Association of the rs9896052 Polymorphism Upstream of GRB2 with Proliferative Diabetic Retinopathy in Patients with Less than 10 Years of Diabetes
Abstract
:1. Introduction
2. Results
2.1. Characteristics of Study Population
2.2. Genotype and Allele Frequencies of rs9896052 Polymorphism in the Study Groups
3. Discussion
4. Materials and Methods
4.1. Ethical Statement
4.2. Subject Enrollment and Data Collection
4.3. Genotyping
4.4. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- American Diabetes Association Professional Practice Committee. 12. Retinopathy, neuropathy, and foot care: Standards of care in diabetes-2024. Diabetes Care 2024, 47, S231–S243. [Google Scholar] [CrossRef] [PubMed]
- Teo, Z.L.; Tham, Y.C.; Yu, M.; Chee, M.L.; Rim, T.H.; Cheung, N.; Bikbov, M.M.; Wang, Y.X.; Tang, Y.; Lu, Y.; et al. Global prevalence of diabetic retinopathy and projection of burden through 2045: Systematic review and meta-analysis. Ophthalmology 2021, 128, 1580–1591. [Google Scholar] [CrossRef] [PubMed]
- Antonetti, D.A.; Silva, P.S.; Stitt, A.W. Current understanding of the molecular and cellular pathology of diabetic retinopathy. Nat. Rev. Endocrinol. 2021, 17, 195–206. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Chen, B. Retinal cell damage in diabetic retinopathy. Cells 2023, 12, 1342. [Google Scholar] [CrossRef]
- Tang, L.; Xu, G.T.; Zhang, J.F. Inflammation in diabetic retinopathy: Possible roles in pathogenesis and potential implications for therapy. Neural Regen. Res. 2023, 18, 976–982. [Google Scholar] [CrossRef]
- Klein, R. The epidemiology of diabetic retinopathy. In Diabetic Retinopathy. Contemporary Diabetes; Duh, E.J., Ed.; Humana Press: Totowa, NJ, USA, 2008; pp. 67–107. [Google Scholar] [CrossRef]
- Cabrera, A.P.; Monickaraj, F.; Rangasamy, S.; Hobbs, S.; McGuire, P.; Das, A. Do genomic factors play a role in diabetic retinopathy? J. Clin. Med. 2020, 9, 216. [Google Scholar] [CrossRef]
- Kowluru, R.A. Cross talks between oxidative stress, inflammation and epigenetics in diabetic retinopathy. Cells 2023, 12, 300. [Google Scholar] [CrossRef]
- Yu, X.; Rong, S. Genome-wide associations and confirmatory meta-analyses in diabetic retinopathy. Genes 2023, 14, 653. [Google Scholar] [CrossRef]
- Burdon, K.P.; Fogarty, R.D.; Shen, W.; Abhary, S.; Kaidonis, G.; Appukuttan, B.; Hewitt, A.W.; Sharma, S.; Daniell, M.; Essex, R.W.; et al. Genome-wide association study for sight-threatening diabetic retinopathy reveals association with genetic variation near the GRB2 gene. Diabetologia 2015, 58, 2288–2297. [Google Scholar] [CrossRef]
- Belov, A.A.; Mohammadi, M. Grb2, a double-edged sword of receptor tyrosine kinase signaling. Sci. Signal. 2012, 5, pe49. [Google Scholar] [CrossRef]
- Hakuno, F.; Takahashi, S.I. IGF1 receptor signaling pathways. J. Mol. Endocrinol. 2018, 61, T69–T86. [Google Scholar] [CrossRef]
- Wang, D.; Liu, G.; Meng, Y.; Chen, H.; Ye, Z.; Jing, J. The configuration of GRB2 in protein interaction and signal transduction. Biomolecules 2024, 14, 259. [Google Scholar] [CrossRef] [PubMed]
- Ijaz, M.; Wang, F.; Shahbaz, M.; Jiang, W.; Fathy, A.H.; Nesa, E.U. The role of Grb2 in cancer and peptides as Grb2 antagonists. Protein Pept. Lett. 2018, 24, 1084–1095. [Google Scholar] [CrossRef] [PubMed]
- Pawson, T. Dynamic control of signaling by modular adaptor proteins. Curr. Opin. Cell Biol. 2007, 19, 112–116. [Google Scholar] [CrossRef] [PubMed]
- Shen, W.; Fruttiger, M.; Zhu, L.; Chung, S.H.; Barnett, N.L.; Kirk, J.K.; Lee, S.; Coorey, N.J.; Killingsworth, M.; Sherman, L.S.; et al. Conditional Müller cell ablation causes independent neuronal and vascular pathologies in a novel transgenic model. J. Neurosci. 2012, 32, 15715–15727. [Google Scholar] [CrossRef]
- Shan, X.; Miao, Y.; Fan, R.; Song, C.; Wu, G.; Wan, Z.; Zhu, J.; Sun, G.; Zha, W.; Mu, X.; et al. Suppression of Grb2 expression improved hepatic steatosis, oxidative stress, and apoptosis induced by palmitic acid in vitro partly through insulin signaling alteration. Vitr. Cell. Dev. Biol. Anim. 2013, 49, 576–582. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Xie, L.; Gunasekar, S.K.; Tong, D.; Mishra, A.; Gibson, W.J.; Wang, C.; Fidler, T.; Marthaler, B.; Klingelhutz, A.; et al. SWELL1 is a regulator of adipocyte size, insulin signalling and glucose homeostasis. Nat. Cell Biol. 2017, 19, 504–517. [Google Scholar] [CrossRef]
- Giubellino, A.; Burke, T.R., Jr.; Bottaro, D.P. Grb2 signaling in cell motility and cancer. Expert Opin. Ther. Targets 2008, 12, 1021–1033. [Google Scholar] [CrossRef]
- Li, Y.; Ding, X.; Tian, X.; Zheng, J.; Ding, C.; Li, X.; Hu, X.; Qiao, Y.; Wang, Y.; Xue, W. Islet transplantation modulates macrophage to induce immune tolerance and angiogenesis of islet tissue in type I diabetes mice model. Aging 2020, 12, 24023–24032. [Google Scholar] [CrossRef]
- Liao, Q.; Gao, X. Tribbles homolog 3 contributes to high glucose-induced injury in retinal pigment epithelial cells via binding to growth factor receptor-bound 2. Bioengineered 2022, 13, 10386–10398. [Google Scholar] [CrossRef]
- Dong, Y.; Liu, J.; Ma, J.; Quan, J.; Bao, Y.; Cui, Y. The possible correlation between serum GRB2 levels and carotid atherosclerosis in patients with type 2 diabetes mellitus. Front. Endocrinol. 2022, 13, 963191. [Google Scholar] [CrossRef]
- Lin, P.I.; Vance, J.M.; Pericak-Vance, M.A.; Martin, E.R. No gene is an island: The flip-flop phenomenon. Am. J. Hum. Genet. 2007, 80, 531–538. [Google Scholar] [CrossRef] [PubMed]
- Clarke, G.M.; Cardon, L.R. Aspects of observing and claiming allele flips in association studies. Genet. Epidemiol. 2010, 34, 266–274. [Google Scholar] [CrossRef] [PubMed]
- Shi, H.; Gazal, S.; Kanai, M.; Koch, E.M.; Schoech, A.P.; Siewert, K.M.; Kim, S.S.; Luo, Y.; Amariuta, T.; Huang, H.; et al. Population-specific causal disease effect sizes in functionally important regions impacted by selection. Nat. Commun. 2021, 12, 1098. [Google Scholar] [CrossRef]
- Rogus, J.J.; Warram, J.H.; Krolewski, A.S. Genetic studies of late diabetic complications: The overlooked importance of diabetes duration before complication onset. Diabetes 2002, 51, 1655–1662. [Google Scholar] [CrossRef]
- Reiner, A.P.; Agardh, E.; Teramura, G.; Gaur, P.; Gaur, L.K.; Agardh, C.D. Diabetes duration may modify the association between genetic variation in the glycoprotein Ia subunit of the platelet collagen receptor and risk of severe diabetic retinopathy: A working hypothesis. Thromb. Haemost. 2003, 89, 142–148. [Google Scholar]
- Canani, L.H.; Costa, L.A.; Crispim, D.; Gonçalves Dos Santos, K.; Roisenberg, I.; Lisbôa, H.R.; Sarturi Tres, G.; Maia, A.L.; Gross, J.L. The presence of allele D of angiotensin-converting enzyme polymorphism is associated with diabetic nephropathy in patients with less than 10 years duration of Type 2 diabetes. Diabet. Med. 2005, 22, 1167–1172. [Google Scholar] [CrossRef]
- Flaxel, C.J.; Adelman, R.A.; Bailey, S.T.; Fawzi, A.; Lim, J.I.; Vemulakonda, G.A.; Ying, G.S. Diabetic Retinopathy Preferred Practice Pattern®. Ophthalmology 2020, 127, P66–P145. [Google Scholar] [CrossRef]
- Crispim, D.; Fagundes, N.J.; dos Santos, K.G.; Rheinheimer, J.; Bouças, A.P.; de Souza, B.M.; Macedo, G.S.; Leiria, L.B.; Gross, J.L.; Canani, L.H. Polymorphisms of the UCP2 gene are associated with proliferative diabetic retinopathy in patients with diabetes mellitus. Clin. Endocrinol. 2010, 72, 612–619. [Google Scholar] [CrossRef]
- Sesti, L.F.C.; Sbruzzi, R.C.; Polina, E.R.; Dos Santos Soares, D.; Crispim, D.; Canani, L.H.; Dos Santos, K.G. Association of polymorphisms in the erythropoietin gene with diabetic retinopathy: A case-control study and systematic review with meta-analysis. BMC Ophthalmol. 2022, 22, 250. [Google Scholar] [CrossRef]
- American Diabetes Association. (2) Classification and diagnosis of diabetes. Diabetes Care. 2015, 38, S8–S16. [Google Scholar] [CrossRef] [PubMed]
- Buffon, M.P.; Carpena, M.P.; Sortica, D.A.; Santer, A.; Carlessi, R.; de Souza, B.M.; Edelweiss, M.I.; Berger, M.; Crispim, D.; Canani, L.H. rs1888747 polymorphism in the FRMD3 gene, gene and protein expression: Role in diabetic kidney disease. Diabetol. Metab. Syndr. 2016, 8, 3. [Google Scholar] [CrossRef] [PubMed]
- Levey, A.S.; Stevens, L.A.; Schmid, C.H.; Zhang, Y.L.; Castro, A.F., 3rd; Feldman, H.I.; Kusek, J.W.; Eggers, P.; Van Lente, F.; Greene, T.; et al. A new equation to estimate glomerular filtration rate. Ann. Intern. Med. 2009, 150, 604–612. [Google Scholar] [CrossRef]
- Kidney Disease: Improving Global Outcomes (KDIGO) Diabetes Work Group. KDIGO 2022 Clinical Practice Guideline for Diabetes Management in Chronic Kidney Disease. Kidney Int. 2022, 102, S1–S127. [Google Scholar] [CrossRef] [PubMed]
- Lahiri, D.K.; Nurnberger, J.I., Jr. A rapid non-enzymatic method for the preparation of HMW DNA from blood for RFLP studies. Nucleic Acids Res. 1991, 19, 5444. [Google Scholar] [CrossRef]
- FigShare. Available online: https://doi.org/10.6084/m9.figshare.26195513 (accessed on 20 July 2024).
- Abramson, J.H. WINPEPI updated: Computer programs for epidemiologists, and their teaching potential. Epidemiol. Perspect. Innov. 2011, 8, 1. [Google Scholar] [CrossRef]
- dbSNP. Available online: https://www.ncbi.nlm.nih.gov/snp/rs9896052#frequency_tab (accessed on 2 July 2024).
Variable | Controls (n = 554) | Cases (n = 284) | p Value |
---|---|---|---|
Age (years) | 58.9 ± 9.7 | 62.1 ± 8.5 | <0.001 |
Male gender | 208 (37.5%) | 167 (58.8%) | <0.001 |
White | 429 (77.4%) | 222 (78.2%) | 0.878 |
Age at T2DM diagnosis (years) | 47.3 ± 9.4 | 45.8 ± 9.3 | 0.037 |
T2DM duration (years) | 11.5 ± 7.2 | 16.3 ± 8.5 | <0.001 |
Glycated hemoglobin (%) | 7.7 ± 2.2 | 7.3 ± 1.8 | 0.134 |
Daily insulin use | 38.0% | 63.3% | <0.001 |
Body mass index (kg/m2) | 30.6 ± 6.2 | 28.1 ± 4.8 | <0.001 |
Smoking | 0.017 | ||
Never smoker | 51.6% | 58.2% | |
Former smoker | 33.6% | 33.8% | |
Active smoker | 14.8% | 8.0% | |
Hypertension | 73.9% | 79.2% | 0.128 |
Systolic blood pressure (mmHg) | 140.5 ± 22.6 | 144.7 ± 24.5 | 0.042 |
Diastolic blood pressure (mmHg) | 84.1 ± 13.7 | 84.4 ± 12.6 | 0.788 |
eGFR (mL/min/1.73 m2) | 97 (77–108) | 60 (12–93) | <0.001 |
Diabetic kidney disease | 50.0% | 82.7% | <0.001 |
Total cholesterol (mmol/L) | 5.07 ± 1.24 | 5.18 ± 1.39 | 0.456 |
HDL cholesterol (mmol/L) | 1.11 (0.93–1.34) | 1.02 (0.85–1.29) | 0.009 |
LDL cholesterol (mmol/L) | 2.87 (2.28–3.84) | 3.05 (2.25–3.97) | 0.417 |
Triglycerides (mmol/L) | 1.78 (1.28–2.71) | 1.78 (1.29–2.70) | 0.743 |
Polymorphism | Blood Donors (n = 106) | Patients with T2DM | ||||
---|---|---|---|---|---|---|
All Patients (n = 838) | p Value * | Controls (n = 554) | Cases (n = 284) | p Value ** | ||
Genotype | ||||||
AA | 24 (22.6%) | 188 (22.4%) | 0.996 | 125 (22.6%) | 63 (22.2%) | 0.570 |
AC | 52 (49.1%) | 415 (49.6%) | 280 (50.5%) | 135 (47.5%) | ||
CC | 30 (28.3%) | 235 (28.0%) | 149 (26.9%) | 86 (30.3%) | ||
Allele | ||||||
A | 100 (47.2%) | 791 (47.2%) | >0.999 | 530 (47.8%) | 261 (46.0%) | 0.497 |
C | 112 (52.8%) | 885 (52.8%) | 578 (52.2%) | 307 (54.0%) |
Skin Color | Polymorphism | Blood Donors | Patients with T2DM | ||||
---|---|---|---|---|---|---|---|
All Patients | p Value * | Controls | Cases | p Value ** | |||
White | Genotype | n = 83 | n = 651 | n = 429 | n = 222 | ||
AA | 15 (18.1%) | 111 (17.1%) | 0.928 | 73 (17.0%) | 38 (17.1%) | 0.206 | |
AC | 41 (49.4%) | 336 (51.6%) | 231 (53.9%) | 105 (47.3%) | |||
CC | 27 (32.5%) | 204 (31.3%) | 125 (29.1%) | 79 (35.6%) | |||
Allele | |||||||
A | 71 (42.8%) | 558 (42.9%) | >0.999 | 377 (43.9%) | 181 (40.8%) | 0.299 | |
C | 95 (57.2%) | 744 (57.1%) | 481 (56.1%) | 263 (59.2%) | |||
Non-White | Genotype | n = 23 | n = 187 | n = 125 | n = 62 | ||
AA | 9 (39.1%) | 77 (41.2%) | 0.849 | 52 (41.6%) | 25 (40.3%) | 0.300 | |
AC | 11 (47.9%) | 79 (42.2%) | 49 (39.2%) | 30 (48.4%) | |||
CC | 3 (13.0%) | 31 (16.6%) | 24 (19.2%) | 7 (11.3%) | |||
Allele | |||||||
A | 29 (63.0%) | 233 (62.3%) | >0.999 | 153 (61.2%) | 80 (64.5%) | 0.610 | |
C | 17 (37.0%) | 141 (37.7%) | 97 (38.8%) | 44 (35.5%) |
T2DM Duration | Polymorphism | All Patients | Controls | Cases | p Value * |
---|---|---|---|---|---|
<10 years | Genotype | n = 281 | n = 221 | n = 60 | 0.052 |
AA | 62 (22.1%) | 52 (23.5%) | 10 (16.7%) | ||
AC | 133 (47.3%) | 109 (49.4%) | 24 (40.0%) | ||
CC | 86 (30.6%) | 60 (27.1%) | 26 (43.3%) | ||
Allele | 0.032 | ||||
A | 257 (45.7%) | 213 (48.2%) | 44 (36.7%) | ||
C | 305 (54.3%) | 229 (51.8%) | 76 (63.3%) | ||
≥10 years | Genotype | n = 557 | n = 333 | n = 224 | 0.876 |
AA | 126 (22.6%) | 73 (21.9%) | 53 (23.7%) | ||
AC | 282 (50.6%) | 171 (51.4%) | 111 (49.5%) | ||
CC | 149 (26.8%) | 89 (26.7%) | 60 (26.8%) | ||
Allele | 0.831 | ||||
A | 534 (47.9%) | 317 (47.6%) | 217 (48.4%) | ||
C | 580 (52.1%) | 349 (52.4%) | 231 (51.6%) |
Variable | Unadjusted OR (95% CI) | Adjusted OR (95% CI) |
---|---|---|
CC genotype * | 2.05 (1.14–3.70) | 2.82 (1.17–6.75) |
Male gender | 3.89 (2.13–7.13) | 6.24 (2.48–15.72) |
Age (years) | 1.04 (1.01–1.07) | 1.06 (1.01–1.10) |
HDL cholesterol (mmol/L) | 0.13 (0.04–0.46) | 0.06 (0.01–0.33) |
LDL cholesterol (mmol/L) | 1.72 (1.24–2.38) | 2.29 (1.49–3.51) |
eGFR (mL/min/1.73 m2) | 0.98 (0.97–0.99) | 0.99 (0.97–1.02) ** |
Non-white skin color | 0.83 (0.41–1.69) | 0.68 (0.11–4.06) *** |
Glycated hemoglobin (%) | 0.76 (0.62–0.93) | 0.87 (0.64–1.17) **** |
Body mass index (kg/m2) | 0.85 (0.79–0.92) | 0.94 (0.86–1.03) ***** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bastos, C.M.C.; da Silva Machado, L.M.; Crispim, D.; Canani, L.H.; dos Santos, K.G. Association of the rs9896052 Polymorphism Upstream of GRB2 with Proliferative Diabetic Retinopathy in Patients with Less than 10 Years of Diabetes. Int. J. Mol. Sci. 2024, 25, 10232. https://doi.org/10.3390/ijms251910232
Bastos CMC, da Silva Machado LM, Crispim D, Canani LH, dos Santos KG. Association of the rs9896052 Polymorphism Upstream of GRB2 with Proliferative Diabetic Retinopathy in Patients with Less than 10 Years of Diabetes. International Journal of Molecular Sciences. 2024; 25(19):10232. https://doi.org/10.3390/ijms251910232
Chicago/Turabian StyleBastos, Caroline Moura Cardoso, Lucas Marcelo da Silva Machado, Daisy Crispim, Luís Henrique Canani, and Kátia Gonçalves dos Santos. 2024. "Association of the rs9896052 Polymorphism Upstream of GRB2 with Proliferative Diabetic Retinopathy in Patients with Less than 10 Years of Diabetes" International Journal of Molecular Sciences 25, no. 19: 10232. https://doi.org/10.3390/ijms251910232
APA StyleBastos, C. M. C., da Silva Machado, L. M., Crispim, D., Canani, L. H., & dos Santos, K. G. (2024). Association of the rs9896052 Polymorphism Upstream of GRB2 with Proliferative Diabetic Retinopathy in Patients with Less than 10 Years of Diabetes. International Journal of Molecular Sciences, 25(19), 10232. https://doi.org/10.3390/ijms251910232