholar] [CrossRef]
- Estelrich, J.; Busquets, M.A. Iron Oxide Nanoparticles in Photothermal Therapy. Molecules 2018, 23, 1567. [Google Scholar] [CrossRef] [PubMed]
- Teraphongphom, N.; Kong, C.S.; Warram, J.M.; Rosenthal, E.L. Specimen Mapping in Head and Neck Cancer Using Fluorescence Imaging. Laryngoscope Investig. Otolaryngol. 2017, 2, 447–452. [Google Scholar] [CrossRef]
- Gupta, R.; Sharma, D. Evolution of Magnetic Hyperthermia for Glioblastoma Multiforme Therapy. ACS Chem. Neurosci. 2019, 10, 1157–1172. [Google Scholar] [CrossRef] [PubMed]
- Lu, Q.; Dai, X.; Zhang, P.; Tan, X.; Zhong, Y.; Yao, C.; Song, M.; Song, G.; Zhang, Z.; Peng, G.; et al. Fe3O4@Au Composite Magnetic Nanoparticles Modified with Cetuximab for Targeted Magneto-Photothermal Therapy of Glioma Cells. Int. J. Nanomed. 2018, 13, 2491–2505. [Google Scholar] [CrossRef]
- Thaghalli Shivanna, A.; Lu, Y.-J.; Chen, J.-P. Optimization of the Preparation of Magnetic Liposomes for the Combined Use of Magnetic Hyperthermia and Photothermia in Dual Magneto-Photothermal Cancer Therapy. Int. J. Mol. Sci. 2020, 21, 5187. [Google Scholar] [CrossRef]
- Allison, R.R.; Downie, G.H.; Cuenca, R.; Hu, X.-H.; Childs, C.J.; Sibata, C.H. Photosensitizers in Clinical PDT. Photodiagn. Photodyn. Ther. 2004, 1, 27–42. [Google Scholar] [CrossRef]
- Castano, A.P.; Demidova, T.N.; Hamblin, M.R. Mechanisms in Photodynamic Therapy: Part One-Photosensitizers, Photochemistry and Cellular Localization. Photodiagn. Photodyn. Ther. 2004, 1, 279–293. [Google Scholar] [CrossRef]
- Detty, M.R.; Gibson, S.L.; Wagner, S.J. Current Clinical and Preclinical Photosensitizers for Use in Photodynamic Therapy. J. Med. Chem. 2004, 47, 3897–3915. [Google Scholar] [CrossRef]
- Li, L.; Luo, R.; Liao, W.; Zhang, M.; Zhou, J.; Liu, X.; Miao, J. Clinical study of Photofrin photodynamic therapy for advanced cancers. Di Yi Jun Yi Da Xue Xue Bao 2003, 23, 1341–1343. [Google Scholar]
- Kim, T.E.; Chang, J.-E. Recent Studies in Photodynamic Therapy for Cancer Treatment: From Basic Research to Clinical Trials. Pharmaceutics 2023, 15, 2257. [Google Scholar] [CrossRef] [PubMed]
- De Paula, L.B.; Primo, F.L.; Pinto, M.R.; Morais, P.C.; Tedesco, A.C. Evaluation of a Chloroaluminium Phthalocyanine-Loaded Magnetic Nanoemulsion as a Drug Delivery Device to Treat Glioblastoma Using Hyperthermia and Photodynamic Therapy. RSC Adv. 2017, 7, 9115–9122. [Google Scholar] [CrossRef]
- De Paula, L.B.; Primo, F.L.; Jardim, D.R.; Morais, P.C.; Tedesco, A.C. Development, Characterization, and in Vitro Trials of Chloroaluminum Phthalocyanine-Magnetic Nanoemulsion to Hyperthermia and Photodynamic Therapies on Glioblastoma as a Biological Model. J. Appl. Phys. 2012, 111, 07B307. [Google Scholar] [CrossRef]
- Di Corato, R.; Béalle, G.; Kolosnjaj-Tabi, J.; Espinosa, A.; Clément, O.; Silva, A.K.A.; Ménager, C.; Wilhelm, C. Combining Magnetic Hyperthermia and Photodynamic Therapy for Tumor Ablation with Photoresponsive Magnetic Liposomes. ACS Nano 2015, 9, 2904–2916. [Google Scholar] [CrossRef] [PubMed]
- Curcio, A.; Silva, A.K.A.; Cabana, S.; Espinosa, A.; Baptiste, B.; Menguy, N.; Wilhelm, C.; Abou-Hassan, A. Iron Oxide Nanoflowers @ CuS Hybrids for Cancer Tri-Therapy: Interplay of Photothermal Therapy, Magnetic Hyperthermia and Photodynamic Therapy. Theranostics 2019, 9, 1288–1302. [Google Scholar] [CrossRef]
- Ribas, A.; Wolchok, J.D. Cancer Immunotherapy Using Checkpoint Blockade. Science 2018, 359, 1350–1355. [Google Scholar] [CrossRef]
- Ponzoni, M.; Pastorino, F.; Di Paolo, D.; Perri, P.; Brignole, C. Targeting Macrophages as a Potential Therapeutic Intervention: Impact on Inflammatory Diseases and Cancer. Int. J. Mol. Sci. 2018, 19, 1953. [Google Scholar] [CrossRef]
- Singh, Y.; Pawar, V.K.; Meher, J.G.; Raval, K.; Kumar, A.; Shrivastava, R.; Bhadauria, S.; Chourasia, M.K. Targeting Tumor Associated Macrophages (TAMs) via Nanocarriers. J. Control. Release 2017, 254, 92–106. [Google Scholar] [CrossRef]
- Gupta, R.; Chauhan, A.; Kaur, T.; Kuanr, B.K.; Sharma, D. Enhancing Magnetic Hyperthermia Efficacy through Targeted Heat Shock Protein 90 Inhibition: Unveiling Immune-Mediated Therapeutic Synergy in Glioma Treatment. ACS Nano 2024, 18, 17145–17161. [Google Scholar] [CrossRef]
- Galli, F.; Aguilera, J.V.; Palermo, B.; Markovic, S.N.; Nisticò, P.; Signore, A. Relevance of Immune Cell and Tumor Microenvironment Imaging in the New Era of Immunotherapy. J. Exp. Clin. Cancer Res. 2020, 39, 89. [Google Scholar] [CrossRef]
- Anaya, J.-M.; Shoenfeld, Y.; Rojas-Villarraga, A.; Levy, R.A.; Cervera, R. Autoimmunity: From Bench to Bedside; El Rosario University Press: Bogota, Colombia, 2013; ISBN 978-958-738-366-9. [Google Scholar]
- Persano, S.; Vicini, F.; Poggi, A.; Fernandez, J.L.C.; Rizzo, G.M.R.; Gavilán, H.; Silvestri, N.; Pellegrino, T. Elucidating the Innate Immunological Effects of Mild Magnetic Hyperthermia on U87 Human Glioblastoma Cells: An In Vitro Study. Pharmaceutics 2021, 13, 1668. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.G.; Mehta, K.; Cohen, P.; Guha, C. Hyperthermia on Immune Regulation: A Temperature’s Story. Cancer Lett. 2008, 271, 191–204. [Google Scholar] [CrossRef] [PubMed]
- Skitzki, J.J.; Repasky, E.A.; Evans, S.S. Hyperthermia as an Immunotherapy Strategy for Cancer. Curr. Opin. Investig. Drugs 2009, 10, 550–558. [Google Scholar]
- Baronzio, G.F.; Seta, R.D.; D’Amico, M.; Baronzio, A.; Freitas, I.; Forzenigo, G.; Gramaglia, A.; Hager, E.D. Effects of Local and Whole Body Hyperthermia on Immunity. In Madame Curie Bioscience Database [Internet]; Landes Bioscience: Austin, TX, USA, 2013. [Google Scholar]
- Kobayashi, T.; Kakimi, K.; Nakayama, E.; Jimbow, K. Antitumor Immunity by Magnetic Nanoparticle-Mediated Hyperthermia. Nanomedicine 2014, 9, 1715–1726. [Google Scholar] [CrossRef]
- Evans, S.S.; Repasky, E.A.; Fisher, D.T. Fever and the Thermal Regulation of Immunity: The Immune System Feels the Heat. Nat. Rev. Immunol. 2015, 15, 335–349. [Google Scholar] [CrossRef]
- Wang, H.Y.; Fu, J.C.M.; Lee, Y.C.; Lu, P.J. Hyperthermia Stress Activates Heat Shock Protein Expression via Propyl Isomerase 1 Regulation with Heat Shock Factor 1. Mol. Cell. Biol. 2013, 33, 4889–4899. [Google Scholar] [CrossRef]
- Ito, A.; Honda, H.; Kobayashi, T. Cancer Immunotherapy Based on Intracellular Hyperthermia Using Magnetite Nanoparticles: A Novel Concept of “Heat-Controlled Necrosis” with Heat Shock Protein Expression. Cancer Immunol. Immunother. 2006, 55, 320–328. [Google Scholar] [CrossRef] [PubMed]
- Azuma, Y.; Suzuki, K.; Higai, K.; Matsumoto, K.; Tada, S. Biphasic Increases of Cell Surface Calreticulin Following Treatment with Mitoxantrone. Biol. Pharm. Bull. 2020, 43, 1595–1599. [Google Scholar] [CrossRef]
- Chauhan, A.; Midha, S.; Kumar, R.; Meena, R.; Singh, P.; Jha, S.K.; Kuanr, B.K. Rapid Tumor Inhibition via Magnetic Hyperthermia Regulated by Caspase 3 with Time-Dependent Clearance of Iron Oxide Nanoparticles. Biomater. Sci. 2021, 9, 2972–2990. [Google Scholar] [CrossRef]
- Carter, T.J.; Agliardi, G.; Lin, F.; Ellis, M.; Jones, C.; Robson, M.; Richard-Londt, A.; Southern, P.; Lythgoe, M.; Zaw Thin, M.; et al. Potential of Magnetic Hyperthermia to Stimulate Localized Immune Activation. Small 2021, 17, 2005241. [Google Scholar] [CrossRef]
- Nemkov, V.; Ruffini, R.; Goldstein, R.; Jackowski, J.; Deweese, T.L.; Ivkov, R. Magnetic Field Generating Inductor for Cancer Hyperthermia Research. COMPEL—Int. J. Comput. Math. Electr. Electron. Eng. 2011, 30, 1626–1636. [Google Scholar] [CrossRef]
- Bonvin, D.; Alexander, D.T.L.; Millán, A.; Piñol, R.; Sanz, B.; Goya, G.F.; Martínez, A.; Bastiaansen, J.A.M.; Stuber, M.; Schenk, K.J.; et al. Tuning Properties of Iron Oxide Nanoparticles in Aqueous Synthesis without Ligands to Improve MRI Relaxivity and SAR. Nanomaterials 2017, 7, 225. [Google Scholar] [CrossRef] [PubMed]
- Bordelon, D.E.; Goldstein, R.C.; Nemkov, V.S.; Kumar, A.; Jackowski, J.K.; DeWeese, T.L.; Ivkov, R. Modified Solenoid Coil That Efficiently Produces High Amplitude AC Magnetic Fields With Enhanced Uniformity for Biomedical Applications. IEEE Trans. Magn. 2012, 48, 47–52. [Google Scholar] [CrossRef] [PubMed]
- Maier-Hauff, K.; Rothe, R.; Scholz, R.; Gneveckow, U.; Wust, P.; Thiesen, B.; Feussner, A.; von Deimling, A.; Waldoefner, N.; Felix, R.; et al. Intracranial Thermotherapy Using Magnetic Nanoparticles Combined with External Beam Radiotherapy: Results of a Feasibility Study on Patients with Glioblastoma Multiforme. J. Neurooncol. 2007, 81, 53–60. [Google Scholar] [CrossRef]
- Gneveckow, U.; Jordan, A.; Scholz, R.; Brüss, V.; Waldöfner, N.; Ricke, J.; Feussner, A.; Hildebrandt, B.; Rau, B.; Wust, P. Description and Characterization of the Novel Hyperthermia- and Thermoablation-System MFH 300F for Clinical Magnetic Fluid Hyperthermia. Med. Phys. 2004, 31, 1444–1451. [Google Scholar] [CrossRef]
- Wust, P.; Gneveckow, U.; Wust, P.; Gneveckow, U.; Johannsen, M.; Böhmer, D.; Henkel, T.; Kahmann, F.; Sehouli, J.; Felix, R.; et al. Magnetic Nanoparticles for Interstitial Thermotherapy—Feasibility, Tolerance and Achieved Temperatures. Int. J. Hyperth. 2006, 22, 673–685. [Google Scholar] [CrossRef]
- Johannsen, M.; Thiesen, B.; Wust, P.; Jordan, A. Magnetic Nanoparticle Hyperthermia for Prostate Cancer. Int. J. Hyperth. 2010, 26, 790–795. [Google Scholar] [CrossRef]
- Johannsen, M.; Gneveckow, U.; Thiesen, B.; Taymoorian, K.; Cho, C.H.; Waldöfner, N.; Scholz, R.; Jordan, A.; Loening, S.A.; Wust, P. Thermotherapy of Prostate Cancer Using Magnetic Nanoparticles: Feasibility, Imaging, and Three-Dimensional Temperature Distribution. Eur. Urol. 2007, 52, 1653–1661. [Google Scholar] [CrossRef]
- Trefná, H.D.; Crezee, H.; Schmidt, M.; Marder, D.; Lamprecht, U.; Ehmann, M.; Hartmann, J.; Nadobny, J.; Gellermann, J.; van Holthe, N.; et al. Quality Assurance Guidelines for Superficial Hyperthermia Clinical Trials: I. Clinical Requirements. Int. J. Hyperth. 2017, 33, 471–482. [Google Scholar] [CrossRef]
- Dobšíček Trefná, H.; Crezee, J.; Schmidt, M.; Marder, D.; Lamprecht, U.; Ehmann, M.; Nadobny, J.; Hartmann, J.; Lomax, N.; Abdel-Rahman, S.; et al. Quality Assurance Guidelines for Superficial Hyperthermia Clinical Trials: II. Technical Requirements for Heating Devices. Strahlenther. Onkol. 2017, 193, 351–366. [Google Scholar] [CrossRef]
- Stea, B.; Cetas, T.C.; Cassady, J.R.; Guthkelch, A.N.; Iacono, R.; Lulu, B.; Lutz, W.; Obbens, E.; Rossman, K.; Seeger, J. Interstitial Thermoradiotherapy of Brain Tumors: Preliminary Results of a Phase I Clinical Trial. Int. J. Radiat. Oncol. Biol. Phys. 1990, 19, 1463–1471. [Google Scholar] [CrossRef] [PubMed]
- Stea, B.; Kittelson, J.; Cassady, J.R.; Hamilton, A.; Guthkelch, N.; Lulu, B.; Obbens, E.; Rossman, K.; Shapiro, W.; Shetter, A.; et al. Treatment of Malignant Gliomas with Interstitial Irradiation and Hyperthermia. Int. J. Radiat. Oncol. Biol. Phys. 1992, 24, 657–667. [Google Scholar] [CrossRef]
- Stea, B.; Rossman, K.; Kittelson, J.; Shetter, A.; Hamilton, A.; Cassady, J.R. Interstitial Irradiation versus Interstitial Thermoradiotherapy for Supratentorial Malignant Gliomas: A Comparative Survival Analysis. Int. J. Radiat. Oncol. Biol. Phys. 1994, 30, 591–600. [Google Scholar] [CrossRef]
- Iacono, R.P.; Stea, B.; Lulu, B.A.; Cetas, T.; Cassady, J.R. Template-Guided Stereotactic Implantation of Malignant Brain Tumors for Interstitial Thermoradiotherapy. Stereotact. Funct. Neurosurg. 1992, 59, 199–204. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, T.; Kida, Y.; Tanaka, T.; Hattori, K.; Matsui, M.; Amemiya, Y. Interstitial Hyperthermia of Malignant Brain Tumors by Implant Heating System: Clinical Experience. J. Neurooncol. 1991, 10, 153–163. [Google Scholar] [CrossRef] [PubMed]
- Grauer, O.; Jaber, M.; Hess, K.; Weckesser, M.; Schwindt, W.; Maring, S.; Wölfer, J.; Stummer, W. Combined Intracavitary Thermotherapy with Iron Oxide Nanoparticles and Radiotherapy as Local Treatment Modality in Recurrent Glioblastoma Patients. J. Neurooncol. 2019, 141, 83–94. [Google Scholar] [CrossRef]
MNP | Ms (emu/g) | Mr/Ms | Hc (Oe) | K (J/m3) | D (nm) | MNP Geometrical Attributes | Remarks | Ref. |
---|---|---|---|---|---|---|---|---|
Fe3O4 | 85 ÷ 110 | - | - | 1.3 ± (0.2) × 104 | 9 ÷ 15 | Spherical | All the magnetic properties were measured at 300 K | [51] |
60 | 0.4 | 170 | - | 5.7 ÷ 11 | Large-diameter MNPs were a mixture of cubic, diamond, and triangular. Small-diameter MNPs were spherical | The hysteresis loops were measured at 5 K | [54] | |
65 ÷ 92 | - | 70 ÷ 340 | - | 7.4 ÷ 45 | Spherical | The hysteresis loops were measured at 5 K | [55] | |
For 6.6 nm MNP, 80.8 at 5 K and 70.7 at 300 K; for 17.8 nm MNP, 91.3 at 5 K and 82.5 at 300 K | For 6.6 nm MNP, 0.28 at 5 K and 0.024 at 300 K; for 17.8 nm MNP, 0.29 at 5 K and 0.0076 at 300 K | For 6.6 nm MNP, 405.6 at 5 K and 14.7 at 300 K; for 17.8 nm MNP, 379.4 at 5 K and 3.4 at 300 K | 4.74 × 105 for 6.6 nm MNP, 1.11 × 105 for 17.8 nm MNP | 6.6 ÷ 17.8 | Spherical | Magnetic properties were measured at 5 K and 300 K | [52] | |
80 ÷ 90 | - | 141–500 | - | 12 ÷ 38 | Cubic | SAR was between 400 and 800 W/gFe | [56] | |
78 ÷ 95 | - | 400–500 for MNPs with size below 20 nm; 250 ÷ 300 for larger particles | - | 13 ÷ 40 | Cubic | SAR was about 509 W/gFe at 320 kHz and 15 kA/m (H × f = 4.8 × 109 kA/(ms)) | [57] | |
50 ÷ 81 | 0.03 ÷ 0.12 | 0 ÷ 103 | (6.4 ÷ 9.5) × 103 | 17 ÷ 47 | Octopods | Ms and Hc were measured at 300 K | [58] | |
20 ÷ 80 | - | 0–50 | - | 40 ÷ 70/5 ÷ 10 | Nanorods | Magnetic measurements were performed at 300 K | [59] | |
83 ÷ 88 | 0.38 ÷ 0.44 | 200 ÷ 290 | (1.8 ÷ 2.6) × 104 | 20 ÷ 28 | Nanoflowers | SAR value of 1992 ± 34 W/g | [60] | |
68 ÷ 92 | 0 ÷ 0.14 | 0 ÷ 118 | - | 13 ÷ 260 | Octahedral | Ms was measured at 300 K. For 22 nm MNPs, SAR = (200 ÷ 800) W/g; for 43 nm MNPs, SAR = (250 ÷ 2400) W/g | ||
Fe2O3 | 2.8 × 105/ 3.9 × 105/ 3.9 × 105 | - | - | 2.6 × 104/ 8 × 102/ 1.1 × 103 | 10/ 18/ 22 | Spheres/Cubes/Nanoflowers | τN, τB (s): 2 × 10−6, 2.4 × 10−8/8 × 10−6, 3 × 10−9/2 × 10−5, 4.6 × 10−9. The LRT model was valid only for spheres | [61] |
Au@Fe3O4 | 28 ÷ 92 | 0.29 ÷ 0.32 | 280 ÷ 550 | 6 × 103 | 21 ÷ 52 | Dimers | Gold shell provided improved biocompatibility | [62] |
CoFe2O4@Fe3O4 | 108 | - | 2530 | 2 × 104 | 15 | Spherical/Core–shell | - | [51] |
Fe3O4@CoFe2O4 | 105 | - | 11,600 | 1.8 × 104 | 15 | Spherical/Core–shell | For a frequency of 500 Hz and a field amplitude of 37.3 kA/m (H × f) = 18.7 × 109 a SAR of 2795 W/g was reported | [51] |
Fe3O4@FeO | 40 ÷ 80 | - | 1200 ÷ 5754 | (1 ÷ 1.3) × 104 | 16 ÷ 23 | Cubic/Core–shell | The magnetic measurements were performed at 10 K | [63,64] |
FeO/Fe3O4 | 110 | 0.7 | 583 | - | - | Clusters centrosymmetric | Magnetization measurements were performed at 300 K, and the coercivity was determined at 10 K | [65] |
82 | 0.7 | 520 | - | - | Clusters dimers/trimers |
MNP | Synthesis Method/Producer | Particle Size (nm)/Shape | SAR (W/g) | H × f (A/(ms)) | Remarks | Ref. |
---|---|---|---|---|---|---|
γ-Fe2O3 | Co-precipitation Acid treatment | 8 11 13 Spherical | 10 40 58 | 3.92 × 109 | The synthesis method is adequate for a large amount of particles. Cheap, easy, and reproducible protocol. The optimal particle size correlated with SAR was established to be around 12 nm. | [85] |
Commercial MNPs–Resovist® (FDA approved) | Co-precipitation/ Bayer-Schering | 20 | 26.8 | 1.86 × 109 | Compared to other commercial MNPs similar magnetic heating efficiency was observed between Micromod’s nanomag-D 100 nm, Resovist, and Chemicell’s aged fluidmag-D 50 nm. | [86] |
Commercial MNPs–Feraheme® (Ferumoxytol) (FDA approved) (γ-Fe2O3) | Co-precipitation/Berlex Laboratories | 30 | 50.5 | 2.75 × 109 | FDA approval permitted the use of commercial Feraheme® as an MHT nano heater. The particles coated with a polymer matrix (dextran) showed excellent heat transfer properties, being a good candidate for GBM treatments. | [87] |
Fe3O4 | Co-precipitation; the synthesis process was conducted in an automated batch reactor Atlas Potassium (Syrris) | 13 18 20 Faceted | 46.64 86.87 51.90 | 3.58 × 109 | Large quantities of MNPs were prepared. The highest SAR value was obtained for particles with a size of about 18 nm. All the particles were adequate for MHT. | [88] |
Fe3O4 | Oxidative precipitation | 22 26 34 Cubic | 130 170 120 | 2.54 × 109 | High-quality Fe3O4 nanocrystals were prepared. The highest SAR was noticed for a cubic particle with an edge of 170 nm. | [72] |
Fe3O4 and ε-Fe2O3 | Oxidative precipitation | 22 Spherical (Fe3O4), Acicular (ε-Fe2O3) | 95 | 2.49 × 109 | The particle mixture exhibited a higher SAR value. The MNPs are a good candidate for AMF cancer therapy. | [73] |
Fe3O4 and γ-Fe2O3 | Thermal decomposition | 18/Octahedral 22/Truncated octahedral | 124 320 | 3.06 × 109 | The particles exhibited superparamagnetic behavior at room temperature. The predominant magnetic relaxation phenomena consisted of Neel processes. Higher SAR values were obtained compared to other synthesis routes. | [89] |
IONs | Thermal decomposition; binary solvent mixture approach | 14 19 24 35 Cubic | 360 620 650 300 | 4.80 × 109 | High SAR values were noticed, and it was concluded that the developed IONs could be successfully used as nano heaters. | [56] |
Fe3O4 and/or γ-Fe2O3 | Thermal decomposition | 14 18 22 Faceted | 70 80 95 | 3.06 × 109 | Superparamagnetic nanocrystalline MNPs with sizes higher than 10 nm were obtained. All SAR values were in biological limits. | [84] |
Fe3O4 | Thermal decomposition | 5 10 14 13 Spherical | 180 130 447 200 | 9.80 × 109 | A high SAR rate was noticed when the polydispersity of the magnetic fluid decreased. The 14 nm diameter particles exhibited the highest value of SAR. | [83] |
γ-Fe2O3 | Solvothermal/Polyol route | 21 24 28 34 38 Nanoflowers | 500 1992 1944 1230 787 | 4.40 × 109 1.51 × 109–for all the other sizes | Nanoflowers beyond the superparamagnetic range were synthetized. The flowers comprised independent crystals with an average size of 11 nm. The polycrystalline character generated an increase in heating power, making these nanoparticles suitable for GBM treatment, even for recurrent tumors. | [60] |
α-Fe2O3 | Aerial oxidation and reduction | 26 × 98 25 × 97 16 × 87 | 190 260 370 | 4.40 × 109 | To be used as MHT agents, the SAR values must be improved in the low-field domain. | [90] |
MNPs/Quantity | Cell Lines | Particle Diameter/Shape | AMF Conditions–H (Oe), f (kHz) | SAR (W/g) | Temperature (°C) | Main Physical Phenomenon | Ref. |
---|---|---|---|---|---|---|---|
γ-Fe2O3 coated with polyol/50 μg/mL | HUVEC, U89-MG | 10 nm/spherical | 289.7 Oe/700 kHz | HUVEC: 114 W/g ± 21; U87-MG 178 W/g ± 37 | 42 °C | Cell thermospecificity | [129] |
Zn0.9Fe2.1O4/50 μg/mL | HUVEC, U89-MG | 11 nm/spherical | 289.7 Oe/700 kHz | 36 W/g | 41.5 °C | MNPs magnetic property tunning based on Zn doping | [130] |
MNPs coated with polyethyleneimine (PEI)/10 μg/mL ÷ 100 μg/mL | SH-SY5Y micro-tumor-phantoms | - | 299.71 Oe/570 kHz | 239 ± 19 W/g in water | 46 °C | Comparison between MHT and hyperthermia mediated through exogenous heating | [131] |
Fe3O4 cationic liposomes (TMAG, DLPC, DOPE (1:2:2)/100 μg/mL | T-9 cell pellets | 35 nm | 383.72 Oe/118 kHz | - | 42 °C | MHT combined with an innovative vaccination therapy | [132] |
Fe3O4 cationic liposomes (TMAG, DLPC, DOPE (1:2:2)/7.2 mg/mL | T-9 | 35 nm | 384 Oe/118 kHz | - | 43 °C | Cancer cells were targeted and intracellular heated magnetoliposomes | [133] |
Fe3O4/PEGMMA-PEGDMA/7.9 mg/mL | M059K | 20–30 nm | 225.72 Oe/297 kHz | - | 63 °C | An innovative magnetic gel suitable for both thermal ablation and magnetic hyperthermia as a function of the applied magnetic field strength | [134] |
Fe3O4@γ-Fe2O3 nanoparticles coated based on polyphenol/100 μg/mL | BV-2 | 10–14 nm | 300 Oe/570 kHz | For cinnamon–MNPs, 335.7 W/gFe3O4; for synthetic vanilla MNPs, 78.9 W/gFe3O4; and for vanilla pods, MNPs 234 W/gFe3O4 | 46 °C | An eco-friendly synthesis route was developed for obtaining highly biocompatible MNPs | [135] |
Magnetosomes coated with chitosan/1 mg/mL | GL-261 | - | 340 Oe/198 kHz | 125 ± 5 W/gFe for chitosan coated, 120 ± 4.7 W/gFe for PEI coated, and 72 ± 2.8 W/gFe for neridronate-coated samples | 43 °C | Magnetosomes with high biocompatibility and potential application in MHT treatment | [136] |
STE-Fe3O4/100 μg/mL | C6 | 49.77 nm/spherical | 168 Oe/405 kHz | 73.18 W/g, 1867.01 W/gFe | 43 °C | The natural plant-based coating prevented MNP agglomeration, increased cell uptake, and prolonged the retention time | [137] |
Coated magnetosomes/1 mg/mL | GL-261 | 40 nm/cubo-octahedral | 34 mT ÷ 47 mT/198 kHz | 89 W/gFe ÷ 196 W/gFe | 43 °C ÷ 46 °C | Magnetosomes isolated from magnetotactic bacteria with high biocompatibility | [138] |
Mn-doped magnetic nanoclusters/250 μg/mL | C6 | 133.53 ± 10.46 nm | 168 Oe/405 kHz | 600 W/g, 2197.80 W/g(Fe+Mn) | - | The importance of a bimodal application of Mn-doped magnetic clusters in magneto-photo thermotherapy of GBM was evidenced | [140] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Manescu, V.; Antoniac, I.; Paltanea, G.; Nemoianu, I.V.; Mohan, A.G.; Antoniac, A.; Rau, J.V.; Laptoiu, S.A.; Mihai, P.; Gavrila, H.; et al. Magnetic Hyperthermia in Glioblastoma Multiforme Treatment. Int. J. Mol. Sci. 2024, 25, 10065. https://doi.org/10.3390/ijms251810065
Manescu V, Antoniac I, Paltanea G, Nemoianu IV, Mohan AG, Antoniac A, Rau JV, Laptoiu SA, Mihai P, Gavrila H, et al. Magnetic Hyperthermia in Glioblastoma Multiforme Treatment. International Journal of Molecular Sciences. 2024; 25(18):10065. https://doi.org/10.3390/ijms251810065
Chicago/Turabian StyleManescu (Paltanea), Veronica, Iulian Antoniac, Gheorghe Paltanea, Iosif Vasile Nemoianu, Aurel George Mohan, Aurora Antoniac, Julietta V. Rau, Stefan Alexandru Laptoiu, Petruta Mihai, Horia Gavrila, and et al. 2024. "Magnetic Hyperthermia in Glioblastoma Multiforme Treatment" International Journal of Molecular Sciences 25, no. 18: 10065. https://doi.org/10.3390/ijms251810065
APA StyleManescu, V., Antoniac, I., Paltanea, G., Nemoianu, I. V., Mohan, A. G., Antoniac, A., Rau, J. V., Laptoiu, S. A., Mihai, P., Gavrila, H., Al-Moushaly, A. R., & Bodog, A. D. (2024). Magnetic Hyperthermia in Glioblastoma Multiforme Treatment. International Journal of Molecular Sciences, 25(18), 10065. https://doi.org/10.3390/ijms251810065