The Use of Autologous Cell Therapy in Diabetic Patients with Chronic Limb-Threatening Ischemia
Abstract
:1. Introduction
2. When Standard Revascularization Is Not Possible
3. New Promising Options for Revascularization
4. Stem Cell Possibilities in Ischemia Treatment
4.1. Type of Stem Cells
4.2. Stem Cell Subpopulations
4.2.1. Myeloid Angiogenic Cells (MACs)
4.2.2. Endothelial Colony-Forming Cells (ECFCs)
4.2.3. Limitations of ECFCs and Options for Their Enhancement
4.2.4. Other Cell Types and Markers
5. Cell Therapy Process in Clinical Practice
5.1. Inclusion and Exclusion Criteria
5.2. Use of Mononuclear Stem Cells
5.3. Mesenchymal Stem Cells in ACT
6. Routes of Stem Cell Administration
7. Treatment Results
7.1. Selected Studies Supporting the Effect of Stem Cell Therapy
7.2. Studies Comparing Different Stem Cell Types
7.3. In-Depth Analysis of the Most Important Studies
7.3.1. PROVASA
7.3.2. JUVENTAS
7.3.3. Study by Sharma et al.
7.3.4. RESTORE-CLI
7.3.5. PACE
7.3.6. Summary of Key Studies
8. Is ACT a Safe Method?
9. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Stoberock, K.; Kaschwich, M.; Nicolay, S.S.; Mahmoud, N.; Heidemann, F.; Riess, H.C.; Debus, E.S.; Behrendt, C.A. The interrelationship between diabetes mellitus and peripheral arterial disease. Vasa 2021, 50, 323–330. [Google Scholar] [CrossRef] [PubMed]
- Fitridge, R.; Chuter, V.; Mills, J.; Hinchliffe, R.; Azuma, N.; Behrendt, C.A.; Boyko, E.J.; Conte, M.S.; Humphries, M.; Kirksey, L.; et al. The intersocietal IWGDF, ESVS, SVS guidelines on peripheral artery disease in people with diabetes mellitus and a foot ulcer. J. Vasc. Surg. 2023, 78, 1101–1131. [Google Scholar] [CrossRef]
- Golledge, J. Update on the pathophysiology and medical treatment of peripheral artery disease. Nat. Rev. Cardiol. 2022, 19, 456–474. [Google Scholar] [CrossRef] [PubMed]
- Jude, E.B.; Oyibo, S.O.; Chalmers, N.; Boulton, A.J. Peripheral arterial disease in diabetic and nondiabetic patients: A comparison of severity and outcome. Diabetes Care 2001, 24, 1433–1437. [Google Scholar] [CrossRef] [PubMed]
- Farber, A.; Menard, M.T.; Conte, M.S.; Kaufman, J.A.; Powell, R.J.; Choudhry, N.K.; Hamza, T.H.; Assmann, S.F.; Creager, M.A.; Cziraky, M.J.; et al. Surgery or Endovascular Therapy for Chronic Limb-Threatening Ischemia. N. Engl. J. Med. 2022, 387, 2305–2316. [Google Scholar] [CrossRef] [PubMed]
- Bradbury, A.W.; Moakes, C.A.; Popplewell, M.; Meecham, L.; Bate, G.R.; Kelly, L.; Chetter, I.; Diamantopoulos, A.; Ganeshan, A.; Hall, J.; et al. A vein bypass first versus a best endovascular treatment first revascularisation strategy for patients with chronic limb threatening ischaemia who required an infra-popliteal, with or without an additional more proximal infra-inguinal revascularisation procedure to restore limb perfusion (BASIL-2): An open-label, randomised, multicentre, phase 3 trial. Lancet 2023, 401, 1798–1809. [Google Scholar]
- Chuter, V.; Schaper, N.; Mills, J.; Hinchliffe, R.; Russell, D.; Azuma, N.; Behrendt, C.A.; Boyko, E.J.; Conte, M.S.; Humphries, M.D.; et al. Effectiveness of revascularisation for the ulcerated foot in patients with diabetes and peripheral artery disease: A systematic review. Diabetes Metab. Res. Rev. 2024, 40, e3700. [Google Scholar] [CrossRef]
- Panunzi, A.; Madotto, F.; Sangalli, E.; Riccio, F.; Sganzaroli, A.B.; Galenda, P.; Bertulessi, A.; Barmina, M.F.; Ludovico, O.; Fortunato, O.; et al. Results of a prospective observational study of autologous peripheral blood mononuclear cell therapy for no-option critical limb-threatening ischemia and severe diabetic foot ulcers. Cardiovasc. Diabetol. 2022, 21, 196. [Google Scholar] [CrossRef]
- Ventoruzzo, G.; Mazzitelli, G.; Ruzzi, U.; Liistro, F.; Scatena, A.; Martelli, E. Limb Salvage and Survival in Chronic Limb-Threatening Ischemia: The Need for a Fast-Track Team-Based Approach. J. Clin. Med. 2023, 12, 6081. [Google Scholar] [CrossRef]
- Dubsky, M.; Jirkovska, A.; Bem, R.; Nemcova, A.; Fejfarova, V.; Hazdrova, J.; Sutoris, K.; Chlupac, J.; Skibova, J.; Jude, E.B. Impact of severe diabetic kidney disease on the clinical outcome of autologous cell therapy in people with diabetes and critical limb ischaemia. Diabet. Med. 2019, 36, 1133–1140. [Google Scholar] [CrossRef]
- Munir, Z.; Akash, M.; Jaiprada, F.; Abu Tarboush, B.; Ijaz, O.; Bseiso, A.; Palleti, S.K.; Amin, A. Evaluation of the Effects of Extracorporeal Shockwave Therapy in Patients With Peripheral Arterial Disease: A Meta-Analysis of Randomized Control Trials. Cureus 2023, 15, e34729. [Google Scholar] [CrossRef] [PubMed]
- Belch, J.J.; Ray, S.; Rajput-Ray, M.; Engeset, J.; Fagrell, B.; Lepantalo, M.; McKay, A.; Mackay, I.R.; Ostergren, J.; Ruckley, C.V.; et al. The Scottish-Finnish-Swedish PARTNER study of taprostene versus placebo treatment in patients with critical limb ischemia. Int. Angiol. 2011, 30, 150–155. [Google Scholar] [PubMed]
- Lawall, H.; Pokrovsky, A.; Checinski, P.; Ratushnyuk, A.; Hamm, G.; Randerath, O.; Grieger, F.; Bentz, J.W.G. Efficacy and Safety of Alprostadil in Patients with Peripheral Arterial Occlusive Disease Fontaine Stage IV: Results of a Placebo Controlled Randomised Multicentre Trial (ESPECIAL). Eur. J. Vasc. Endovasc. Surg. 2017, 53, 559–566. [Google Scholar] [CrossRef] [PubMed]
- Alhewy, M.A.; Abdo, E.M.; Ghazala, E.A.E.; Khamis, A.A.; Gado, H.; Abd-Elgawad, W.A.A.; Abdelhafez, A.A.; El Sayed, A.; Khedr, A.M.; Mosaed, H.A.M. Outcomes of Alprostadil As an Adjuvant Therapy with Indirect Angiosomal Revascularization in Patients with Critical Limb Ischemia after Failure of Direct Revascularization. Ann. Vasc. Surg. 2024, 103, 58–67. [Google Scholar] [CrossRef] [PubMed]
- Shishehbor, M.H.; Powell, R.J.; Montero-Baker, M.F.; Dua, A.; Martinez-Trabal, J.L.; Bunte, M.C.; Lee, A.C.; Mugglin, A.S.; Mills, J.L.; Farber, A.; et al. Transcatheter Arterialization of Deep Veins in Chronic Limb-Threatening Ischemia. N. Engl. J. Med. 2023, 388, 1171–1180. [Google Scholar] [CrossRef]
- Bayaraa, O.; Dashnyam, K.; Singh, R.K.; Mandakhbayar, N.; Lee, J.H.; Park, J.T.; Lee, J.H.; Kim, H.W. Nanoceria-GO-intercalated multicellular spheroids revascularize and salvage critical ischemic limbs through anti-apoptotic and pro-angiogenic functions. Biomaterials 2023, 292, 121914. [Google Scholar] [CrossRef]
- Friend, N.E.; Beamish, J.A.; Margolis, E.A.; Schott, N.G.; Stegemann, J.P.; Putnam, A.J. Pre-cultured, cell-encapsulating fibrin microbeads for the vascularization of ischemic tissues. J. Biomed. Mater. Res. A 2024, 112, 549–561. [Google Scholar] [CrossRef]
- Takematsu, E.; Massidda, M.; Howe, G.; Goldman, J.; Felli, P.; Mei, L.; Callahan, G.; Sligar, A.D.; Smalling, R.; Baker, A.B. Transmembrane stem factor nanodiscs enhanced revascularization in a hind limb ischemia model in diabetic, hyperlipidemic rabbits. Sci. Rep. 2024, 14, 2352. [Google Scholar] [CrossRef]
- Basuthakur, P.; Roy, A.; Ghosh, S.; Vijay, V.; Sinha, D.; Radhakrishnan, M.; Kumar, A.; Patra, C.R.; Chakravarty, S. Pro-angiogenic Terbium Hydroxide Nanorods Improve Critical Limb Ischemia in Part by Amelioration of Ischemia-Induced Endothelial Injury. ACS Appl. Bio Mater. 2024, 7, 4389–4405. [Google Scholar] [CrossRef]
- Malhi, N.K.; Southerland, K.W.; Lai, L.; Chen, Z.B. Epigenetic Regulation of Angiogenesis in Peripheral Artery Disease. Methodist. Debakey Cardiovasc. J. 2023, 19, 47–57. [Google Scholar] [CrossRef]
- Hass, R.; Kasper, C.; Bohm, S.; Jacobs, R. Different populations and sources of human mesenchymal stem cells (MSC): A comparison of adult and neonatal tissue-derived MSC. Cell Commun. Signal 2011, 9, 12. [Google Scholar] [CrossRef] [PubMed]
- Lozano Navarro, L.V.; Chen, X.; Girata Viviescas, L.T.; Ardila-Roa, A.K.; Luna-Gonzalez, M.L.; Sossa, C.L.; Arango-Rodriguez, M.L. Mesenchymal stem cells for critical limb ischemia: Their function, mechanism, and therapeutic potential. Stem Cell Res. Ther. 2022, 13, 345. [Google Scholar] [CrossRef] [PubMed]
- Hong, I.S. Endometrial stem/progenitor cells: Properties, origins, and functions. Genes. Dis. 2023, 10, 931–947. [Google Scholar] [CrossRef] [PubMed]
- Khodayari, S.; Khodayari, H.; Ebrahimi-Barough, S.; Khanmohammadi, M.; Islam, M.S.; Vesovic, M.; Goodarzi, A.; Mahmoodzadeh, H.; Nayernia, K.; Aghdami, N.; et al. Stem Cell Therapy in Limb Ischemia: State-of-Art, Perspective, and Possible Impacts of Endometrial-Derived Stem Cells. Front. Cell Dev. Biol. 2022, 10, 834754. [Google Scholar] [CrossRef]
- Sullivan, R.; Dailey, T.; Duncan, K.; Abel, N.; Borlongan, C.V. Peripheral Nerve Injury: Stem Cell Therapy and Peripheral Nerve Transfer. Int. J. Mol. Sci. 2016, 17, 2101. [Google Scholar] [CrossRef] [PubMed]
- Muir, K.W.; Bulters, D.; Willmot, M.; Sprigg, N.; Dixit, A.; Ward, N.; Tyrrell, P.; Majid, A.; Dunn, L.; Bath, P.; et al. Intracerebral implantation of human neural stem cells and motor recovery after stroke: Multicentre prospective single-arm study (PISCES-2). J. Neurol. Neurosurg. Psychiatry 2020, 91, 396–401. [Google Scholar] [CrossRef]
- Asahara, T.; Murohara, T.; Sullivan, A.; Silver, M.; van der Zee, R.; Li, T.; Witzenbichler, B.; Schatteman, G.; Isner, J.M. Isolation of putative progenitor endothelial cells for angiogenesis. Science 1997, 275, 964–967. [Google Scholar] [CrossRef]
- Peichev, M.; Naiyer, A.J.; Pereira, D.; Zhu, Z.; Lane, W.J.; Williams, M.; Oz, M.C.; Hicklin, D.J.; Witte, L.; Moore, M.A.; et al. Expression of VEGFR-2 and AC133 by circulating human CD34(+) cells identifies a population of functional endothelial precursors. Blood 2000, 95, 952–958. [Google Scholar] [CrossRef]
- Medina, R.J.; Barber, C.L.; Sabatier, F.; Dignat-George, F.; Melero-Martin, J.M.; Khosrotehrani, K.; Ohneda, O.; Randi, A.M.; Chan, J.K.Y.; Yamaguchi, T.; et al. Endothelial Progenitors: A Consensus Statement on Nomenclature. Stem Cells Transl. Med. 2017, 6, 1316–1320. [Google Scholar] [CrossRef]
- Taljaard, M.; Ward, M.R.; Kutryk, M.J.; Courtman, D.W.; Camack, N.J.; Goodman, S.G.; Parker, T.G.; Dick, A.J.; Galipeau, J.; Stewart, D.J. Rationale and design of Enhanced Angiogenic Cell Therapy in Acute Myocardial Infarction (ENACT-AMI): The first randomized placebo-controlled trial of enhanced progenitor cell therapy for acute myocardial infarction. Am. Heart J. 2010, 159, 354–360. [Google Scholar] [CrossRef]
- Granton, J.; Langleben, D.; Kutryk, M.B.; Camack, N.; Galipeau, J.; Courtman, D.W.; Stewart, D.J. Endothelial NO-Synthase Gene-Enhanced Progenitor Cell Therapy for Pulmonary Arterial Hypertension: The PHACeT Trial. Circ. Res. 2015, 117, 645–654. [Google Scholar] [CrossRef] [PubMed]
- Chambers, S.E.J.; O’Neill, C.L.; Guduric-Fuchs, J.; McLoughlin, K.J.; Liew, A.; Egan, A.M.; O’Brien, T.; Stitt, A.W.; Medina, R.J. The Vasoreparative Function of Myeloid Angiogenic Cells Is Impaired in Diabetes Through the Induction of IL1beta. Stem Cells 2018, 36, 834–843. [Google Scholar] [CrossRef] [PubMed]
- Ii, M.; Takenaka, H.; Asai, J.; Ibusuki, K.; Mizukami, Y.; Maruyama, K.; Yoon, Y.S.; Wecker, A.; Luedemann, C.; Eaton, E.; et al. Endothelial progenitor thrombospondin-1 mediates diabetes-induced delay in reendothelialization following arterial injury. Circ. Res. 2006, 98, 697–704. [Google Scholar] [CrossRef]
- Ridker, P.M.; Everett, B.M.; Thuren, T.; MacFadyen, J.G.; Chang, W.H.; Ballantyne, C.; Fonseca, F.; Nicolau, J.; Koenig, W.; Anker, S.D.; et al. Antiinflammatory Therapy with Canakinumab for Atherosclerotic Disease. N. Engl. J. Med. 2017, 377, 1119–1131. [Google Scholar] [CrossRef] [PubMed]
- Paschalaki, K.E.; Randi, A.M. Recent Advances in Endothelial Colony Forming Cells Toward Their Use in Clinical Translation. Front. Med. 2018, 5, 295. [Google Scholar] [CrossRef] [PubMed]
- Schwarz, T.M.; Leicht, S.F.; Radic, T.; Rodriguez-Arabaolaza, I.; Hermann, P.C.; Berger, F.; Saif, J.; Bocker, W.; Ellwart, J.W.; Aicher, A.; et al. Vascular incorporation of endothelial colony-forming cells is essential for functional recovery of murine ischemic tissue following cell therapy. Arter. Arterioscler. Thromb. Vasc. Biol. 2012, 32, e13–e21. [Google Scholar] [CrossRef]
- Edwards, N.; Langford-Smith, A.W.W.; Wilkinson, F.L.; Alexander, M.Y. Endothelial Progenitor Cells: New Targets for Therapeutics for Inflammatory Conditions with High Cardiovascular Risk. Front. Med. 2018, 5, 200. [Google Scholar] [CrossRef]
- Liu, Y.; Lyons, C.J.; Ayu, C.; O’Brien, T. Enhancing endothelial colony-forming cells for treating diabetic vascular complications: Challenges and clinical prospects. Front. Endocrinol. 2024, 15, 1396794. [Google Scholar] [CrossRef]
- O’Neill, C.L.; McLoughlin, K.J.; Chambers, S.E.J.; Guduric-Fuchs, J.; Stitt, A.W.; Medina, R.J. The Vasoreparative Potential of Endothelial Colony Forming Cells: A Journey Through Pre-clinical Studies. Front. Med. 2018, 5, 273. [Google Scholar] [CrossRef]
- Rojas-Torres, M.; Beltran-Camacho, L.; Martinez-Val, A.; Sanchez-Gomar, I.; Eslava-Alcon, S.; Rosal-Vela, A.; Jimenez-Palomares, M.; Doiz-Artazcoz, E.; Martinez-Torija, M.; Moreno-Luna, R.; et al. Unraveling the differential mechanisms of revascularization promoted by MSCs & ECFCs from adipose tissue or umbilical cord in a murine model of critical limb-threatening ischemia. J. Biomed. Sci. 2024, 31, 71. [Google Scholar]
- Kang, M.L.; Kim, J.E.; Im, G.I. Vascular endothelial growth factor-transfected adipose-derived stromal cells enhance bone regeneration and neovascularization from bone marrow stromal cells. J. Tissue Eng. Regen. Med. 2017, 11, 3337–3348. [Google Scholar] [CrossRef]
- Lee, H.; Huh, Y.H.; Kang, K.T. Mesenchymal Stem Cells Potentiate the Vasculogenic Capacity of Endothelial Colony-Forming Cells under Hyperglycemic Conditions. Life 2022, 12, 469. [Google Scholar] [CrossRef] [PubMed]
- Goto, K.; Takemura, G.; Takahashi, T.; Okada, H.; Kanamori, H.; Kawamura, I.; Watanabe, T.; Morishita, K.; Tsujimoto, A.; Miyazaki, N.; et al. Intravenous Administration of Endothelial Colony-Forming Cells Overexpressing Integrin beta1 Augments Angiogenesis in Ischemic Legs. Stem Cells Transl. Med. 2016, 5, 218–226. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.H.; Lee, S.H.; Choi, S.H.; Asahara, T.; Kwon, S.M. The sulfated polysaccharide fucoidan rescues senescence of endothelial colony-forming cells for ischemic repair. Stem Cells 2015, 33, 1939–1951. [Google Scholar] [CrossRef] [PubMed]
- Hache, G.; Garrigue, P.; Bennis, Y.; Stalin, J.; Moyon, A.; Cerami, A.; Brines, M.; Blot-Chabaud, M.; Sabatier, F.; Dignat-George, F.; et al. ARA290, a Specific Agonist of Erythropoietin/CD131 Heteroreceptor, Improves Circulating Endothelial Progenitors’ Angiogenic Potential and Homing Ability. Shock 2016, 46, 390–397. [Google Scholar] [CrossRef] [PubMed]
- Langford-Smith, A.W.W.; Hasan, A.; Weston, R.; Edwards, N.; Jones, A.M.; Boulton, A.J.M.; Bowling, F.L.; Rashid, S.T.; Wilkinson, F.L.; Alexander, M.Y. Diabetic endothelial colony forming cells have the potential for restoration with glycomimetics. Sci. Rep. 2019, 9, 2309. [Google Scholar] [CrossRef]
- Schroder-Heurich, B.; von Hardenberg, S.; Brodowski, L.; Kipke, B.; Meyer, N.; Borns, K.; von Kaisenberg, C.S.; Brinkmann, H.; Claus, P.; von Versen-Hoynck, F. Vitamin D improves endothelial barrier integrity and counteracts inflammatory effects on endothelial progenitor cells. FASEB J. 2019, 33, 9142–9153. [Google Scholar] [CrossRef]
- Smadja, D.M.; Rossi, E.; Haviari, S.; Bieche, I.; Cras, A.; Gaussem, P. Thrombin receptor PAR1 silencing in endothelial colony-forming cells modifies stemness and vasculogenic properties. J. Thromb. Haemost. 2023, 21, 3640–3648. [Google Scholar] [CrossRef]
- Luo, Y.F.; Wan, X.X.; Zhao, L.L.; Guo, Z.; Shen, R.T.; Zeng, P.Y.; Wang, L.H.; Yuan, J.J.; Yang, W.J.; Yue, C.; et al. MicroRNA-139-5p upregulation is associated with diabetic endothelial cell dysfunction by targeting c-jun. Aging 2020, 13, 1186–1211. [Google Scholar] [CrossRef]
- Patel, A.S.; Ludwinski, F.E.; Kerr, A.; Farkas, S.; Kapoor, P.; Bertolaccini, L.; Fernandes, R.; Jones, P.R.; McLornan, D.; Livieratos, L.; et al. A subpopulation of tissue remodeling monocytes stimulates revascularization of the ischemic limb. Sci. Transl. Med. 2024, 16, eadf0555. [Google Scholar] [CrossRef]
- Chambers, S.E.J.; Pathak, V.; Pedrini, E.; Soret, L.; Gendron, N.; Guerin, C.L.; Stitt, A.W.; Smadja, D.M.; Medina, R.J. Current concepts on endothelial stem cells definition, location, and markers. Stem Cells Transl. Med. 2021, 10 (Suppl. S2), S54–S61. [Google Scholar] [CrossRef] [PubMed]
- Walter, D.H.; Krankenberg, H.; Balzer, J.O.; Kalka, C.; Baumgartner, I.; Schluter, M.; Tonn, T.; Seeger, F.; Dimmeler, S.; Lindhoff-Last, E.; et al. Intraarterial administration of bone marrow mononuclear cells in patients with critical limb ischemia: A randomized-start, placebo-controlled pilot trial (PROVASA). Circ. Cardiovasc. Interv. 2011, 4, 26–37. [Google Scholar] [CrossRef] [PubMed]
- Norgren, L.; Weiss, N.; Nikol, S.; Lantis, J.C.; Patel, M.R.; Hinchliffe, R.J.; Reinecke, H.; Volk, H.D.; Reinke, P.; Fadini, G.P.; et al. PACE: Randomized, controlled, multicentre, multinational, phase III study of PLX-PAD for critical limb ischaemia in patients unsuitable for revascularization: Randomized clinical trial. Br. J. Surg. 2024, 111, znad437. [Google Scholar] [CrossRef] [PubMed]
- Arango-Rodriguez, M.L.; Mateus, L.C.; Sossa, C.L.; Becerra-Bayona, S.M.; Solarte-David, V.A.; Ochoa Vera, M.E.; Viviescas, L.T.G.; Berrio, A.M.V.; Serrano, S.E.; Vargas, O.; et al. A novel therapeutic management for diabetes patients with chronic limb-threatening ischemia: Comparison of autologous bone marrow mononuclear cells versus allogenic Wharton jelly-derived mesenchymal stem cells. Stem Cell Res. Ther. 2023, 14, 221. [Google Scholar] [CrossRef] [PubMed]
- Dubsky, M.; Jirkovska, A.; Bem, R.; Fejfarova, V.; Pagacova, L.; Sixta, B.; Varga, M.; Langkramer, S.; Sykova, E.; Jude, E.B. Both autologous bone marrow mononuclear cell and peripheral blood progenitor cell therapies similarly improve ischaemia in patients with diabetic foot in comparison with control treatment. Diabetes Metab. Res. Rev. 2013, 29, 369–376. [Google Scholar] [CrossRef] [PubMed]
- Gupta, P.K.; Chullikana, A.; Parakh, R.; Desai, S.; Das, A.; Gottipamula, S.; Krishnamurthy, S.; Anthony, N.; Pherwani, A.; Majumdar, A.S. A double blind randomized placebo controlled phase I/II study assessing the safety and efficacy of allogeneic bone marrow derived mesenchymal stem cell in critical limb ischemia. J. Transl. Med. 2013, 11, 143. [Google Scholar] [CrossRef]
- Yunir, E.; Kurniawan, F.; Rezaprasga, E.; Wijaya, I.P.; Suroyo, I.; Matondang, S.; Irawan, C.; Soewondo, P. Autologous Bone-Marrow vs. Peripheral Blood Mononuclear Cells Therapy for Peripheral Artery Disease in Diabetic Patients. Int. J. Stem Cells 2021, 14, 21–32. [Google Scholar] [CrossRef]
- Shirbaghaee, Z.; Hassani, M.; Heidari Keshel, S.; Soleimani, M. Emerging roles of mesenchymal stem cell therapy in patients with critical limb ischemia. Stem Cell Res. Ther. 2022, 13, 462. [Google Scholar] [CrossRef]
- Klepanec, A.; Mistrik, M.; Altaner, C.; Valachovicova, M.; Olejarova, I.; Slysko, R.; Balazs, T.; Urlandova, T.; Hladikova, D.; Liska, B.; et al. No difference in intra-arterial and intramuscular delivery of autologous bone marrow cells in patients with advanced critical limb ischemia. Cell Transpl. Transplant. 2012, 21, 1909–1918. [Google Scholar] [CrossRef]
- Kean, T.J.; Lin, P.; Caplan, A.I.; Dennis, J.E. MSCs: Delivery Routes and Engraftment, Cell-Targeting Strategies, and Immune Modulation. Stem Cells Int. 2013, 2013, 732742. [Google Scholar] [CrossRef]
- Sun, Y.; Zhao, J.; Zhang, L.; Li, Z.; Lei, S. Effectiveness and safety of stem cell therapy for diabetic foot: A meta-analysis update. Stem Cell Res. Ther. 2022, 13, 416. [Google Scholar] [CrossRef] [PubMed]
- Pu, H.; Huang, Q.; Zhang, X.; Wu, Z.; Qiu, P.; Jiang, Y.; Wang, R.; Zhao, Z.; Xu, Z.; Qin, J.; et al. A meta-analysis of randomized controlled trials on therapeutic efficacy and safety of autologous cell therapy for atherosclerosis obliterans. J. Vasc. Surg. 2022, 75, 1440–1449.e5. [Google Scholar] [CrossRef] [PubMed]
- Meloni, M.; Giurato, L.; Andreadi, A.; Bellizzi, E.; Bellia, A.; Lauro, D.; Uccioli, L. Peripheral Blood Mononuclear Cells: A New Frontier in the Management of Patients with Diabetes and No-Option Critical Limb Ischaemia. J. Clin. Med. 2023, 12, 6123. [Google Scholar] [CrossRef] [PubMed]
- Dubsky, M.; Jirkovska, A.; Bem, R.; Fejfarova, V.; Pagacova, L.; Nemcova, A.; Sixta, B.; Chlupac, J.; Peregrin, J.H.; Sykova, E.; et al. Comparison of the effect of stem cell therapy and percutaneous transluminal angioplasty on diabetic foot disease in patients with critical limb ischemia. Cytotherapy 2014, 16, 1733–1738. [Google Scholar] [CrossRef] [PubMed]
- Lu, D.; Chen, B.; Liang, Z.; Deng, W.; Jiang, Y.; Li, S.; Xu, J.; Wu, Q.; Zhang, Z.; Xie, B.; et al. Comparison of bone marrow mesenchymal stem cells with bone marrow-derived mononuclear cells for treatment of diabetic critical limb ischemia and foot ulcer: A double-blind, randomized, controlled trial. Diabetes Res. Clin. Pr. Pract. 2011, 92, 26–36. [Google Scholar] [CrossRef]
- Teraa, M.; Sprengers, R.W.; Schutgens, R.E.; Slaper-Cortenbach, I.C.; van der Graaf, Y.; Algra, A.; van der Tweel, I.; Doevendans, P.A.; Mali, W.P.; Moll, F.L.; et al. Effect of repetitive intra-arterial infusion of bone marrow mononuclear cells in patients with no-option limb ischemia: The randomized, double-blind, placebo-controlled Rejuvenating Endothelial Progenitor Cells via Transcutaneous Intra-arterial Supplementation (JUVENTAS) trial. Circulation 2015, 131, 851–860. [Google Scholar]
- Sharma, S.; Pandey, N.N.; Sinha, M.; Kumar, S.; Jagia, P.; Gulati, G.S.; Gond, K.; Mohanty, S.; Bhargava, B. Randomized, Double-Blind, Placebo-Controlled Trial to Evaluate Safety and Therapeutic Efficacy of Angiogenesis Induced by Intraarterial Autologous Bone Marrow-Derived Stem Cells in Patients with Severe Peripheral Arterial Disease. J. Vasc. Interv. Radiol. 2021, 32, 157–163. [Google Scholar] [CrossRef]
- Powell, R.J.; Comerota, A.J.; Berceli, S.A.; Guzman, R.; Henry, T.D.; Tzeng, E.; Velazquez, O.; Marston, W.A.; Bartel, R.L.; Longcore, A.; et al. Interim analysis results from the RESTORE-CLI, a randomized, double-blind multicenter phase II trial comparing expanded autologous bone marrow-derived tissue repair cells and placebo in patients with critical limb ischemia. J. Vasc. Surg. 2011, 54, 1032–1041. [Google Scholar] [CrossRef]
- Dubsky, M.; Husakova, J.; Bem, R.; Jirkovska, A.; Nemcova, A.; Fejfarova, V.; Sutoris, K.; Kahle, M.; Jude, E.B. Comparison of the impact of autologous cell therapy and conservative standard treatment on tissue oxygen supply and course of the diabetic foot in patients with chronic limb-threatening ischemia: A randomized controlled trial. Front. Endocrinol. 2022, 13, 888809. [Google Scholar] [CrossRef]
- Wahid, F.S.A.; Ismail, N.A.; Wan Jamaludin, W.F.; Muhamad, N.A.; Mohamad Idris, M.A.; Lai, N.M. Efficacy and Safety of Autologous Cell-based Therapy in Patients with No-option Critical Limb Ischaemia: A Meta-Analysis. Curr. Stem Cell Res. Ther. 2018, 13, 265–283. [Google Scholar] [CrossRef]
- Murphy, M.P.; Lawson, J.H.; Rapp, B.M.; Dalsing, M.C.; Klein, J.; Wilson, M.G.; Hutchins, G.D.; March, K.L. Autologous bone marrow mononuclear cell therapy is safe and promotes amputation-free survival in patients with critical limb ischemia. J. Vasc. Surg. 2011, 53, 1565–1574.e1. [Google Scholar] [CrossRef] [PubMed]
- Holig, K. G-CSF in Healthy Allogeneic Stem Cell Donors. Transfus. Med. Hemother 2013, 40, 225–235. [Google Scholar] [CrossRef]
- Balaguer, H.; Galmes, A.; Ventayol, G.; Bargay, J.; Besalduch, J. Splenic rupture after granulocyte-colony-stimulating factor mobilization in a peripheral blood progenitor cell donor. Transfusion 2004, 44, 1260–1261. [Google Scholar] [CrossRef] [PubMed]
- Azoulay, E.; Attalah, H.; Harf, A.; Schlemmer, B.; Delclaux, C. Granulocyte colony-stimulating factor or neutrophil-induced pulmonary toxicity: Myth or reality? Systematic review of clinical case reports and experimental data. Chest 2001, 120, 1695–1701. [Google Scholar] [CrossRef] [PubMed]
- Falanga, A.; Marchetti, M.; Evangelista, V.; Manarini, S.; Oldani, E.; Giovanelli, S.; Galbusera, M.; Cerletti, C.; Barbui, T. Neutrophil activation and hemostatic changes in healthy donors receiving granulocyte colony-stimulating factor. Blood 1999, 93, 2506–2514. [Google Scholar] [CrossRef] [PubMed]
- Qin, H.L.; Zhu, X.H.; Zhang, B.; Zhou, L.; Wang, W.Y. Clinical Evaluation of Human Umbilical Cord Mesenchymal Stem Cell Transplantation After Angioplasty for Diabetic Foot. Exp. Clin. Endocrinol. Diabetes 2016, 124, 497–503. [Google Scholar] [CrossRef]
- Uzun, E.; Guney, A.; Gonen, Z.B.; Ozkul, Y.; Kafadar, I.H.; Gunay, M.; Mutlu, M. Intralesional allogeneic adipose-derived stem cells application in chronic diabetic foot ulcer: Phase I/2 safety study. Foot Ankle Surg. 2021, 27, 636–642. [Google Scholar] [CrossRef]
- Moon, K.C.; Suh, H.S.; Kim, K.B.; Han, S.K.; Young, K.W.; Lee, J.W.; Kim, M.H. Potential of Allogeneic Adipose-Derived Stem Cell-Hydrogel Complex for Treating Diabetic Foot Ulcers. Diabetes 2019, 68, 837–846. [Google Scholar] [CrossRef]
- Conte, M.S.; Bradbury, A.W.; Kolh, P.; White, J.V.; Dick, F.; Fitridge, R.; Mills, J.L.; Ricco, J.B.; Suresh, K.R.; Murad, M.H.; et al. World Federation of Vascular, S. Global Vascular Guidelines on the Management of Chronic Limb-Threatening Ischemia. Eur. J. Vasc. Endovasc. Surg. 2019, 58 (Suppl. S1), S1–S109.e33. [Google Scholar] [CrossRef]
Study, Author, Year | Number of Patients | Cell Types | Control Group | Routes of Injection | Main Findings |
---|---|---|---|---|---|
PROVASA, Walter DH et al., 2011 [52] | 40 | BM-MNCs | Autologous serum | IA | No significance in ABI, but TcPO2, ulcer healing, and reduction in rest pain were significantly improved. |
JUVENTAS, Teraa M et al., 2015 [66] | 160 | BM-MNCs | Suspension of erythrocytes (similar color) | IA | No significance in survival or major amputation rates or ischemia parameters (ABI, TcPO2). |
Sharma S et al., 2021 [67] | 81 | BM-MNCs | Patient’s own serum with peripheral blood erythrocytes | IA | Significant increase in ABI and TcPO2 and significantly fewer amputated patients. |
RESTORE-CLI, Powel RJ et al., 2011 [68] | 46 | Tissue repair cells | Electrolyte solution without cells | IM | Longer time to major amputation, death, doubling of the size of the wound, and newly formed gangrene. Significantly more healed ulcers within 12 months. |
PACE, Norgren L et al., 2024 [53] | 213 | Mesenchymal allogeneic cells (PLX-PAD—PLacental eXpanded) | Suspension of dimethyl sulphoxide, human serum, albumin, and PlasmaLyte | IM | No significant difference in amputation rates, amputation-free survival, or healing rates. The beneficial effects were noted in patients without diabetes or those with well-controlled diabetes, i.e., HbA1c levels below 6.5%. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sojakova, D.; Husakova, J.; Fejfarova, V.; Nemcova, A.; Jarosikova, R.; Kopp, S.; Lovasova, V.; Jude, E.B.; Dubsky, M. The Use of Autologous Cell Therapy in Diabetic Patients with Chronic Limb-Threatening Ischemia. Int. J. Mol. Sci. 2024, 25, 10184. https://doi.org/10.3390/ijms251810184
Sojakova D, Husakova J, Fejfarova V, Nemcova A, Jarosikova R, Kopp S, Lovasova V, Jude EB, Dubsky M. The Use of Autologous Cell Therapy in Diabetic Patients with Chronic Limb-Threatening Ischemia. International Journal of Molecular Sciences. 2024; 25(18):10184. https://doi.org/10.3390/ijms251810184
Chicago/Turabian StyleSojakova, Dominika, Jitka Husakova, Vladimira Fejfarova, Andrea Nemcova, Radka Jarosikova, Simon Kopp, Veronika Lovasova, Edward B. Jude, and Michal Dubsky. 2024. "The Use of Autologous Cell Therapy in Diabetic Patients with Chronic Limb-Threatening Ischemia" International Journal of Molecular Sciences 25, no. 18: 10184. https://doi.org/10.3390/ijms251810184
APA StyleSojakova, D., Husakova, J., Fejfarova, V., Nemcova, A., Jarosikova, R., Kopp, S., Lovasova, V., Jude, E. B., & Dubsky, M. (2024). The Use of Autologous Cell Therapy in Diabetic Patients with Chronic Limb-Threatening Ischemia. International Journal of Molecular Sciences, 25(18), 10184. https://doi.org/10.3390/ijms251810184