Role of Divalent Cations in Infections in Host–Pathogen Interaction
Abstract
:1. Introduction
2. Hypercalcemia in Clinical Tuberculosis
3. Calcium and Magnesium Deficiency in Pulmonary Tuberculosis with Multiple Cavities in Persons with or without Diabetes Mellitus
4. Survival Mechanisms of Mycobacteria Attacked by Macrophages Involve Calcium Extrusion
5. Copper (Cu2+) in Elevated Concentrations Can Be Toxic for M Tuberculosis and Kidney Function in Persons with Diabetes Mellitus
6. Zinc (Zn2+) Deficiency in Malnourished Persons with Tuberculosis
7. Iron (Fe2+) Deficiency and Excess May Participate in the Clinical Course of Pulmonary Tuberculosis
8. Magnesium (Mg2+)
9. Manganese (Mn2+) Is Present in Metalloproteins
10. Selenium Ions May Have a Direct Anti-Mycobacterium tuberculosis Effect
11. Pulmonary Tuberculosis/COVID-19 Coinfection
12. Calcium (CA2+) Mechanisms in Persons with Diabetes Mellitus as a Risk Factor for Tuberculosis and Parasitic Disorders
13. Chelation Therapy
14. Discussion of New Concepts for Development of Medications against Pulmonary Tuberculosis
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Agranoff, D.; Monahan, I.M.; Mangan, J.A.; Butcher, P.D.; Krishna, S. Mycobacterium tuberculosis expresses a novel pH-dependent divalent cation transporter belonging to the Nramp family. J. Exp. Med. 1999, 190, 717–724. [Google Scholar] [CrossRef] [PubMed]
- Weiss, G.; Carver, P.L. Role of divalent cations in infectious disease susceptibility and outcome. Clin. Microbiol. Infect. 2018, 24, 16–23. [Google Scholar] [CrossRef] [PubMed]
- Cuculis, L.; Zhao, C.; Abil, Z.; Zhao, H.; Shukla, D.; Schroeder, C.M. Divalent cations promote TALE DNA-binding specificity. Nucleic Acids Res. 2020, 48, 1406–1422. [Google Scholar] [CrossRef] [PubMed]
- López-Laguna, H.; Sánchez, J.; Unzueta, U.; Mangues, R.; Vázquez, E.; Villaverde, A. Divalent Cations: A Molecular Glue for Protein Materials. Trends Biochem Sci. 2020, 45, 992–1003. [Google Scholar] [CrossRef]
- Vashishtha, A.K.; Wang, J.; Konigsberg, W.H. Different Divalent Cations Alter the Kinetics and Fidelity of DNA Polymerases. J. Biol. Chem. 2016, 30, 291. [Google Scholar] [CrossRef]
- Garg, R.; Borbora, S.M.; Bansia, H.; Rao, S.; Singh, P.; Verma, R.; Balaji, K.N.; Nagaraja, V. Mycobacterium tuberculosis calcium pump CtpF Modulates the Autophagosome in an mTOR-Dependent Manner. Front. Cell Infect. Microbiol. 2020, 10, 461. [Google Scholar] [CrossRef]
- Maya-Hoyos, M.; Rosales, C.; Novoa-Aponte, L.; Castillo, E.; Soto, C.Y. The P-type ATPase CtpF is a plasma membrane transporter mediating calcium efflux in Mycobacterium tuberculosis cells. Heliyon 2019, 5, e02852. [Google Scholar] [CrossRef]
- Lee, C.C.; Lee, M.G.; Hsu, W.T.; Park, J.Y.; Porta, L.; Liu, M.A.; Chen, S.C.; Chang, S.C. Use of Calcium Channel Blockers and Risk of Active Tuberculosis Disease: A Population-Based Analysis. Hypertension 2021, 77, 328–337. [Google Scholar] [CrossRef]
- D’Elia, J.A.; Weinrauch, L.A. Gated calcium channel and mutation mechanisms in multidrug-resistant tuberculosis. Int. J. Mol. Sci. 2023, 24, 9670. [Google Scholar] [CrossRef]
- Shah, I.U.; Sameen, A.; Manzoor, M.F.; Ahmed, Z.; Gao, J.; Farooq, U.; Siddiqi, S.M.; Siddique, R.; Habib, A.; Sun, C.; et al. Association of dietary calcium, magnesium, and vitamin D with type 2 diabetes among US adults: National health and nutrition examination survey 2007–2014-A cross-sectional study. Food Sci. Nutr. 2021, 9, 1480–1490. [Google Scholar] [CrossRef]
- Restrepo, B.I. Diabetes Mellitus and tuberculosis. Microbiol. Spectr. 2016, 4, TNM 17-0023-2016. [Google Scholar] [CrossRef] [PubMed]
- Gengenbacher, M.; Kaufmann, S.H. Mycobacterium tuberculosis: Success through dormancy. FEMS Microbiol. Rev. 2012, 36, 514–532. [Google Scholar] [CrossRef] [PubMed]
- Rajendra, A.; Mishra, A.K.; Francis, N.R.; Carey, R.A. Severe hypercalcemia in a patient with pulmonary tuberculosis. J. Family Med. Prim. Care. 2016, 5, 509–511. [Google Scholar] [CrossRef] [PubMed]
- Araujo, C.A.; Araujo, N.A.; Daher, E.F.; Oliveira, J.D.; Kubrusly, M.; Duarte, P.M.; Silva, S.L.; Araujo, S.M. Resolution of hypercalcemia and acute kidney injury after treatment for pulmonary tuberculosis without the use of corticosteroids. Am. J. Trop. Med. Hyg. 2013, 88, 592–595. [Google Scholar] [CrossRef]
- Cadranel, J.; Garabedian, M.; Milleron, B.; Guillozo, H.; Akoun, G.; Hance, A.J. 1,25(OH)2D2 production by T lymphocytes and alveolar macrophages recovered by lavage from normocalcemic patients with tuberculosis. J. Clin. Invest. 1990, 85, 1588–1593. [Google Scholar] [CrossRef]
- Adams, J.S.; Sharma, O.; Gacad, M.A.; Singer, F.R. Metabolism of 25 hydroxyvitamin D3 by cultured pulmonary alveolar macrophages in sarcoidosis. J. Clin. Investig. 1983, 72, 1856–1860. [Google Scholar] [CrossRef]
- Hafiez, A.A.; Abdel-Hafez, M.A.; Salem, D.; Abdou, M.A.; Helaly, A.A.; Aarag, A.H. Calcium homeostasis in untreated tuberculosis. 1—Basic study. Kekkaku 1990, 65, 309–316. [Google Scholar]
- Rusciano, M.R.; Sommariva, E.; Douin-Echinard, V.; Ciccarelli, M.; Poggio, P.; Maione, A.S. CaMKII Activity in the Inflammatory Response of Cardiac Diseases. Int. J. Mol. Sci. 2019, 20, 4374. [Google Scholar] [CrossRef]
- Junho, C.V.C.; Caio-Silva, W.; Trentin-Sonoda, M.; Carneiro-Ramos, M.S. An Overview of the Role of Calcium/Calmodulin-Dependent Protein Kinase in Cardiorenal Syndrome. Front. Physiol. 2020, 11, 735. [Google Scholar] [CrossRef]
- Maier, L.S.; Bers, D.M. Role of Ca2+/calmodulin-dependent protein kinase (CaMK) in excitation-contraction coupling in the heart. Cardiovasc. Res. 2007, 73, 631–640. [Google Scholar] [CrossRef]
- Lind, L.; Ljunghall, S. Hypercalcemia in pulmonary tuberculosis. Ups. J. Med. Sci. 1990, 95, 157–160. [Google Scholar] [CrossRef] [PubMed]
- Chan, T.Y.; Poon, P.; Pang, J.; Swaminathan, R.; Chan, C.H.; Nisar, M.; Williams, C.S.; Davies, P.D. A study of calcium and vitamin D metabolism in Chinese patients with pulmonary tuberculosis. J. Trop. Med. Hyg. 1994, 97, 26–30. [Google Scholar] [PubMed]
- Roussos, A.; Lagogianni, I.; Gonis, A.; Ilias, I.; Kazi, D.; Patsopoulos, D.; Philippou, N. Hypercalcaemia in Greek patients with tuberculosis before the initiation of anti-tuberculosis treatment. Respir. Med. 2001, 95, 187–190. [Google Scholar] [CrossRef] [PubMed]
- John, S.M.; Sagar, S.; Aparna, J.K.; Joy, S.; Mishra, A.K. Risk factors for hypercalcemia in patients with tuberculosis. Int. J. Mycobacteriol. 2020, 9, 7–11. [Google Scholar] [CrossRef] [PubMed]
- Liam, C.K.; Lim, K.H.; Srinivas, P.; Poi, P.J. Hypercalcaemia in patients with newly diagnosed tuberculosis in Malaysia. Int. J. Tuberc. Lung. Dis. 1998, 2, 818–823. [Google Scholar]
- Ali-Gombe, A.; Onadeko, B.O. Serum calcium levels in patients with active pulmonary tuberculosis. Afr. J. Med. Sci. 1997, 26, 67–68. [Google Scholar]
- Soofi, A.; Malik, A.; Khan, J.; Muzaffar, S. Severe hypercalcemia in tuberculosis. J. Pak. Med. Assoc. 2004, 54, 213–215. [Google Scholar]
- Sullivan, J.N.; Salmon, W.D., Jr. Hypercalcemia in active pulmonary tuberculosis. South Med. J. 1987, 80, 572–576. [Google Scholar] [CrossRef]
- Cipola, L.; Roy, T.M.; Gardner, R.P. Symptomatic hypercalcemia pulmonary tuberculosis. J. Ky. Med. Assoc. 1989, 87, 13–16. [Google Scholar]
- Pruitt, B.; Onarecker, C.; Coniglione, T. Hypercalcemic crisis in a patient with pulmonary tuberculosis. J. Okla. State Med. Assoc. 1995, 88, 518–520. [Google Scholar]
- Hourany, J.; Mehta, J.B.; Hourany, V.; Byrd, R.P., Jr.; Roy, T.M. Hypercalcemia and pulmonary tuberculosis in east Tennessee. Tenn. Med. 1997, 90, 493–495. [Google Scholar] [PubMed]
- Williams, P.M.; Pratt, R.H.; Walker, W.L.; Price, S.F.; Stewart, R.J.; Feng, P.I. Tuberculosis—United States, 2023. MMWR Morb. Mortal. Wkly. Rep. 2024, 73, 265–270. [Google Scholar] [CrossRef] [PubMed]
- Cioboata, R.; Vasile, C.M.; Bălteanu, M.A.; Georgescu, D.E.; Toma, C.; Dracea, A.S.; Nicolosu, D. Evaluating Serum Calcium and Magnesium Levels as Predictive Biomarkers for Tuberculosis and COVID-19 Severity: A Romanian Prospective Study. Int. J. Mol. Sci. 2023, 25, 418. [Google Scholar] [CrossRef] [PubMed]
- Trimble, W.S.; Grinstein, S. TB or not TB: Calcium regulation in mycobacterial survival. Cell 2007, 130, 12–14. [Google Scholar] [CrossRef]
- Goode, C.A.; Dinh, C.T.; Linder, M.C. Mechanism of copper transport and delivery in mammals: Review and recent findings. Adv. Exp. Med. Biol. 1989, 258, 131–144. [Google Scholar]
- White, J.R.; Campbell, R.K. Magnesium and Diabetes: A review. Ann. Pharmacother. 1993, 27, 775–780. [Google Scholar] [CrossRef]
- Padilla-Benavides, T.; Long, J.E.; Raimunda, D.; Sassetti, C.M.; Argüello, J.M. A novel P(1B)-type Mn2+-transporting ATPase is required for secreted protein metalation in mycobacteria. J. Biol. Chem. 2013, 288, 11334–11347. [Google Scholar] [CrossRef]
- Botella, H.; Peyron, P.; Levillain, F.; Poincloux, R.; Poquet, Y.; Brandli, I.; Wang, C.; Tailleux, L.; Tilleul, S.; Charrière, G.M.; et al. Mycobacterial p(1)-type ATPases mediate resistance to zinc poisoning in human macrophages. Cell Host Microbe. 2011, 10, 248–259. [Google Scholar] [CrossRef]
- Jayachandran, R.; Sundaramurthy, V.; Combaluzier, B.; Mueller, P.; Korf, H.; Huygen, K.; Miyazaki, T.; Albrecht, I.; Massner, J.; Pieters, J. Survival of mycobacteria in macrophages is mediated by coronin 1-dependent activation of calcineurin. Cell 2007, 1, 37–50. [Google Scholar] [CrossRef]
- Kang, Y.J.; Park, H.; Park, S.B.; Lee, J.; Hyun, H.; Jung, M.; Lee, E.J.; Je, M.A.; Kim, J.; Lee, Y.S.; et al. High Procalcitonin, C-Reactive Protein, and α-1 Acid Glycoprotein Levels in Whole Blood Samples Could Help Rapid Discrimination of Active Tuberculosis from Latent Tuberculosis Infection and Healthy Individuals. Microorg. 2022, 10, 1928. [Google Scholar] [CrossRef]
- Kandemir, O.; Uluba, B.; Polat, G.; Sezer, C.; Camdeviren, H.; Kaya, A. Elevation of procalcitonin level in patients with pulmonary tuberculosis and in medical staff with close patient contact. Arch. Med. Res. 2003, 34, 311–314. [Google Scholar] [CrossRef] [PubMed]
- Doguer, C.; Ha, J.H.; Collins, J.F. Intersection of Iron and Copper Metabolism in the Mammalian Intestine and Liver. Compr Physiol. 2018, 8, 1433–1461. [Google Scholar] [PubMed]
- Laouali, N.; MacDonald, C.J.; Shah, S.; El Fatouhi, D.; Mancini, F.R.; Fagherazzi, G.; Boutron-Ruault, M.C. Dietary Copper/Zinc Ratio and Type 2 Diabetes Risk in Women: The E3N Cohort Study. Nutrients 2021, 13, 2502. [Google Scholar] [CrossRef] [PubMed]
- Gembillo, G.; Labbozzetta, V.; Giuffrida, A.E.; Peritore, L.; Calabrese, V.; Spinella, C.; Stancanelli, M.R.; Spallino, E.; Visconti, L.; Santoro, D. Potential Role of Copper in Diabetes and Diabetic Kidney Disease. Metabolites 2022, 13, 17. [Google Scholar] [CrossRef]
- Gong, D.; Lu, J.; Chen, X.; Reddy, S.; Crossman, D.J.; Glyn-Jones, S.; Choong, Y.S.; Kennedy, J.; Barry, B.; Zhang, S.; et al. A copper(II)-selective chelator ameliorates diabetes-evoked renal fibrosis and albuminuria, and suppresses pathogenic TGF-beta activation in the kidneys of rats used as a model of diabetes. Diabetologia 2008, 51, 1741–1751. [Google Scholar] [CrossRef]
- Wolschendorf, F.; Ackart, D.; Shrestha, T.B.; Hascall-Dove, L.; Nolan, S.; Lamichhane, G.; Wang, Y.; Bossmann, S.H.; Basaraba, R.J.; Niederweis, M. Copper resistance is essential for virulence of Mycobacterium tuberculosis. Proc. Natl. Acad. Sci. USA 2011, 108, 1621–1626. [Google Scholar] [CrossRef]
- Nathan, C.; Shiloh, M.U. Reactive oxygen and nitrogen intermediates in the relationship between mammalian hosts and microbial pathogens. Proc. Natl. Acad. Sci. USA 2000, 97, 8841–8848. [Google Scholar] [CrossRef]
- Khanna, B.K.; Kumar, R.L.; Mukherjee, P.K.; Chaudhary, A.R.; Kamboj, V.P. Plasma copper and zinc levels in pulmonary tuberculosis. Indian J. Tuberc. 1982, 29, 179–181. [Google Scholar]
- Keflie, T.S.; Samuel, A.; Woldegiorgis, A.Z.; Mihret, A.; Abebe, M.; Biesalski, H.K. Vitamin A and zinc deficiencies among tuberculosis patients in Ethiopia. J. Clin. Tuberc. Other Mycobact. Dis. 2018, 12, 27–33. [Google Scholar] [CrossRef]
- Boudehen, Y.M.; Faucher, M.; Maréchal, X.; Miras, R.; Rech, J.; Rombouts, Y.; Sénèque, O.; Wallat, M.; Demange, P.; Bouet, J.Y.; et al. Mycobacterial resistance to zinc poisoning requires assembly of P-ATPase-containing membrane metal efflux platforms. Nat. Commun. 2022, 13, 4731. [Google Scholar] [CrossRef]
- Neyrolles, O.; Wolschendorf, F.; Mitra, A.; Niederweis, M. Mycobacteria, metals, and the macrophage. Immunol. Rev. 2015, 264, 249–263. [Google Scholar] [CrossRef] [PubMed]
- Isanaka, S.; Aboud, S.; Mugusi, F.; Bosch, R.J.; Willett, W.C.; Spiegelman, D.; Duggan, C.; Fawzi, W.W. Iron status predicts treatment failure and mortality in tuberculosis patients: A prospective cohort study from Dar es Salaam, Tanzania. PLoS ONE 2012, 7, e37350. [Google Scholar] [CrossRef] [PubMed]
- Sow, F.B.; Florence, W.C.; Satoskar, A.R.; Schlesinger, L.S.; Zwilling, B.S.; Lafuse, W.P. Expression and localization of hepcidin in macrophages: A role in host defense against tuberculosis. J. Leukoc. Biol. 2007, 82, 934–945. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Cao, H.; Xie, Y.; Xu, Z.; Li, Y.; Luo, H. Mycobacterium tuberculosis infection induces a novel type of cell death: Ferroptosis. Biomed. Pharmacother. 2024, 177, 117030. [Google Scholar] [CrossRef]
- Kumar, A.; Deshane, J.S.; Crossman, D.K.; Bolisetty, S.; Yan, B.S.; Kramnik, I.; Agarwal, A.; Steyn, A.J. Heme oxygenase-1-derived carbon monoxide induces the Mycobacterium tuberculosis dormancy regulon. J. Biol. Chem. 2008, 283, 18032–18039. [Google Scholar] [CrossRef]
- Das, A.; Ray, J.; Roth, M.O.; Shu, Y.; Medina, M.L.; Barakar, M.R.; Li, H. Coupled catalytic states and the role of metal coordination in Cas 9. Nat. Catal. 2023, 6, 969–977. [Google Scholar] [CrossRef]
- Bahoua, B.; Sevdalis, S.E.; Soto, A.M. Effect of Sequence on the Interactions of Divalent Cations with M-Box Riboswitches from Mycobacterium tuberculosis and Bacillus subtilis. Biochem. 2021, 60, 2781–2794. [Google Scholar] [CrossRef]
- Caldwell, R.W.; Rodriguez, P.C.; Toque, H.A.; Narayanan, S.P.; Caldwell, R.B. Arginase: A Multifaceted Enzyme Important in Health and Disease. Physiol. Rev. 2018, 98, 641–665. [Google Scholar] [CrossRef]
- Qian, K.; Shan, L.; Shang, S.; Li, T.; Wang, S.; Wei, M.; Tang, B.; Xi, J. Manganese enhances macrophage defense against Mycobacterium tuberculosis via the STING-TNF signaling pathway. Int. Immunopharmacol. 2022, 113, 109471. [Google Scholar] [CrossRef]
- Muzembo, B.A.; Mbendi, N.C.; Ngatu, N.R.; Suzuki, T.; Wada, K.; Ikeda, S. Serum selenium levels in tuberculosis patients: A systematic review and meta-analysis. J. Trace Elem. Med. Biol. 2018, 50, 257–262. [Google Scholar] [CrossRef]
- Sinclair, D.; Abba, K.; Grobler, L.; Sudarsanam, T.D. Nutritional supplements for people being treated for active tuberculosis. Cochrane Database Syst. Rev. 2011, 11, CD006086, Update in: Cochrane Database Syst. Rev. 2016, 6, CD006086. [Google Scholar] [CrossRef] [PubMed]
- Nienaber, A.; Uyoga, M.A.; Dolman-Macleod, R.C.; Malan, L. Iron Status and Supplementation during Tuberculosis. Microorganisms 2023, 11, 785. [Google Scholar] [CrossRef] [PubMed]
- Agoro, R.; Mura, C. Iron Supplementation Therapy, A Friend and Foe of Mycobacterial Infections? Pharmaceuticals 2019, 12, 75. [Google Scholar] [CrossRef] [PubMed]
- Estevez, H.; Palacios, A.; Gil, D.; Anguita, J.; Vallet-Regi, M.; González, B.; Prados-Rosales, R.; Luque-Garcia, J.L. Antimycobacterial Effect of Selenium Nanoparticles on Mycobacterium tuberculosis. Front. Microbiol. 2020, 11, 800. [Google Scholar] [CrossRef]
- Ifijen, I.H.; Atoe, B.; Ekun, R.O.; Ighodaro, A.; Odiachi, I.J. Treatments of Mycobacterium tuberculosis and Toxoplasma gondii with Selenium Nanoparticles. Bionanoscience 2023, 13, 249–277. [Google Scholar] [CrossRef]
- Pi, J.; Shen, L.; Yang, E.; Shen, H.; Huang, D.; Wang, R.; Hu, C.; Jin, H.; Cai, H.; Cai, J.; et al. Macrophage-Targeted Isoniazid-Selenium Nanoparticles Promote Antimicrobial Immunity and Synergize Bactericidal Destruction of Tuberculosis bacilli. Angew. Chem. Int. Ed. Engl. 2020, 59, 3226–3323. [Google Scholar] [CrossRef]
- Ribeiro, R.C.B.; de Marins, D.B.; Di Leo, I.; da Silva Gomes, L.; de Moraes, M.G.; Abbadi, B.L.; Villela, A.D.; da Silva, W.F.; da Silva, L.C.R.P.; Machado, P.; et al. Anti-tubercular profile of new selenium-menadione conjugates against Mycobacterium tuberculosis H37Rv (ATCC 27294) strain and multidrug-resistant clinical isolates. Eur. J. Med. Chem. 2021, 209, 112859. [Google Scholar] [CrossRef]
- Lin, W.; Fan, S.; Liao, K.; Huang, Y.; Cong, Y.; Zhang, J.; Jin, H.; Zhao, Y.; Ruan, Y.; Lu, H.; et al. Engineering zinc oxide hybrid selenium nanoparticles for synergetic anti-tuberculosis treatment by combining Mycobacterium tuberculosis killings and host cell immunological inhibition. Front. Cell Infect. Microbiol. 2023, 12, 1074533. [Google Scholar] [CrossRef]
- Song, W.M.; Zhao, J.Y.; Zhang, Q.Y.; Liu, S.Q.; Zhu, X.H.; An, Q.Q.; Xu, T.T.; Li, S.J.; Liu, J.Y.; Tao, N.N.; et al. COVID-19 and Tuberculosis Coinfection: An Overview of Case Reports/Case Series and Meta-Analysis. Front. Med. 2021, 8, 657006. [Google Scholar] [CrossRef]
- Xu, E.; Xie, Y.; Al-Aly, Z. Long-term neurologic outcomes of COVID-19. Nat. Med. 2022, 28, 2406–2415. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, Y.; Wen, L.; Ouyang, J.L.; Zhang, W.; Zhang, J.; Wang, Y.; Liu, Q. Neurological Sequelae of COVID-19: A Biochemical Perspective. ACS Omega 2023, 8, 27812–27818. [Google Scholar] [CrossRef] [PubMed]
- Rose, M.L.; Madren, J.; Bunzendahl, H.; Thurman, R.G. Dietary glycine inhibits the growth of B16 melanoma tumors in mice. Carcinogenesis 1999, 20, 793–798. [Google Scholar] [CrossRef] [PubMed]
- Bruns, H.; Kazanavicius, D.; Schultze, D.; Saeedi, M.A.; Yamanaka, K.; Strupas, K.; Schemmer, P. Glycine inhibits angiogenesis in colorectal cancer: Role of endothelial cells. Amino Acids 2016, 48, 2549–2558. [Google Scholar] [CrossRef] [PubMed]
- Surya, W.; Li, Y.; Verdià-Bàguena, C.; Aguilella, V.M.; Torres, J. MERS coronavirus envelope protein has a single transmembrane domain that forms pentameric ion channels. Virus Res. 2015, 201, 61–66. [Google Scholar] [CrossRef]
- Verdiá-Báguena, C.; Nieto-Torres, J.L.; Alcaraz, A.; Dediego, M.L.; Enjuanes, L.; Aguilella, V.M. Analysis of SARS-CoV E protein ion channel activity by tuning the protein and lipid charge. Biochim. Biophys. Acta. 2013, 9, 1828. [Google Scholar] [CrossRef]
- D’Elia, J.A.; Weinrauch, L.A. Calcium Ion Channels: Roles in Infection and Sepsis Mechanisms of Calcium Channel Blocker Benefits in Immunocompromised Patients at Risk for Infection. Int. J. Mol. Sci. 2018, 19, 2465. [Google Scholar] [CrossRef]
- Zhang, L.K.; Sun, Y.; Zeng, H.; Wang, Q.; Jiang, X.; Shang, W.J.; Wu, Y.; Li, S.; Zhang, Y.L.; Hao, Z.N.; et al. Calcium channel blocker amlodipine besylate therapy is associated with reduced case fatality rate of COVID-19 patients with hypertension. Cell Discov. 2020, 6, 96, Erratum in: Cell Discov. 2021, 7, 29. [Google Scholar] [CrossRef]
- Olivier, M. Modulation of host cell intracellular Ca2+. Parasitol. Today 1996, 12, 145–150. [Google Scholar] [CrossRef]
- Bai, D.; Fang, L.; Xia, S.; Ke, W.; Wang, J.; Wu, X.; Fang, P.; Xiao, S. Porcine deltacoronavirus (PDCoV) modulates calcium influx to favor viral replication. Virology 2020, 539, 38–48. [Google Scholar] [CrossRef]
- Dionicio, C.L.; Peña, F.; Constantino-Jonapa, L.A.; Vazquez, C.; Yocupicio-Monroy, M.; Rosales, R.; Zambrano, J.L.; Ruiz, M.C.; Del Angel, R.M.; Ludert, J.E. Dengue virus induced changes in Ca2+ homeostasis in human hepatic cells that favor the viral replicative cycle. Virus Res. 2018, 245, 17–28. [Google Scholar] [CrossRef]
- Johansen, L.M.; DeWald, L.E.; Shoemaker, C.J.>; Hoffstrom, B.G.; Lear-Rooney, c.M.; Stossel, A.; Nelson, E.; Delos, S.E.; Simmons, J.A.; Grenier, J.M.; et al. A screen of approved drugs and molecular probes identifies therapeutics with anti-Ebola virus activity. Sci. Transl. Med. 2015, 7, 290ra289. [Google Scholar] [CrossRef] [PubMed]
- Brault, C.; Levy, P.I.; Bartosch, B. Hepatitis C virus-induced mitochondrial dysfunctions. Viruses 2013, 5, 954–960. [Google Scholar] [CrossRef] [PubMed]
- Nugent, K.M.; Stanley, J.D. Verapamil inhibits influenza A virus entity. Arch. Virol. 1984, 81, 163–170. [Google Scholar] [CrossRef] [PubMed]
- Fujioka, Y.; Nishide, S.; Ose, T.; Suzuki, T.; Kato, I.; Fukuhara, H.; Fujioka, M.; Horiuchi, K.; Satoh, A.O.; Nepal, P.; et al. A Sialylated Voltage-Dependent Ca2+ Channel Binds Hemagglutinin and Mediates Influenza A Virus Entry into Mammalian Cells. Cell Host Microbe 2018, 23, 809–818.e5. [Google Scholar] [CrossRef]
- Hyser, J.M.; Utama, B.; Crawford, S.E.; Broughman, J.R.; Estes, M.K. Activation of the endoplasmic reticulum calcium sensor STIM1 and store-operated calcium entry by rotavirus requires NSP4 viroporin activity. J. Virol. 2013, 87, 13579–13588. [Google Scholar] [CrossRef]
- Scherbik, S.V.; Brinton, M.A. Virus-induced Ca2+ influx extends survival of west Nile virus-infected cells. J. Virol. 2010, 84, 8721–8731. [Google Scholar] [CrossRef]
- Walaza, S.; Cohen, C.; Tempia, S.; Moyes, J.; Nguweneza, A.; Madhi, S.A.; McMorrow, M.; Cohen, A.L. Influenza and tuberculosis co-infection: A systematic review. Influenza Other Respir. Viruses 2020, 14, 77–91. [Google Scholar] [CrossRef]
- Bernard, E.; Kreis, B.; le Quang, S. Influence of influenza on tuberculosis. Bull. Acad. Natl. Med. 1962, 146, 139–145. (In French) [Google Scholar]
- Chao, Y.K.; Chang, S.Y.; Grimm, C. Endo-Lysosomal Cation Channels and Infectious Diseases. Rev. Physiol. Biochem. Pharmacol. 2023, 185, 259–276. [Google Scholar]
- Yorke, E.; Atiase, Y.; Kapalua, J.; Sarfo-Kantanka, O.; Boima, V.; Dey, I.D. The Bidirectional Relationship between Tuberculosis and Diabetes. Tuberc. Res. Treat. 2017, 2017, 1702578. [Google Scholar] [CrossRef]
- Pittas, A.G.; Lau, J.; Hu, F.; Dawson-Hughes, B. The role of vitamin D and calcium in type 2 diabetics: A systematic review and meta-analysis. J. Clin. Endocrinol. Metab. 2007, 92, 2012–2029. [Google Scholar] [CrossRef] [PubMed]
- Dandona, P.; Chaudhuri, A.; Ghanim, H. Semaglutide in Early Type 1 Diabetes. N. Engl. J. Med. 2023, 389, 958–959. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Cha-Molstad, H.; Szabo, A.; Shalev, A. Diabetes induces and calcium channel blockers prevent cardiac expression of proapoptotic thioredoxin-interacting protein. Am. J. Physiol. Endocrinol. Metab. 2009, 296, E1133–E1139. [Google Scholar] [CrossRef] [PubMed]
- Xu, G.; Chen, J.; Jing, G.; Shalev, A. Preventing Beta cell loss in diabetes with calcium channel blockers. Diabetes 2012, 61, 848–856. [Google Scholar] [CrossRef] [PubMed]
- Weinrauch, L.A.; D’Elia, J.A. More on Semaglutide in Early Type 1 Diabetes. N. Engl. J. Med. 2024, 390, 291. [Google Scholar]
- Maestro, B.; Molero, S.; Bajo, S.; Dávila, N.; Calle, C. Transcriptional activation of the human insulin receptor gene by 1,25-dihydroxyvitamin D(3). Cell Biochem. Funct. 2002, 20, 227–232. [Google Scholar] [CrossRef]
- Sooy, K.; Schermerhorn, T.; Noda, M.; Surana, M.; Rhoten, W.B.; Meyer, M.; Fleischer, N.; Sharp, G.W.; Christakos, S. Calbindin-D(28k) controls [Ca(2+)](i) and insulin release. Evidence obtained from calbindin-d(28k) knockout mice and beta cell lines. J. Biol. Chem. 1999, 274, 34343–34349. [Google Scholar] [CrossRef]
- Aoki, T.T.; Benbarka, M.M.; Okimura, M.C.; Arcangeli, M.A.; Walter, R.M., Jr.; Wilson, L.D.; Truong, M.P.; Barber, A.R.; Kumagai, L.F. Long-term intermittent intravenous insulin therapy and type 1 diabetes mellitus. Lancet 1993, 342, 515–518. [Google Scholar] [CrossRef]
- Daily, G.E.; Boden, G.H.; Creech, R.H.; Johnson, D.G.; Gleason, R.E.; Kennedy, F.P.; Weinrauch, L.A.; Weir, M.; D’Elia, J.A. Effects of pulsatile intravenous insulin therapy on the progression of diabetic nephropathy. Metabolism 2000, 49, 1491–1495. [Google Scholar] [CrossRef]
- Bais, S.; Greenberg, R.M. Schistosome TRP channels: An appraisal. Int. J. Parasitol. Drugs Drug Resist. 2020, 13, 1–7. [Google Scholar] [CrossRef]
- Fliniaux, I.; Germain, E.; Farfariello, V.; Prevarskaya, N. TRPs and Ca2+ in cell death and survival. Cell Calcium 2018, 69, 4–18. [Google Scholar] [CrossRef] [PubMed]
- Parenti, A.; De Logu, F.; Geppetti, P.; Benemei, S. What is the evidence for the role of TRP channels in inflammatory and immune cells? Br. J. Pharmacol. 2016, 173, 953–969. [Google Scholar] [CrossRef] [PubMed]
- Lamas, G.A.; Navas-Acien, A. Chelation Therapy in Patients with Cardiovascular Disease: A Systematic Review. J. Am. Heart Assoc. 2022, 11, e024648. [Google Scholar]
- Lin, J.L.; Lin-Tan, D.T.; Hsu, K.H.; Yu, C.C. Environmental lead exposure and progression of chronic renal diseases in patients without diabetes. N. Engl. J. Med. 2003, 348, 277–286. [Google Scholar] [CrossRef]
- Lamas, G.A.; Ujueta, F.; Navas-Acien, A. Lead and Cadmium as Cardiovascular Risk Factors: The Burden of Proof Has Been Met. J. Am. Heart Assoc. 2021, 10, e018692. [Google Scholar] [CrossRef]
- Lustberg, M.; Silbergeld, E. Blood lead levels and mortality. Arch. Intern. Med. 2002, 162, 2443–2449. [Google Scholar] [CrossRef]
- Waters, R.S.; Bryden, N.A.; Patterson, K.Y.; Veillon, C.; Anderson, R.A. EDTA chelation effects on urinary losses of cadmium, calcium, chromium, cobalt, copper, lead, magnesium, and zinc. Biol. Trace Elem. Res. 2001, 83, 207–221. [Google Scholar] [CrossRef]
- Tellez-Plaza, M.; Guallar, E.; Fabsitz, R.R.; Howard, B.V.; Umans, J.G.; Francesconi, K.A.; Goessler, W.; Devereux, R.B.; Navas-Acien, A. Cadmium exposure and incident peripheral arterial disease. Circ. Cardiovasc. Qual Outcomes 2013, 6, 626–633. [Google Scholar] [CrossRef]
- Ujueta, F.; Arenas, I.A.; Diaz, D.; Yates, T.; Beasley, R.; Navas-Acien, A.; Lamas, G.A. Cadmium level and severity of peripheral artery disease in patients with coronary artery disease. Eur. J. Prev. Cardiol. 2019, 26, 1456–1458. [Google Scholar] [CrossRef]
- Alam, Z.H.; Ujueta, F.; Arenas, I.A.; Nigra, A.E.; Navas-Acien, A.; Lamas, G.A. Urinary Metal Levels after Repeated Edetate Disodium Infusions: Preliminary Findings. Int. J. Environ. Res. Public Health 2020, 29, 4684. [Google Scholar] [CrossRef]
- Ujueta, F.; Navas-Acien, A.; Mann, K.K.; Prashad, R.; Lamas, G.A. Low-Level Metal Contamination and Chelation in Cardiovascular Disease-A Ripe Area for Toxicology Research. Toxicol. Sci. 2021, 181, 135–147. [Google Scholar] [CrossRef] [PubMed]
- Chowdhury, R.; Ramond, A.; O’Keeffe, L.M.; Shahzad, S.; Kunutsor, S.K.; Muka, T.; Gregson, J.; Willeit, P.; Warnakula, S.; Khan, H.; et al. Environmental toxic metal contaminants and risk of cardiovascular disease: Systematic review and meta-analysis. BMJ 2018, 362, k3310. [Google Scholar] [CrossRef] [PubMed]
- Alissa, E.M.; Ferns, G.A. Heavy metal poisoning and cardiovascular disease. J. Toxicol. 2011, 2011, 870125. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.W.; Yang, C.Y.; Huang, C.F.; Hung, D.Z.; Leung, Y.M.; Liu, S.H. Heavy metals, islet function, and diabetes development. Islets 2009, 1, 169–176. [Google Scholar] [CrossRef]
- Ouyang, P.; Gottlieb, S.H.; Culotta, V.L.; Navas-Acien, A. EDTA Chelation Therapy to Reduce Cardiovascular Events in Persons with Diabetes. Curr. Cardiol. Rep. 2015, 17, 96. [Google Scholar] [CrossRef]
- Calderon Moreno, R.; Navas-Acien, A.; Escolar, E.; Nathan, D.M.; Newman, J.; Schmedtje, J.F.; Diaz, D.; Lamas, G.A.; Fonseca, V. Potential Role of Metal Chelation to Prevent the Cardiovascular Complications of Diabetes. J. Clin. Endocrinol. Metab. 2019, 104, 2931–2941. [Google Scholar] [CrossRef]
- Singh, K.; Bhakuni, V. Cation induced differential effect on structural and functional properties of Mycobacterium tuberculosis alpha-isopropylmalate synthase. BMC Struct. Biol. 2007, 19, 39. [Google Scholar]
- Pajuelo, D.; Tak, U.; Zhang, L.; Danilchanka, O.; Tischler, A.D.; Niederweis, M. Toxin secretion and trafficking by Mycobacterium tuberculosis. Nat. Commun. 2021, 12, 6592. [Google Scholar] [CrossRef]
- Salgado, M.; Márquez-Miranda, V.; Ferrada, L.; Rojas, M.; Poblete-Flores, G.; González-Nilo, F.D.; Ardiles, Á.O.; Sáez, J.C. Ca2+ permeation through C-terminal cleaved, but not full-length human Pannexin1 hemichannels, mediates cell death. Proc. Natl. Acad. Sci. USA 2024, 121, e2405468121. [Google Scholar] [CrossRef]
- Cook, G.M.; Berney, M.; Gebhard, S.; Heinemann, M.; Cox, R.A.; Danilchanka, O.; Niederweis, M. Physiology of mycobacteria. Adv. Microb. Physiol. 2009, 55, 81–182. [Google Scholar]
- Ferreirós, J.; Bustos, A.; Merino, S.; Castro, E.; Dorao, M.; Crespo, C. Transthoracic needle aspiration biopsy: Value in the diagnosis of mycobacterial lung opacities. J. Thorac. Imaging 1999, 14, 194–200. [Google Scholar] [CrossRef] [PubMed]
- Lohia, R.; Allegrini, B.; Berry, L.; Guizouarn, H.; Cerdan, R.; Abkarian, M.; Douguet, D.; Honoré, E.; Wengelnik, K. Pharmacological activation of PIEZO1 in human red blood cells prevents Plasmodium falciparum invasion. Cell Mol. Life Sci. 2023, 18, 124. [Google Scholar] [CrossRef] [PubMed]
- Luzzatto, L. Sickle cell anaemia and malaria. Mediterr. J. Hematol. Infect. Dis. 2012, 4, e2012065. [Google Scholar] [CrossRef] [PubMed]
- Nguetse, C.N.; Purington, N.; Ebel, E.R.; Shakya, B.; Tetard, M.; Kremsner, P.G.; Velavan, T.P.; Egan, E.S. A common polymorphism in the mechanosensitive ion channel PIEZO1 is associated with protection from severe malaria in humans. Proc. Natl. Acad. Sci. USA 2020, 117, 9074–9081. [Google Scholar] [CrossRef]
- Reiter, P. Global warming and vector borne disease in temperate regions. Lancet 1998, 351, 839–840. [Google Scholar] [CrossRef]
- Karch, S.; Dellile, M.-F.; Guillet, P.; Mouchet, J. African malaria vectors in European aircraft. Lancet 2001, 357, 235. [Google Scholar] [CrossRef]
- Caballero, J.D.; Wheatley, R.M.; Kapel, N.; López-Causapé, C.; Van der Schalk, T.; Quinn, A.; Shaw, L.P.; Ogunlana, L.; Recanatini, C.; Xavier, B.B.; et al. Mixed strain pathogen populations accelerate the evolution of antibiotic resistance in patients. Nat. Commun. 2023, 14, 1–12. [Google Scholar] [CrossRef]
- Rasheed, M.U.; Thajuddin, N.; Ahamed, P.; Teklemariam, Z.; Jamil, K. Antimicrobial drug resistance in strains of Escherichia coli isolated from food sources. Rev. Inst. Med. Trop. Sao Paulo 2014, 56, 341–346. [Google Scholar] [CrossRef]
- Doshi, S.; Shin, S.; LaPointe-Shaw, L.; Fowler, R.A.; Fralick, M.; Kwan, J.L.; Shojania, K.G.; Tang, T.; Razak, F.; Verma, A.A. Temporal clustering of critical illness events on medical wards. JAMA: Intern. Med. 2023, 183, 924–932. [Google Scholar] [CrossRef]
- Stephenson, L. The impact of schistosomiasis on human nutrition. Parasitol. 1993, 107, S107–S123. [Google Scholar] [CrossRef]
- Campos, M.C.; Castro-Pinto, D.B.; Ribeiro, G.A.; Berredo-Pinho, M.M.; Gomes, L.H.; da Silva Bellieny, M.S.; Goulart, C.M.; Echevarria, A.; Leon, L.L. P-glycoprotein efflux pump plays an important role in Trypanosoma cruzi drug resistance. Parasitol. Res. 2013, 112, 2341–2351. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Duran, J.; Pinto-Martinez, A.; Castillo, C.; Benaim, G. Identification and electrophysiological properties of a sphingosine-dependent plasma membrane Ca2+ channel in Trypanosoma cruzi. FEBS J. 2019, 286, 3909–3925. [Google Scholar] [CrossRef] [PubMed]
- Gezelle, J.; Saggu, G.; Desai, S.A. Promises and Pitfalls of Parasite Patch-clamp. Trends Parasitol. 2021, 37, 414–429. [Google Scholar] [CrossRef] [PubMed]
a | ||||||
Blood Coagulation | ||||||
Conformational changes allow prothrombin to bind efficiently to phospholipid surfaces | ||||||
Promotes platelet adhesion to blood vessel endothelium with von Willebrand factor | ||||||
Bone Cortex | ||||||
With phosphate increases mass during growth phase | ||||||
With phosphate and exercise increases strength | ||||||
Cell Signaling | ||||||
Stimulates mitochondrial oxidation of ketoglutarate | ||||||
Stimulates mitochondrial oxidation of pyruvate dehydrogenase | ||||||
Digestive System | ||||||
Stimulates gastric acid secretion | ||||||
by Vitamin D-activated calbindin, contributes to intestinal absorption of calcium | ||||||
Kidney | ||||||
Reabsorbed passively by proximal tubule | ||||||
Ca2+ sensing receptor controls absorption in loop of Henle | ||||||
Klotho gene controls calcium absorption with transient receptor protein | ||||||
Muscle | ||||||
Contributes to orderly release of calcium from sarcoplasmic reticulum | ||||||
Contributes to orderly return of calcium to sarcoplasmic reticulum | ||||||
Increases expression of ryanodine receptor involved in Ca2+ release | ||||||
Activates/deactivates actin–myosin for contraction/relaxation | ||||||
b | ||||||
Element | Ion | Neuromuscular | Cardiovascular | Gastrointestinal | Renal | Other |
Calcium | Ca2+ | + | − | + | − | lung |
Cadmium | Cd2+ | + | + | + | − | skin |
Copper | Cu2+ | + | + | + | + | - |
Iron | Fe2+ | − | − | + | + | lymphatic |
Lead | Pb2+ | + | − | + | + | skin |
Manganese | Mn2+ | + | + | + | − | - |
Magnesium | Mg2+ | + | + | − | − | reproductive |
Selenium | Se2+ | + | + | + | + | skin |
Silver | Ag2+ | − | − | − | − | skin |
Zinc | Zn2+ | + | − | + | + | reproductive |
Parathyroid Hormone | |||
---|---|---|---|
Organ level | |||
Stimulates kidney to synthesize vitamin D Increases calcium absorption in kidney tubule Inhibits phosphorus absorption in kidney tubule Decreases calcium phosphate bone mineral mass Cooperates with vitamin D in increasing bone mass | |||
Cell level | |||
Increases expression of alkaline phosphatase Increases expression of bone morphogenetic protein Increases expression of collagen type1 alpha Increases expression of osteoblast transcription factor (Tmem119) Increases expression of calcium-binding protein (osteocalcin) | |||
Vitamin D * | |||
Organ Level | |||
Increases intestinal absorption of calcium Decreases cytokines of inflammation | |||
Cell level | |||
Inhibits inflammation cascade at nuclear factor kappa beta Decreases cytokines of inflammation Supports functions of macrophages Activates nitric acid synthase in endothelial cells Decreases expression of receptor for advanced glycolated end-products | |||
Calcitonin | |||
Organ level | |||
Bone | |||
Contracts osteoclasts Diminishes osteoclast mobility Decreases loss of bone mineral mass | |||
Kidney | |||
Decreases reabsorption of calcium, magnesium Decreases reabsorption of phosphate Decreases reabsorption of sodium => diuresis | |||
Cell level | |||
Binds to its receptors on osteoclasts Promotes vitamin D production enzymes
|
A. Vitamin D increases serum calcium level due to: |
1. Increased sunlight exposure with increased synthesis of vitamin D by skin |
2. Increased 1-alpha hydroxylase from lung, intestine in addition to kidney |
3. Overheating with dehydration |
B. Parathyroid hormone increases serum calcium level due to: |
1. Lysis of bone cortex |
2. Promotion of synthesis of vitamin D |
3. Increased expression with hyperphosphatemia of kidney failure |
C. Calcitonin regulates increased serum calcium levels due to |
1. Inhibition of bone cortex lysis by parathyroid hormone |
2. Increased expression during inflammation which might injure kidney function |
Pathology | Results |
---|---|
Diabetes Mellitus: decreased insulin secretion | improved glucose control |
Cardiovascular Disease: | |
Heart: angina pectoris, use of nitroglycerine | fewer events, decreased use of nitroglycerine |
Vascular | |
Central: dizziness/vertigo | fewer events |
Peripheral: ulcers, gangrene | healing, no amputations |
Stage of Disease Activity | Clinical Evidence | Treatment |
---|---|---|
Primary infection: dormant or latent TB infection | Pulmonary nodules with hibernating pathogen (autophagy completed). Few symptoms, evidenced by skin testing and chest X-ray only | Antibiotics per protocol * |
Active but quiescent or evasive | One-fourth to one-half within the macrophages (autophagy commenced). Symptoms primarily systemic (fatigue, fever, loss of appetite and weight, weakness) | Antibiotics per protocol * |
Active: aggressive pulmonary | Pulmonary cavitation with respiratory symptoms added to above | Antibiotics per protocol * |
Active and disseminated | Miliary: multiorgan involvement | Multiple antibiotics * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
D’Elia, J.A.; Weinrauch, L.A. Role of Divalent Cations in Infections in Host–Pathogen Interaction. Int. J. Mol. Sci. 2024, 25, 9775. https://doi.org/10.3390/ijms25189775
D’Elia JA, Weinrauch LA. Role of Divalent Cations in Infections in Host–Pathogen Interaction. International Journal of Molecular Sciences. 2024; 25(18):9775. https://doi.org/10.3390/ijms25189775
Chicago/Turabian StyleD’Elia, John A., and Larry A. Weinrauch. 2024. "Role of Divalent Cations in Infections in Host–Pathogen Interaction" International Journal of Molecular Sciences 25, no. 18: 9775. https://doi.org/10.3390/ijms25189775
APA StyleD’Elia, J. A., & Weinrauch, L. A. (2024). Role of Divalent Cations in Infections in Host–Pathogen Interaction. International Journal of Molecular Sciences, 25(18), 9775. https://doi.org/10.3390/ijms25189775