Update on the Role of β2AR and TRPV1 in Respiratory Diseases
Abstract
:1. Introduction
2. β2AR and TRPV1: Structure and Function
2.1. β2AR
2.2. TRPV1
3. β2AR and TRPV1 in Respiratory Diseases
3.1. Respiratory Infections
3.2. Asthma
3.3. COPD
3.4. Cystic Fibrosis
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Momtazmanesh, S.; Moghaddam, S.S.; Ghamari, S.-H.; Rad, E.M.; Rezaei, N.; Shobeiri, P.; Aali, A.; Abbasi-Kangevari, M.; Abbasi-Kangevari, Z.; Abdelmasseh, M.; et al. Global Burden of Chronic Respiratory Diseases and Risk Factors, 1990–2019: An Update from the Global Burden of Disease Study 2019. EClinicalMedicine 2023, 59, 101936. [Google Scholar] [CrossRef] [PubMed]
- Figueiredo, I.A.D.; Ferreira, S.R.D.; Fernandes, J.M.; da Silva, B.A.; Vasconcelos, L.H.C.; Cavalcante, F.d.A. A Review of the Pathophysiology and the Role of Ion Channels on Bronchial Asthma. Front. Pharmacol. 2023, 14, 1236550. [Google Scholar] [CrossRef] [PubMed]
- Bai, T.R. Beta2 Adrenergic Receptors in Asthma: A Current Perspective. Lung 1992, 170, 125–141. [Google Scholar] [CrossRef] [PubMed]
- Palczewskl, K.; Benovic, J.L. G-Protein-Coupled Receptor Kinases. Trends Biochem. Sci. 1991, 16, 387–391. [Google Scholar] [CrossRef] [PubMed]
- Rockman, H.A.; Koch, W.J.; Lefkowitz, R.J. Seven-Transmembrane-Spanning Receptors and Heart Function. Nature 2002, 415, 206–212. [Google Scholar] [CrossRef] [PubMed]
- Strosberg, A.D. Structure and Function of the β3-Adrenergic Receptor. Annu. Rev. Pharmacol. Toxicol. 1997, 37, 421–450. [Google Scholar] [CrossRef]
- JOHNSON, M. The β-Adrenoceptor. Am. J. Respir. Crit. Care Med. 1998, 158 (Suppl. 2), S146–S153. [Google Scholar] [CrossRef]
- Steinberg, S.F. The Molecular Basis for Distinct β-Adrenergic Receptor Subtype Actions in Cardiomyocytes. Circ. Res. 1999, 85, 1101–1111. [Google Scholar] [CrossRef]
- Abosamak, N.R.; Shahin, M.H. Beta2 Receptor Agonists and Antagonists. In StatPearls [Internet]; StatPearls Publishing: St. Petersburg, FL, USA, 2023. [Google Scholar]
- Spina, D.; Rigby, P.J.; Paterson, J.W.; Goldie, R.G. Autoradiographic Localization of Beta-Adrenoceptors in Asthmatic Human Lung. Am. Rev. Respir. Dis. 1989, 140, 1410–1415. [Google Scholar] [CrossRef]
- Carstairs, J.R.; Nimmo, A.J.; Barnes, P.J. Autoradiographic Visualization of Beta-Adrenoceptor Subtypes in Human Lung. Am. Rev. Respir. Dis. 1985, 132, 541–547. [Google Scholar] [CrossRef]
- Kobilka, B.K.; Frielle, T.; Dohlman, H.G.; Bolanowski, M.A.; Dixon, R.A.; Keller, P.; Caron, M.G.; Lefkowitz, R.J. Delineation of the Intronless Nature of the Genes for the Human and Hamster Beta 2-Adrenergic Receptor and Their Putative Promoter Regions. J. Biol. Chem. 1987, 262, 7321–7327. [Google Scholar] [CrossRef] [PubMed]
- Rasmussen, S.G.F.; Choi, H.-J.; Rosenbaum, D.M.; Kobilka, T.S.; Thian, F.S.; Edwards, P.C.; Burghammer, M.; Ratnala, V.R.P.; Sanishvili, R.; Fischetti, R.F.; et al. Crystal Structure of the Human β2 Adrenergic G-Protein-Coupled Receptor. Nature 2007, 450, 383–387. [Google Scholar] [CrossRef] [PubMed]
- Liggett, S.B. Update on Current Concepts of the Molecular Basis of β2-Adrenergic Receptor Signaling. J. Allergy Clin. Immunol. 2002, 110, S223–S228. [Google Scholar] [CrossRef] [PubMed]
- Robison, G.A.; Butcher, R.W.; Sutherland, E.W. Adenyl Cyclase as an Adrenergic Receptor. Ann. N. Y. Acad. Sci. 1967, 139, 703–723. [Google Scholar] [CrossRef]
- Mafi, A.; Kim, S.K.; Goddard, W.A., III. The dynamics of agonist-β2-adrenergic receptor activation induced by binding of GDP-bound Gs protein. Nat. Chem. 2023, 15, 1127–1137. [Google Scholar] [CrossRef]
- Billington, C.K.; Ojo, O.O.; Penn, R.B.; Ito, S. CAMP Regulation of Airway Smooth Muscle Function. Pulm. Pharmacol. Ther. 2013, 26, 112–120. [Google Scholar] [CrossRef] [PubMed]
- Buels, K.S.; Fryer, A.D. Muscarinic receptor antagonists: Effects on pulmonary function. Handb. Exp. Pharmacol. 2012, 208, 317–341. [Google Scholar] [CrossRef]
- Giembycz, M.A. Beyond the Dogma: Novel 2-Adrenoceptor Signalling in the Airways. Eur. Respir. J. 2006, 27, 1286–1306. [Google Scholar] [CrossRef]
- Pelaia, G.; Gallelli, L.; Vatrella, A.; Grembiale, R.D.; Maselli, R.; De Sarro, G.B.; Marsico, S.A. Potential Role of Potassium Channel Openers in the Treatment of Asthma and Chronic Obstructive Pulmonary Disease. Life Sci. 2002, 70, 977–990. [Google Scholar] [CrossRef]
- Kume, H.; Takai, A.; Tokuno, H.; Tomita, T. Regulation of Ca2+-Dependent K+-Channel Activity in Tracheal Myocytes by Phosphorylation. Nature 1989, 341, 152–154. [Google Scholar] [CrossRef]
- Yang, A.; Yu, G.; Wu, Y.; Wang, H. Role of β2-Adrenergic Receptors in Chronic Obstructive Pulmonary Disease. Life Sci. 2021, 265, 118864. [Google Scholar] [CrossRef] [PubMed]
- Barnes, P.J. Effect of β Agonists on Inflammatory Cells. J. Allergy Clin. Immunol. 1999, 104, S10–S17. [Google Scholar] [CrossRef]
- Carman, C.V.; Benovic, J.L. G-Protein-Coupled Receptors: Turn-Ons and Turn-Offs. Curr. Opin. Neurobiol. 1998, 8, 335–344. [Google Scholar] [CrossRef]
- Shenoy, S.K.; Lefkowitz, R.J. β-Arrestin-Mediated Receptor Trafficking and Signal Transduction. Trends Pharmacol. Sci. 2011, 32, 521–533. [Google Scholar] [CrossRef] [PubMed]
- O’Hayre, M.; Eichel, K.; Avino, S.; Zhao, X.; Steffen, D.J.; Feng, X.; Kawakami, K.; Aoki, J.; Messer, K.; Sunahara, R.; et al. Genetic Evidence That β-Arrestins Are Dispensable for the Initiation of β2-Adrenergic Receptor Signaling to ERK. Sci. Signal 2017, 10, eaal3395. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhang, Y.; Guo, Y.; Zhang, Y.; Xu, M.; He, B. β2-Adrenoceptor Involved in Smoking-Induced Airway Mucus Hypersecretion through β-Arrestin-Dependent Signaling. PLoS ONE 2014, 9, e97788. [Google Scholar] [CrossRef] [PubMed]
- Oehme, S.; Mittag, A.; Schrödl, W.; Tarnok, A.; Nieber, K.; Abraham, G. Agonist-Induced β2-Adrenoceptor Desensitization and Downregulation Enhance pro-Inflammatory Cytokine Release in Human Bronchial Epithelial Cells. Pulm. Pharmacol. Ther. 2015, 30, 110–120. [Google Scholar] [CrossRef]
- Vasudevan, N.T.; Mohan, M.L.; Goswami, S.K.; Prasad, S.V.N. Regulation of β-Adrenergic Receptor Function. Cell Cycle 2011, 10, 3684–3691. [Google Scholar] [CrossRef]
- Seibold, A.; Williams, B.; Huang, Z.-F.; Friedman, J.; Moore, R.H.; Knoll, B.J.; Clark, R.B. Localization of the Sites Mediating Desensitization of the β2-Adrenergic Receptor by the GRK Pathway. Mol. Pharmacol. 2000, 58, 1162–1173. [Google Scholar] [CrossRef]
- Pedersen, S.F.; Owsianik, G.; Nilius, B. TRP Channels: An Overview. Cell Calcium 2005, 38, 233–252. [Google Scholar] [CrossRef]
- Tominaga, M.; Caterina, M.J.; Malmberg, A.B.; Rosen, T.A.; Gilbert, H.; Skinner, K.; Raumann, B.E.; Basbaum, A.I.; Julius, D. The Cloned Capsaicin Receptor Integrates Multiple Pain-Producing Stimuli. Neuron 1998, 21, 531–543. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, N.; Horie, S.; Michael, G.J.; Keir, S.; Spina, D.; Page, C.P.; Priestley, J.V. Immunohistochemical Co-Localization of Transient Receptor Potential Vanilloid (TRPV)1 and Sensory Neuropeptides in the Guinea-Pig Respiratory System. Neuroscience 2006, 141, 1533–1543. [Google Scholar] [CrossRef] [PubMed]
- Piedimonte, G.; Rodriguez, M.M.; King, K.A.; McLean, S.; Jiang, X. Respiratory Syncytial Virus Upregulates Expression of the Substance P Receptor in Rat Lungs. Am. J. Physiol.-Lung Cell. Mol. Physiol. 1999, 277, L831–L840. [Google Scholar] [CrossRef] [PubMed]
- Birnbaumer, L.; Yidirim, E.; Abramowitz, J. A Comparison of the Genes Coding for Canonical TRP Channels and Their M, V and P Relatives. Cell Calcium 2003, 33, 419–432. [Google Scholar] [CrossRef]
- Liao, M.; Cao, E.; Julius, D.; Cheng, Y. Structure of the TRPV1 Ion Channel Determined by Electron Cryo-Microscopy. Nature 2013, 504, 107–112. [Google Scholar] [CrossRef]
- Boonen, B.; Alpizar, Y.A.; Sanchez, A.; López-Requena, A.; Voets, T.; Talavera, K. Differential Effects of Lipopolysaccharide on Mouse Sensory TRP Channels. Cell Calcium 2018, 73, 72–81. [Google Scholar] [CrossRef]
- Aneiros, E.; Cao, L.; Papakosta, M.; Stevens, E.B.; Phillips, S.; Grimm, C. The Biophysical and Molecular Basis of TRPV1 Proton Gating. EMBO J. 2011, 30, 994–1002. [Google Scholar] [CrossRef]
- Cao, E.; Liao, M.; Cheng, Y.; Julius, D. TRPV1 Structures in Distinct Conformations Reveal Activation Mechanisms. Nature 2013, 504, 113–118. [Google Scholar] [CrossRef]
- Caterina, M.J.; Schumacher, M.A.; Tominaga, M.; Rosen, T.A.; Levine, J.D.; Julius, D. The Capsaicin Receptor: A Heat-Activated Ion Channel in the Pain Pathway. Nature 1997, 389, 816–824. [Google Scholar] [CrossRef]
- Kim, M.; Sisco, N.J.; Hilton, J.K.; Montano, C.M.; Castro, M.A.; Cherry, B.R.; Levitus, M.; Van Horn, W.D. Evidence That the TRPV1 S1-S4 Membrane Domain Contributes to Thermosensing. Nat. Commun. 2020, 11, 4169. [Google Scholar] [CrossRef]
- Luu, D.D.; Owens, A.M.; Mebrat, M.D.; Van Horn, W.D. A Molecular Perspective on Identifying TRPV1 Thermosensitive Regions and Disentangling Polymodal Activation. Temperature 2023, 10, 67–101. [Google Scholar] [CrossRef]
- Bhave, G.; Hu, H.-J.; Glauner, K.S.; Zhu, W.; Wang, H.; Brasier, D.J.; Oxford, G.S.; Gereau, R.W. Protein Kinase C Phosphorylation Sensitizes but Does Not Activate the Capsaicin Receptor Transient Receptor Potential Vanilloid 1 (TRPV1). Proc. Natl. Acad. Sci. USA 2003, 100, 12480–12485. [Google Scholar] [CrossRef]
- Dai, Y.; Moriyama, T.; Higashi, T.; Togashi, K.; Kobayashi, K.; Yamanaka, H.; Tominaga, M.; Noguchi, K. Proteinase-Activated Receptor 2-Mediated Potentiation of Transient Receptor Potential Vanilloid Subfamily 1 Activity Reveals a Mechanism for Proteinase-Induced Inflammatory Pain. J. Neurosci. 2004, 24, 4293–4299. [Google Scholar] [CrossRef]
- Bhave, G.; Zhu, W.; Wang, H.; Brasier, D.J.; Oxford, G.S.; Gereau, R.W. CAMP-Dependent Protein Kinase Regulates Desensitization of the Capsaicin Receptor (VR1) by Direct Phosphorylation. Neuron 2002, 35, 721–731. [Google Scholar] [CrossRef]
- Premkumar, L.S.; Ahern, G.P. Induction of Vanilloid Receptor Channel Activity by Protein Kinase C. Nature 2000, 408, 985–990. [Google Scholar] [CrossRef]
- De Petrocellis, L.; Harrison, S.; Bisogno, T.; Tognetto, M.; Brandi, I.; Smith, G.D.; Creminon, C.; Davis, J.B.; Geppetti, P.; Di Marzo, V. The Vanilloid Receptor (VR1)-mediated Effects of Anandamide Are Potently Enhanced by the CAMP-dependent Protein Kinase. J. Neurochem. 2001, 77, 1660–1663. [Google Scholar] [CrossRef]
- Docherty, R.J.; Yeats, J.C.; Bevan, S.; Boddeke, H.W.G.M. Inhibition of Calcineurin Inhibits the Desensitization of Capsaicin-Evoked Currents in Cultured Dorsal Root Ganglion Neurones from Adult Rats. Pflug. Arch. 1996, 431, 828–837. [Google Scholar] [CrossRef]
- Chuang, H.; Prescott, E.D.; Kong, H.; Shields, S.; Jordt, S.-E.; Basbaum, A.I.; Chao, M.V.; Julius, D. Bradykinin and Nerve Growth Factor Release the Capsaicin Receptor from PtdIns(4,5)P2-Mediated Inhibition. Nature 2001, 411, 957–962. [Google Scholar] [CrossRef]
- Gambadauro, A.; Galletta, F.; Li Pomi, A.; Manti, S.; Piedimonte, G. Immune Response to Respiratory Viral Infections. Int. J. Mol. Sci. 2024, 25, 6178. [Google Scholar] [CrossRef]
- Mizgerd, J.P. Lung Infection—A Public Health Priority. PLoS Med. 2006, 3, e76. [Google Scholar] [CrossRef]
- Tregoning, J.S.; Schwarze, J. Respiratory Viral Infections in Infants: Causes, Clinical Symptoms, Virology, and Immunology. Clin. Microbiol. Rev. 2010, 23, 74–98. [Google Scholar] [CrossRef]
- Everard, M.L. Paediatric Respiratory Infections. Eur. Respir. Rev. 2016, 25, 36–40. [Google Scholar] [CrossRef]
- Alonso, W.J.; Laranjeira, B.J.; Pereira, S.A.R.; Florencio, C.M.G.D.; Moreno, E.C.; Miller, M.A.; Giglio, R.; Schuck-Paim, C.; Moura, F.E.A. Comparative Dynamics, Morbidity and Mortality Burden of Pediatric Viral Respiratory Infections in an Equatorial City. Pediatr. Infect. Dis. J. 2012, 31, e9–e14. [Google Scholar] [CrossRef]
- Piedimonte, G.; Perez, M.K. Respiratory Syncytial Virus Infection and Bronchiolitis. Pediatr. Rev. 2014, 35, 519–530. [Google Scholar] [CrossRef]
- Licari, A.; Manti, S.; Mastellone, F.; Miraglia Del Giudice, M.; Marseglia, G.L.; Tosca, M.A.; Andrenacci, B.; Capristo, C.; Cutrera, R.; Di Cicco, M.E.; et al. Critical Reappraisal of Short-Acting Bronchodilators for Pediatric Respiratory Diseases. Ital. J. Pediatr. 2024, 50, 104. [Google Scholar] [CrossRef]
- Manti, S.; Staiano, A.; Orfeo, L.; Midulla, F.; Marseglia, G.L.; Ghizzi, C.; Zampogna, S.; Carnielli, V.P.; Favilli, S.; Ruggieri, M.; et al. UPDATE—2022 Italian Guidelines on the Management of Bronchiolitis in Infants. Ital. J. Pediatr. 2023, 49, 19. [Google Scholar] [CrossRef]
- Moore, P.E.; Cunningham, G.; Calder, M.M.; DeMatteo, A.D.; Peeples, M.E.; Summar, M.L.; Peebles, R.S. Respiratory Syncytial Virus Infection Reduces β2-Adrenergic Responses in Human Airway Smooth Muscle. Am. J. Respir. Cell Mol. Biol. 2006, 35, 559–564. [Google Scholar] [CrossRef]
- Davis, I.C.; Xu, A.; Gao, Z.; Hickman-Davis, J.M.; Factor, P.; Sullender, W.M.; Matalon, S. Respiratory Syncytial Virus Induces Insensitivity to β-Adrenergic Agonists in Mouse Lung Epithelium in Vivo. Am. J. Physiol.-Lung Cell. Mol. Physiol. 2007, 293, L281–L289. [Google Scholar] [CrossRef]
- Traylor, Z.P.; Yu, E.N.Z.; Davis, I.C. Respiratory Syncytial Virus Induces Airway Insensitivity to β-Agonists in BALB/c Mice. Am. J. Physiol.-Lung Cell. Mol. Physiol. 2010, 298, L437–L445. [Google Scholar] [CrossRef]
- Harford, T.J.; Rezaee, F.; Gupta, M.K.; Bokun, V.; Naga Prasad, S.V.; Piedimonte, G. Respiratory Syncytial Virus Induces β2-Adrenergic Receptor Dysfunction in Human Airway Smooth Muscle Cells. Sci. Signal 2021, 14, eabc1983. [Google Scholar] [CrossRef]
- Omar, S.; Clarke, R.; Abdullah, H.; Brady, C.; Corry, J.; Winter, H.; Touzelet, O.; Power, U.F.; Lundy, F.; McGarvey, L.P.A.; et al. Respiratory Virus Infection Up-Regulates TRPV1, TRPA1 and ASICS3 Receptors on Airway Cells. PLoS ONE 2017, 12, e0171681. [Google Scholar] [CrossRef]
- Harford, T.J.; Rezaee, F.; Dye, B.R.; Fan, J.; Spence, J.R.; Piedimonte, G. RSV-Induced Changes in a 3-Dimensional Organoid Model of Human Fetal Lungs. PLoS ONE 2022, 17, e0265094. [Google Scholar] [CrossRef]
- Adcock, J.J. TRPV1 Receptors in Sensitisation of Cough and Pain Reflexes. Pulm. Pharmacol. Ther. 2009, 22, 65–70. [Google Scholar] [CrossRef]
- Hu, C.; Wedde-Beer, K.; Auais, A.; Rodriguez, M.M.; Piedimonte, G. Nerve Growth Factor and Nerve Growth Factor Receptors in Respiratory Syncytial Virus-Infected Lungs. Am. J. Physiol.-Lung Cell. Mol. Physiol. 2002, 283, L494–L502. [Google Scholar] [CrossRef]
- Auais, A.; Adkins, B.; Napchan, G.; Piedimonte, G. Immunomodulatory Effects of Sensory Nerves during Respiratory Syncytial Virus Infection in Rats. Am. J. Physiol.-Lung Cell. Mol. Physiol. 2003, 285, L105–L113. [Google Scholar] [CrossRef]
- Harford, T.J.; Grove, L.; Rezaee, F.; Scheraga, R.; Olman, M.A.; Piedimonte, G. RSV Infection Potentiates TRPV 1-Mediated Calcium Transport in Bronchial Epithelium of Asthmatic Children. Am. J. Physiol.-Lung Cell. Mol. Physiol. 2021, 320, L1074–L1084. [Google Scholar] [CrossRef]
- Wu, P.; Larkin, E.K.; Reiss, S.S.; Carroll, K.N.; Summar, M.L.; Minton, P.A.; Woodward, K.B.; Liu, Z.; Islam, J.Y.; Hartert, T.V.; et al. β2-Adrenergic Receptor Promoter Haplotype Influences the Severity of Acute Viral Respiratory Tract Infection during Infancy: A Prospective Cohort Study. BMC Med. Genet. 2015, 16, 82. [Google Scholar] [CrossRef]
- Ağaç, D.; Gill, M.A.; Farrar, J.D. Adrenergic Signaling at the Interface of Allergic Asthma and Viral Infections. Front. Immunol. 2018, 9, 736. [Google Scholar] [CrossRef]
- Tamura, R.; Takahashi, H.K.; Iwagaki, H.; Yagi, T.; Mori, S.; Yoshino, T.; Nishibori, M.; Tanaka, N. Effect of β2-Adrenergic Receptor Agonists on Intercellular Adhesion Molecule (ICAM)-1, B7, and CD40 Expression in Mixed Lymphocyte Reaction. Transplantation 2004, 77, 293–301. [Google Scholar] [CrossRef]
- Kuroki, K.; Takahashi, H.; Iwagaki, H.; Murakami, T.; Kuinose, M.; Hamanaka, S.; Minami, K.; Nishibori, M.; Tanaka, N.; Tanemoto, K. β2-Adrenergic Receptor Stimulation-Induced Immunosuppressive Effects Possibly through Down-Regulation of Co-Stimulatory Molecules, ICAM-1, CD40 and CD14 on Monocytes. J. Int. Med. Res. 2004, 32, 465–483. [Google Scholar] [CrossRef]
- Bochkov, Y.A.; Busse, W.W.; Brockman-Schneider, R.A.; Evans, M.D.; Jarjour, N.N.; McCrae, C.; Miller-Larsson, A.; Gern, J.E. Budesonide and Formoterol Effects on Rhinovirus Replication and Epithelial Cell Cytokine Responses. Respir. Res. 2013, 14, 98. [Google Scholar] [CrossRef]
- Van Ly, D.; Faiz, A.; Jenkins, C.; Crossett, B.; Black, J.L.; McParland, B.; Burgess, J.K.; Oliver, B.G.G. Characterising the Mechanism of Airway Smooth Muscle β2 Adrenoceptor Desensitization by Rhinovirus Infected Bronchial Epithelial Cells. PLoS ONE 2013, 8, e56058. [Google Scholar] [CrossRef]
- Sander, W.J.; O’Neill, H.G.; Pohl, C.H. Prostaglandin E2 As a Modulator of Viral Infections. Front. Physiol. 2017, 8, 89. [Google Scholar] [CrossRef]
- Bradbury, P.; Rumzhum, N.N.; Ammit, A.J. EP 2 and EP 4 Receptor Antagonists: Impact on Cytokine Production and β2-adrenergic Receptor Desensitization in Human Airway Smooth Muscle. J. Cell Physiol. 2019, 234, 11070–11077. [Google Scholar] [CrossRef]
- Choudry, N.B.; Fuller, R.W.; Pride, N.B. Sensitivity of the Human Cough Reflex: Effect of Inflammatory Mediators Prostaglandin E2, Bradykinin, and Histamine. Am. Rev. Respir. Dis. 1989, 140, 137–141. [Google Scholar] [CrossRef]
- Global Initiative for Asthma. Global Strategy for Asthma Management and Prevention. 2024. Available online: www.ginasthma.org (accessed on 22 September 2024).
- Pijnenburg, M.W.; Frey, U.; De Jongste, J.C.; Saglani, S. Childhood Asthma: Pathogenesis and Phenotypes. Eur. Respir. J. 2022, 59, 2100731. [Google Scholar] [CrossRef]
- Manti, S.; Piedimonte, G. An Overview on the RSV-Mediated Mechanisms in the Onset of Non-Allergic Asthma. Front. Pediatr. 2022, 10, 998296. [Google Scholar] [CrossRef]
- Sigurs, N.; Bjarnason, R.; Sigurbergsson, F.; Kjellman, B.; Björkstén, B. Asthma and Immunoglobulin E Antibodies after Respiratory Syncytial Virus Bronchiolitis: A Prospective Cohort Study with Matched Controls. Pediatrics 1995, 95, 500–505. [Google Scholar] [CrossRef]
- Edwards, M.R.; Strong, K.; Cameron, A.; Walton, R.P.; Jackson, D.J.; Johnston, S.L. Viral Infections in Allergy and Immunology: How Allergic Inflammation Influences Viral Infections and Illness. J. Allergy Clin. Immunol. 2017, 140, 909–920. [Google Scholar] [CrossRef]
- Harford, T.J.; Rezaee, F.; Scheraga, R.G.; Olman, M.A.; Piedimonte, G. Asthma Predisposition and Respiratory Syncytial Virus Infection Modulate Transient Receptor Potential Vanilloid 1 Function in Children’s Airways. J. Allergy Clin. Immunol. 2018, 141, 414–416.e4. [Google Scholar] [CrossRef]
- Liang, S.-Q.; Chen, X.-L.; Deng, J.-M.; Wei, X.; Gong, C.; Chen, Z.-R.; Wang, Z.-B. Beta-2 Adrenergic Receptor (ADRB2) Gene Polymorphisms and the Risk of Asthma: A Meta-Analysis of Case-Control Studies. PLoS ONE 2014, 9, e104488. [Google Scholar] [CrossRef]
- Muchão, F.P.; de Souza, A.V.; Souza, J.M.; da Silva, L.V.R.F. Association between Beta-2 Adrenergic Receptor Variants and Clinical Outcomes in Children and Adolescents with Acute Asthma. Einstein 2022, 20, eAO6412. [Google Scholar] [CrossRef]
- Cantero-Recasens, G.; Gonzalez, J.R.; Fandos, C.; Duran-Tauleria, E.; Smit, L.A.M.; Kauffmann, F.; Antó, J.M.; Valverde, M.A. Loss of Function of Transient Receptor Potential Vanilloid 1 (TRPV1) Genetic Variant Is Associated with Lower Risk of Active Childhood Asthma. J. Biol. Chem. 2010, 285, 27532–27535. [Google Scholar] [CrossRef]
- Spitzer, W.O.; Suissa, S.; Ernst, P.; Horwitz, R.I.; Habbick, B.; Cockcroft, D.; Boivin, J.-F.; McNutt, M.; Buist, A.S.; Rebuck, A.S. The Use of β-Agonists and the Risk of Death and near Death from Asthma. N. Engl. J. Med. 1992, 326, 501–506. [Google Scholar] [CrossRef]
- Suissa, S.; Ernst, P.; Boivin, J.F.; Horwitz, R.I.; Habbick, B.; Cockroft, D.; Blais, L.; McNutt, M.; Buist, A.S.; Spitzer, W.O. A Cohort Analysis of Excess Mortality in Asthma and the Use of Inhaled Beta-Agonists. Am. J. Respir. Crit. Care Med. 1994, 149, 604–610. [Google Scholar] [CrossRef]
- Sears, M.R.; Taylor, D.R.; Print, C.G.; Lake, D.C.; Li, Q.; Flannery, E.M.; Yates, D.M.; Lucas, M.K.; Herbison, G.P. Regular Inhaled Beta-Agonist Treatment in Bronchial Asthma. Lancet 1990, 336, 1391–1396. [Google Scholar] [CrossRef]
- Penn, R.B.; Panettieri, R.A.; Benovic, J.L. Mechanisms of Acute Desensitization of the β2 AR–Adenylyl Cyclase Pathway in Human Airway Smooth Muscle. Am. J. Respir. Cell Mol. Biol. 1998, 19, 338–348. [Google Scholar] [CrossRef]
- Salpeter, S.R.; Buckley, N.S.; Ormiston, T.M.; Salpeter, E.E. Meta-Analysis: Effect of Long-Acting β-Agonists on Severe Asthma Exacerbations and Asthma-Related Deaths. Ann. Intern. Med. 2006, 144, 904. [Google Scholar] [CrossRef]
- Salpeter, S.R.; Ormiston, T.M.; Salpeter, E.E. Meta-Analysis: Respiratory Tolerance to Regular β2-Agonist Use in Patients with Asthma. Ann. Intern. Med. 2004, 140, 802. [Google Scholar] [CrossRef]
- Gupta, M.K.; Asosingh, K.; Aronica, M.; Comhair, S.; Cao, G.; Erzurum, S.; Panettieri, R.A.; Naga Prasad, S.V. Defective Resensitization in Human Airway Smooth Muscle Cells Evokes β-Adrenergic Receptor Dysfunction in Severe Asthma. PLoS ONE 2015, 10, e0125803. [Google Scholar] [CrossRef]
- McGraw, D.W.; Forbes, S.L.; Kramer, L.A.; Liggett, S.B. Polymorphisms of the 5’ Leader Cistron of the Human Beta2-Adrenergic Receptor Regulate Receptor Expression. J. Clin. Investig. 1998, 102, 1927–1932. [Google Scholar] [CrossRef] [PubMed]
- Chung, L.P.; Waterer, G.; Thompson, P.J. Pharmacogenetics of β2 Adrenergic Receptor Gene Polymorphisms, Long-Acting β-Agonists and Asthma. Clin. Exp. Allergy 2011, 41, 312–326. [Google Scholar] [CrossRef] [PubMed]
- Adcock, I.; Stevens, D.; Barnes, P. Interactions of Glucocorticoids and Beta 2-Agonists. Eur. Respir. J. 1996, 9, 160–168. [Google Scholar] [CrossRef]
- Mak, J.C.; Nishikawa, M.; Barnes, P.J. Glucocorticosteroids Increase Beta 2-Adrenergic Receptor Transcription in Human Lung. Am. J. Physiol.-Lung Cell. Mol. Physiol. 1995, 268, L41–L46. [Google Scholar] [CrossRef]
- Mak, J.C.; Nishikawa, M.; Shirasaki, H.; Miyayasu, K.; Barnes, P.J. Protective Effects of a Glucocorticoid on Downregulation of Pulmonary Beta 2-Adrenergic Receptors in Vivo. J. Clin. Investig. 1995, 96, 99–106. [Google Scholar] [CrossRef]
- Roth, M.; Johnson, P.R.; Rüdiger, J.J.; King, G.G.; Ge, Q.; Burgess, J.K.; Anderson, G.; Tamm, M.; Black, J.L. Interaction between Glucocorticoids and β 2 Agonists on Bronchial Airway Smooth Muscle Cells through Synchronised Cellular Signalling. Lancet 2002, 360, 1293–1299. [Google Scholar] [CrossRef] [PubMed]
- McGarvey, L.P.; Butler, C.A.; Stokesberry, S.; Polley, L.; McQuaid, S.; Abdullah, H.; Ashraf, S.; McGahon, M.K.; Curtis, T.M.; Arron, J.; et al. Increased Expression of Bronchial Epithelial Transient Receptor Potential Vanilloid 1 Channels in Patients with Severe Asthma. J. Allergy Clin. Immunol. 2014, 133, 704–712.e4. [Google Scholar] [CrossRef]
- Rehman, R.; Bhat, Y.A.; Panda, L.; Mabalirajan, U. TRPV1 Inhibition Attenuates IL-13 Mediated Asthma Features in Mice by Reducing Airway Epithelial Injury. Int. Immunopharmacol. 2013, 15, 597–605. [Google Scholar] [CrossRef]
- Choi, J.Y.; Lee, H.Y.; Hur, J.; Kim, K.H.; Kang, J.Y.; Rhee, C.K.; Lee, S.Y. TRPV1 Blocking Alleviates Airway Inflammation and Remodeling in a Chronic Asthma Murine Model. Allergy Asthma Immunol. Res. 2018, 10, 216. [Google Scholar] [CrossRef]
- Geppetti, P.; Holzer, P. Neurogenic Inflammation; CRC Press: Boca Raton, FL, USA, 1996. [Google Scholar]
- Lee, L.-Y.; Gu, Q. Role of TRPV1 in Inflammation-Induced Airway Hypersensitivity. Curr. Opin. Pharmacol. 2009, 9, 243–249. [Google Scholar] [CrossRef]
- Piedimonte, G.; Hoffman, J.I.; Husseini, W.K.; Snider, R.M.; Desai, M.C.; Nadel, J.A. NK1 Receptors Mediate Neurogenic Inflammatory Increase in Blood Flow in Rat Airways. J. Appl. Physiol. 1993, 74, 2462–2468. [Google Scholar] [CrossRef] [PubMed]
- Zholos, A. TRP Channels in Respiratory Pathophysiology: The Role of Oxidative, Chemical Irritant and Temperature Stimuli. Curr. Neuropharmacol. 2015, 13, 279–291. [Google Scholar] [CrossRef]
- Sadofsky, L.R.; Ramachandran, R.; Crow, C.; Cowen, M.; Compton, S.J.; Morice, A.H. Inflammatory Stimuli Up-Regulate Transient Receptor Potential Vanilloid-1 Expression in Human Bronchial Fibroblasts. Exp. Lung Res. 2012, 38, 75–81. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Li, Q.; Zhou, X.; Kolosov, V.P.; Perelman, J.M. Transient Receptor Potential Vanilloid 1 Receptors Mediate Acid-induced Mucin Secretion via Ca 2+ Influx in Human Airway Epithelial Cells. J. Biochem. Mol. Toxicol. 2012, 26, 179–186. [Google Scholar] [CrossRef] [PubMed]
- Steinhoff, M.; Vergnolle, N.; Young, S.H.; Tognetto, M.; Amadesi, S.; Ennes, H.S.; Trevisani, M.; Hollenberg, M.D.; Wallace, J.L.; Caughey, G.H.; et al. Agonists of Proteinase-Activated Receptor 2 Induce Inflammation by a Neurogenic Mechanism. Nat. Med. 2000, 6, 151–158. [Google Scholar] [CrossRef]
- Vergnolle, N.; Bunnett, N.W.; Sharkey, K.A.; Brussee, V.; Compton, S.J.; Grady, E.F.; Cirino, G.; Gerard, N.; Basbaum, A.I.; Andrade-Gordon, P.; et al. Proteinase-Activated Receptor-2 and Hyperalgesia: A Novel Pain Pathway. Nat. Med. 2001, 7, 821–826. [Google Scholar] [CrossRef]
- Schmidlin, F.; Amadesi, S.; Dabbagh, K.; Lewis, D.E.; Knott, P.; Bunnett, N.W.; Gater, P.R.; Geppetti, P.; Bertrand, C.; Stevens, M.E. Protease-Activated Receptor 2 Mediates Eosinophil Infiltration and Hyperreactivity in Allergic Inflammation of the Airway. J. Immunol. 2002, 169, 5315–5321. [Google Scholar] [CrossRef]
- Su, X.; Camerer, E.; Hamilton, J.R.; Coughlin, S.R.; Matthay, M.A. Protease-Activated Receptor-2 Activation Induces Acute Lung Inflammation by Neuropeptide-Dependent Mechanisms. J. Immunol. 2005, 175, 2598–2605. [Google Scholar] [CrossRef]
- Amadesi, S.; Cottrell, G.S.; Divino, L.; Chapman, K.; Grady, E.F.; Bautista, F.; Karanjia, R.; Barajas-Lopez, C.; Vanner, S.; Vergnolle, N.; et al. Protease-activated Receptor 2 Sensitizes TRPV1 by Protein Kinase Cɛ- and A-dependent Mechanisms in Rats and Mice. J. Physiol. 2006, 575, 555–571. [Google Scholar] [CrossRef]
- Amadesi, S.; Nie, J.; Vergnolle, N.; Cottrell, G.S.; Grady, E.F.; Trevisani, M.; Manni, C.; Geppetti, P.; McRoberts, J.A.; Ennes, H.; et al. Protease-Activated Receptor 2 Sensitizes the Capsaicin Receptor Transient Receptor Potential Vanilloid Receptor 1 to Induce Hyperalgesia. J. Neurosci. 2004, 24, 4300–4312. [Google Scholar] [CrossRef]
- Schiffers, C.; Hristova, M.; Habibovic, A.; Dustin, C.M.; Danyal, K.; Reynaert, N.L.; Wouters, E.F.M.; van der Vliet, A. The Transient Receptor Potential Channel Vanilloid 1 Is Critical in Innate Airway Epithelial Responses to Protease Allergens. Am. J. Respir. Cell Mol. Biol. 2020, 63, 198–208. [Google Scholar] [CrossRef]
- Agustí, A.; Celli, B.R.; Criner, G.J.; Halpin, D.; Anzueto, A.; Barnes, P.; Bourbeau, J.; Han, M.K.; Martinez, F.J.; Montes de Oca, M.; et al. Global Initiative for Chronic Obstructive Lung Disease 2023 Report: GOLD Executive Summary. Am. J. Respir. Crit. Care Med. 2023, 207, 819–837. [Google Scholar] [CrossRef] [PubMed]
- Matheson, M.C.; Ellis, J.A.; Raven, J.; Johns, D.P.; Walters, E.H.; Abramson, M.J. β2-Adrenergic Receptor Polymorphisms Are Associated with Asthma and COPD in Adults. J. Hum. Genet. 2006, 51, 943–951. [Google Scholar] [CrossRef] [PubMed]
- Ingebrigtsen, T.S.; Vestbo, J.; Rode, L.; Marott, J.L.; Lange, P.; Nordestgaard, B.G. β2-Adrenergic Genotypes and Risk of Severe Exacerbations in COPD: A Prospective Cohort Study. Thorax 2019, 74, 934–940. [Google Scholar] [CrossRef] [PubMed]
- Rabe, K.F.; Fabbri, L.M.; Israel, E.; Kögler, H.; Riemann, K.; Schmidt, H.; Glaab, T.; Vogelmeier, C.F. Effect of ADRB2 Polymorphisms on the Efficacy of Salmeterol and Tiotropium in Preventing COPD Exacerbations: A Prespecified Substudy of the POET-COPD Trial. Lancet Respir. Med. 2014, 2, 44–53. [Google Scholar] [CrossRef] [PubMed]
- Lundberg, J.M.; Saria, A. Capsaicin-Induced Desensitization of Airway Mucosa to Cigarette Smoke, Mechanical and Chemical Irritants. Nature 1983, 302, 251–253. [Google Scholar] [CrossRef]
- Baluk, P.; Bertrand, C.; Geppetti, P.; McDonald, D.M.; Nadel, J.A. NK 1 Receptor Antagonist CP-99,994 Inhibits Cigarette Smoke-Induced Neutrophil and Eosinophil Adhesion in Rat Tracheal Venules. Exp. Lung Res. 1996, 22, 409–418. [Google Scholar] [CrossRef]
- Comhair, S.A.A.; Erzurum, S.C. Antioxidant Responses to Oxidant-Mediated Lung Diseases. Am. J. Physiol.-Lung Cell. Mol. Physiol. 2002, 283, L246–L255. [Google Scholar] [CrossRef]
- Ruan, T.; Shuei Lin, Y.; Lin, K.; Ru Kou, Y. Sensory Transduction of Pulmonary Reactive Oxygen Species by Capsaicin-sensitive Vagal Lung Afferent Fibres in Rats. J. Physiol. 2005, 565, 563–578. [Google Scholar] [CrossRef]
- Belvisi, M.G.; Birrell, M.A.; Khalid, S.; Wortley, M.A.; Dockry, R.; Coote, J.; Holt, K.; Dubuis, E.; Kelsall, A.; Maher, S.A.; et al. Neurophenotypes in Airway Diseases. Insights from Translational Cough Studies. Am. J. Respir. Crit. Care Med. 2016, 193, 1364–1372. [Google Scholar] [CrossRef]
- Wong, C.H.; Morice, A.H. Cough Threshold in Patients with Chronic Obstructive Pulmonary Disease. Thorax 1999, 54, 62–64. [Google Scholar] [CrossRef] [PubMed]
- Doherty, M.J. Capsaicin Responsiveness and Cough in Asthma and Chronic Obstructive Pulmonary Disease. Thorax 2000, 55, 643–649. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Zhang, Y.; Xu, M.; Zhang, H.; Chen, Y.; Chung, K.F.; Adcock, I.M.; Li, F. Roles of TRPA1 and TRPV1 in Cigarette Smoke—Induced Airway Epithelial Cell Injury Model. Free Radic. Biol. Med. 2019, 134, 229–238. [Google Scholar] [CrossRef]
- Khalid, S.; Murdoch, R.; Newlands, A.; Smart, K.; Kelsall, A.; Holt, K.; Dockry, R.; Woodcock, A.; Smith, J.A. Transient Receptor Potential Vanilloid 1 (TRPV1) Antagonism in Patients with Refractory Chronic Cough: A Double-Blind Randomized Controlled Trial. J. Allergy Clin. Immunol. 2014, 134, 56–62.e4. [Google Scholar] [CrossRef] [PubMed]
- Jian, T.; Chen, J.; Ding, X.; Lv, H.; Li, J.; Wu, Y.; Ren, B.; Tong, B.; Zuo, Y.; Su, K.; et al. Flavonoids Isolated from Loquat (Eriobotrya Japonica) Leaves Inhibit Oxidative Stress and Inflammation Induced by Cigarette Smoke in COPD Mice: The Role of TRPV1 Signaling Pathways. Food Funct. 2020, 11, 3516–3526. [Google Scholar] [CrossRef]
- Moliteo, E.; Sciacca, M.; Palmeri, A.; Papale, M.; Manti, S.; Parisi, G.F.; Leonardi, S. Cystic Fibrosis and Oxidative Stress: The Role of CFTR. Molecules 2022, 27, 5324. [Google Scholar] [CrossRef] [PubMed]
- Manti, S.; Parisi, G.F.; Papale, M.; Marseglia, G.L.; Licari, A.; Leonardi, S. Type 2 Inflammation in Cystic Fibrosis: New Insights. Pediatr. Allergy Immunol. 2022, 33, 15–17. [Google Scholar] [CrossRef]
- Stanford, G.E.; Dave, K.; Simmonds, N.J. Pulmonary Exacerbations in Adults With Cystic Fibrosis. Chest 2021, 159, 93–102. [Google Scholar] [CrossRef]
- Chang, A.B.; Phelan, P.D.; Sawyer, S.M.; Del Brocco, S.; Robertson, C.F. Cough Sensitivity in Children with Asthma, Recurrent Cough, and Cystic Fibrosis. Arch. Dis. Child. 1997, 77, 331–334. [Google Scholar] [CrossRef]
- Hamutcu, R.; Francis, J.; Karakoc, F.; Bush, A. Objective Monitoring of Cough in Children with Cystic Fibrosis. Pediatr. Pulmonol. 2002, 34, 331–335. [Google Scholar] [CrossRef]
- Smith, J.A. Objective Measurement of Cough during Pulmonary Exacerbations in Adults with Cystic Fibrosis. Thorax 2006, 61, 425–429. [Google Scholar] [CrossRef] [PubMed]
- Ai, T.; Bompadre, S.G.; Wang, X.; Hu, S.; Li, M.; Hwang, T.-C. Capsaicin Potentiates Wild-Type and Mutant Cystic Fibrosis Transmembrane Conductance Regulator Chloride-Channel Currents. Mol. Pharmacol. 2004, 65, 1415–1426. [Google Scholar] [CrossRef] [PubMed]
- Naren, A.P.; Cobb, B.; Li, C.; Roy, K.; Nelson, D.; Heda, G.D.; Liao, J.; Kirk, K.L.; Sorscher, E.J.; Hanrahan, J.; et al. A Macromolecular Complex of β2 Adrenergic Receptor, CFTR, and Ezrin/Radixin/Moesin-Binding Phosphoprotein 50 Is Regulated by PKA. Proc. Natl. Acad. Sci. USA 2003, 100, 342–346. [Google Scholar] [CrossRef]
- Trotta, T.; Guerra, L.; Piro, D.; d’Apolito, M.; Piccoli, C.; Porro, C.; Giardino, I.; Lepore, S.; Castellani, S.; Di Gioia, S.; et al. Stimulation of β2-Adrenergic Receptor Increases CFTR Function and Decreases ATP Levels in Murine Hematopoietic Stem/Progenitor Cells. J. Cyst. Fibros. 2015, 14, 26–33. [Google Scholar] [CrossRef]
- Sabater, J.R.; Lee, T.A.; Abraham, W.M. Comparative Effects of Salmeterol, Albuterol, and Ipratropium on Normal and Impaired Mucociliary Function in Sheep. Chest 2005, 128, 3743–3749. [Google Scholar] [CrossRef]
- Eggleston, P.A.; Rosenstein, B.J.; Stackhouse, C.M.; Mellits, E.D.; Baumgardner, R.A. A Controlled Trial of Long-Term Bronchodilator Therapy in Cystic Fibrosis. Chest 1991, 99, 1088–1092. [Google Scholar] [CrossRef]
- König, P.; Poehler, J.; Barbero, G.J. A Placebo-Controlled, Double-Blind Trial of the Long-Term Effects of Albuterol Administration in Patients with Cystic Fibrosis. Pediatr. Pulmonol. 1998, 25, 32–37. [Google Scholar] [CrossRef]
- Brewington, J.J.; Backstrom, J.; Feldman, A.; Kramer, E.L.; Moncivaiz, J.D.; Ostmann, A.J.; Zhu, X.; Lu, L.J.; Clancy, J.P. Chronic β2AR Stimulation Limits CFTR Activation in Human Airway Epithelia. JCI Insight 2018, 3, e93029. [Google Scholar] [CrossRef]
- Steagall, W.K.; Barrow, B.J.; Glasgow, C.G.; Mendoza, J.W.; Ehrmantraut, M.; Lin, J.-P.; Insel, P.A.; Moss, J. Beta-2-Adrenergic Receptor Polymorphisms in Cystic Fibrosis. Pharmacogenet Genom. 2007, 17, 425–430. [Google Scholar] [CrossRef]
Respiratory Disease | β2AR | TRPV1 |
---|---|---|
Respiratory infections | RSV infection reduces β2AR density in infected cells and attenuates ISO-induced cAMP formation [58]. RSV induces β2AR desensitization either directly by the GRK2 or PKCζ phosphorylation of the receptor or indirectly by the sequestration of the α-subunit of Gs [59,61]. IL8, released in response to RSV infection, induces the activation of GRK2 or PKCζ, with the subsequent phosphorylation and desensitization of β2AR [60]. RSV induces a proteasome-mediated cleavage and degradation of β2AR (reducing its density) and leads to impaired cAMP synthesis and increased levels of intracellular Ca2+, generating a pro-contractile phenotype in RSV-infected ASM cells [61]. HRV induces β2AR desensitization in human ASM cells, probably thanks to autocrine PG production [73]. Respiratory viral infections induce β2AR desensitization in ASM cells due to the PGE2 interaction with the EP2 receptor [75], reducing the efficacy of β2-agonists during asthma and COPD infectious exacerbations [74,75]. | RSV increases TRPV1 expression in the epithelial and neuronal cells [62,63]. The upregulation in TRPV1 expression seems related to a NF-kB positive feedback control of JNK1/2 phosphorylation which increases IL8 levels, enhancing TRPV1 expression [62]. During RSV infection, TRPV1 upregulation, together with the overexpression of NGF and NK1 receptors in the lungs, induces increased neuroinflammation, which may contribute to long-lasting airway inflammation and hyperreactivity [34,65,66]. RSV stimulates the TRPV1-dependent Ca2+ influx in bronchial epithelial cells, which are responsible for increased mucus production, disrupted barrier permeability, and enhanced bronchoconstriction, especially in asthmatic children [67]. PGE2 produced during respiratory viral infections seems to increase TRPV1 activity and cough stimulation [76]. |
Asthma | Some ADRβ2 polymorphisms are related to an increased risk of asthma, such as Arg16Gly polymorphism in the South American population. A protective association was reported for the Gln27Glu polymorphism [83]. The β2AR dysfunction in asthmatic human ASM cells is the result of the reduced resensitization of the receptor characterized by diminished dephosphorylation of β2AR due to decreased endosomal PP2A activity. Furthermore, high levels of PDE4 in asthmatic patients accelerate the catalysis of cAMP and contribute to loss in β2AR response [92]. Corticosteroids increase the number of β2ARs in human lungs in a time- and dose-dependent manner and prevent the β2-agonists-induced downregulation of β2ARs [95,96,97]. | TRPV1-Val-585 variant seems to have a protective effect against the presence of wheezing or cough among asthmatics [85]. The expression of TRPV1 is increased in the airway epithelium of asthmatic patients and is more prominent in those with severe and uncontrolled disease [99]. In animal models, the inhibition of TRPV1 reduced airway hyperactivity and remodeling, goblet cell metaplasia and subepithelial fibrosis [100]. The activation of TRPV1 in bronchial epithelial cells promotes the release of pro-inflammatory mediators, such as ILs, PGE2, NGF, and TNFα, sustaining airway inflammation and airway hypersensitivity [105,106,107]. TRPV1-positive sensory neurons expressed the PAR2, which is implicated in neurogenic inflammation and hyperalgesia [108,109]. In the airways, PAR2 activation is associated with inflammatory responses, including exaggeration of allergic reactions, bronchoconstriction and plasma protein extravasation [110,111]. Both TRPV1 and PAR2 seems to be implicated in innate responses against airborne allergens [114]. |
COPD | Some ADRβ2 polymorphisms are associated with COPD severity. People homozygous for Arg16 have an increased risk of COPD, and the Arg16/Gln27 haplotype is associated with more severe respiratory symptoms in middle-aged and older adults with COPD [116]. The genotypes Gly16Arg (rs1042713) and Gln27Glu (rs1042714) increase the risk of severe exacerbation in COPD [117]. | Smoke exposure can modify the lung phenotype of TRPV1 receptors, increasing their expression and functionality. This phenotypic switch justifies the excessive cough responses to a range of inhaled irritants in smokers [123]. Patients with COPD have a lower threshold to cough by different stimuli, including capsaicin [124,125]. |
Cystic fibrosis | CFTR can be activated by β2AR via raising cAMP intracellular levels and mediating PKA activation [136,137]. Single doses of β2-agonists increase mucociliary clearance and bronchodilation, explaining the frequent use of short-acting β2-agonists in clinical practice for daily airway clearance regimens in cystic fibrosis [138,139,140]. Chronic exposure to β2-agonists reduces cAMP generation following direct AC stimulation and PDE inhibition, which also leads to a defective CFTR activation. The reduction in CFTR function following long-term β2-agonists use seems to have little consequences in healthy individuals, and it appears to be more significant in cystic fibrosis, especially on modulatory therapy such as pharmacologic F508del correction [141]. | Cough sensitivity to capsaicin (a well-known agonist of TRPV1) is lower in children with cystic fibrosis compared to asthmatic children and healthy controls. Furthermore, children with cystic fibrosis had an increased threshold to cough compared to controls [132]. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Manti, S.; Gambadauro, A.; Galletta, F.; Ruggeri, P.; Piedimonte, G. Update on the Role of β2AR and TRPV1 in Respiratory Diseases. Int. J. Mol. Sci. 2024, 25, 10234. https://doi.org/10.3390/ijms251910234
Manti S, Gambadauro A, Galletta F, Ruggeri P, Piedimonte G. Update on the Role of β2AR and TRPV1 in Respiratory Diseases. International Journal of Molecular Sciences. 2024; 25(19):10234. https://doi.org/10.3390/ijms251910234
Chicago/Turabian StyleManti, Sara, Antonella Gambadauro, Francesca Galletta, Paolo Ruggeri, and Giovanni Piedimonte. 2024. "Update on the Role of β2AR and TRPV1 in Respiratory Diseases" International Journal of Molecular Sciences 25, no. 19: 10234. https://doi.org/10.3390/ijms251910234
APA StyleManti, S., Gambadauro, A., Galletta, F., Ruggeri, P., & Piedimonte, G. (2024). Update on the Role of β2AR and TRPV1 in Respiratory Diseases. International Journal of Molecular Sciences, 25(19), 10234. https://doi.org/10.3390/ijms251910234