Bim Expression Influences Choroidal Endothelial Cell Characteristics and Their Response to Therapeutic Intervention
Abstract
:1. Introduction
2. Results
2.1. Bim−/− ChECs Exhibit a Spindly and Elongated Morphology
2.2. Increased VEGF and Inflammatory Mediators in the Absence of Bim
2.3. ChEC Capillary Morphogenesis, Bim, and Anti-VEGF
2.4. Bim Expression and Efficacy of CNV Treatment Modalities
3. Discussion
4. Materials and Methods
4.1. Cell Lines and Experimental Animals
4.2. FACS Analysis
4.3. Proliferation and Apoptosis
4.4. Western Blot Analysis
4.5. Scratch Wound Assay
4.6. Capillary Morphogenesis Assays
4.7. RNA Purification and Real-Time qPCR Analysis
4.8. Laser Photocoagulation
4.9. Data Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hinton, D.R.; He, S.; Lopez, P.F. Apoptosis in surgically excised choroidal neovascular membranes in age-related macular degeneration. Arch. Ophthalmol. 1998, 116, 203–209. [Google Scholar] [CrossRef] [PubMed]
- Reed, J.C. Dysregulation of apoptosis in cancer. J. Clin. Oncol. 1999, 17, 2941–2953. [Google Scholar] [CrossRef] [PubMed]
- Voss, A.K.; Strasser, A. The essentials of developmental apoptosis. F1000Res 2020, 9, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Strasser, A.; Puthalakath, H.; Bouillet, P.; Huang, D.C.; O’Connor, L.; O’Reilly, L.A.; Cullen, L.; Cory, S.; Adams, J.M. The role of bim, a proapoptotic BH3-only member of the Bcl-2 family in cell-death control. Ann. N. Y. Acad. Sci. 2000, 917, 541–548. [Google Scholar] [CrossRef] [PubMed]
- Strasser, A.; O’Connor, L.; Dixit, V.M. Apoptosis signaling. Annu. Rev. Biochem. 2000, 69, 217–245. [Google Scholar] [CrossRef]
- Naik, E.; O’Reilly, L.A.; Asselin-Labat, M.L.; Merino, D.; Lin, A.; Cook, M.; Coultas, L.; Bouillet, P.; Adams, J.M.; Strasser, A. Destruction of tumor vasculature and abated tumor growth upon VEGF blockade is driven by proapoptotic protein Bim in endothelial cells. J. Exp. Med. 2011, 208, 1351–1358. [Google Scholar] [CrossRef]
- Wang, S.; Park, S.; Fei, P.; Sorenson, C.M. Bim is responsible for the inherent sensitivity of the developing retinal vasculature to hyperoxia. Dev. Biol. 2011, 349, 296–309. [Google Scholar] [CrossRef]
- O’Connor, L.; Strasser, A.; O’Reilly, L.A.; Hausmann, G.; Adams, J.M.; Cory, S.; Huang, D.C. Bim: A novel member of the Bcl-2 family that promotes apoptosis. Embo J. 1998, 17, 384–395. [Google Scholar] [CrossRef]
- Bouillet, P.; Metcalf, D.; Huang, D.C.; Tarlinton, D.M.; Kay, T.W.; Kontgen, F.; Adams, J.M.; Strasser, A. Proapoptotic Bcl-2 relative Bim required for certain apoptotic responses, leukocyte homeostasis, and to preclude autoimmunity. Science 1999, 286, 1735–1738. [Google Scholar] [CrossRef]
- Augis, V.; Airiau, K.; Josselin, M.; Turcq, B.; Mahon, F.X.; Belloc, F. A single nucleotide polymorphism in cBIM is associated with a slower achievement of major molecular response in chronic myeloid leukaemia treated with imatinib. PLoS ONE 2013, 8, e78582. [Google Scholar] [CrossRef]
- Ng, K.P.; Hillmer, A.M.; Chuah, C.T.; Juan, W.C.; Ko, T.K.; Teo, A.S.; Ariyaratne, P.N.; Takahashi, N.; Sawada, K.; Fei, Y.; et al. A common BIM deletion polymorphism mediates intrinsic resistance and inferior responses to tyrosine kinase inhibitors in cancer. Nat. Med. 2012, 18, 521–528. [Google Scholar] [CrossRef] [PubMed]
- Cardona, A.F.; Rojas, L.; Wills, B.; Arrieta, O.; Carranza, H.; Vargas, C.; Otero, J.; Corrales-Rodriguez, L.; Martin, C.; Reguart, N.; et al. BIM deletion polymorphisms in Hispanic patients with non-small cell lung cancer carriers of EGFR mutations. Oncotarget 2016, 7, 68933–68942. [Google Scholar] [CrossRef] [PubMed]
- Chirco, K.R.; Sohn, E.H.; Stone, E.M.; Tucker, B.A.; Mullins, R.F. Structural and molecular changes in the aging choroid: Implications for age-related macular degeneration. Eye 2017, 31, 10–25. [Google Scholar] [CrossRef] [PubMed]
- Fei, P.; Zaitoun, I.; Farnoodian, M.; Fisk, D.L.; Wang, S.; Sorenson, C.M.; Sheibani, N. Expression of thrombospondin-1 modulates the angioinflammatory phenotype of choroidal endothelial cells. PLoS ONE 2014, 9, e116423. [Google Scholar] [CrossRef]
- Nor, J.E.; Christensen, J.; Mooney, D.J.; Polverini, P.J. Vascular endothelial growth factor (VEGF)-mediated angiogenesis is associated with enhanced endothelial cell survival and induction of Bcl-2 expression. Am. J. Pathol. 1999, 154, 375–384. [Google Scholar] [CrossRef]
- Wang, S.; Sorenson, C.M.; Sheibani, N. Lack of thrombospondin 1 and exacerbation of choroidal neovascularization. Arch. Ophthalmol. 2012, 130, 615–620. [Google Scholar] [CrossRef]
- Wang, S.; Zaitoun, I.S.; Darjatmoko, S.R.; Sheibani, N.; Sorenson, C.M. Bim Expression Promotes the Clearance of Mononuclear Phagocytes during Choroidal Neovascularization, Mitigating Scar Formation in Mice. Life 2022, 12, 208. [Google Scholar] [CrossRef]
- Gordon, M.S.; Mendelson, D.; Carr, R.; Knight, R.A.; Humerickhouse, R.A.; Iannone, M.; Stopeck, A.T. A phase 1 trial of 2 dose schedules of ABT-510, an antiangiogenic, thrombospondin-1-mimetic peptide, in patients with advanced cancer. Cancer 2008, 113, 3420–3429. [Google Scholar] [CrossRef]
- Baker, L.H.; Rowinsky, E.K.; Mendelson, D.; Humerickhouse, R.A.; Knight, R.A.; Qian, J.; Carr, R.A.; Gordon, G.B.; Demetri, G.D. Randomized, phase II study of the thrombospondin-1-mimetic angiogenesis inhibitor ABT-510 in patients with advanced soft tissue sarcoma. J. Clin. Oncol. 2008, 26, 5583–5588. [Google Scholar] [CrossRef]
- Lavine, J.A.; Sang, Y.; Wang, S.; Ip, M.S.; Sheibani, N. Attenuation of choroidal neovascularization by beta(2)-adrenoreceptor antagonism. JAMA Ophthalmol. 2013, 131, 376–382. [Google Scholar] [CrossRef]
- Droho, S.; Thomson, B.R.; Makinde, H.M.; Cuda, C.M.; Perlman, H.; Lavine, J.A. Ocular macrophage origin and heterogeneity during steady state and experimental choroidal neovascularization. J. Neuroinflamm. 2020, 17, 341. [Google Scholar] [CrossRef] [PubMed]
- Kubota, S.; Takigawa, M. CCN family proteins and angiogenesis: From embryo to adulthood. Angiogenesis 2007, 10, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Leask, A. Trial by CCN2: A standardized test for fibroproliferative disease? J. Cell Commun. Signal 2009, 3, 87–88. [Google Scholar] [CrossRef] [PubMed]
- Pemp, B.; Schmetterer, L. Ocular blood flow in diabetes and age-related macular degeneration. Can. J. Ophthalmol. 2008, 43, 295–301. [Google Scholar] [CrossRef] [PubMed]
- Sennlaub, F.; Auvynet, C.; Calippe, B.; Lavalette, S.; Poupel, L.; Hu, S.J.; Dominguez, E.; Camelo, S.; Levy, O.; Guyon, E.; et al. CCR2(+) monocytes infiltrate atrophic lesions in age-related macular disease and mediate photoreceptor degeneration in experimental subretinal inflammation in Cx3cr1 deficient mice. EMBO Mol. Med. 2013, 5, 1775–1793. [Google Scholar] [CrossRef]
- Cruz-Guilloty, F.; Saeed, A.M.; Echegaray, J.J.; Duffort, S.; Ballmick, A.; Tan, Y.; Betancourt, M.; Viteri, E.; Ramkhellawan, G.C.; Ewald, E.; et al. Infiltration of proinflammatory m1 macrophages into the outer retina precedes damage in a mouse model of age-related macular degeneration. Int. J. Inflam. 2013, 2013, 503725. [Google Scholar] [CrossRef]
- Daniel, E.; Toth, C.A.; Grunwald, J.E.; Jaffe, G.J.; Martin, D.F.; Fine, S.L.; Huang, J.; Ying, G.S.; Hagstrom, S.A.; Winter, K.; et al. Risk of scar in the comparison of age-related macular degeneration treatments trials. Ophthalmology 2014, 121, 656–666. [Google Scholar] [CrossRef]
- Daniel, E.; Pan, W.; Ying, G.S.; Kim, B.J.; Grunwald, J.E.; Ferris, F.L., 3rd; Jaffe, G.J.; Toth, C.A.; Martin, D.F.; Fine, S.L.; et al. Development and Course of Scars in the Comparison of Age-Related Macular Degeneration Treatments Trials. Ophthalmology 2018, 125, 1037–1046. [Google Scholar] [CrossRef]
- Carmeliet, P.; Ferreira, V.; Breier, G.; Pollefeyt, S.; Kieckens, L.; Gertsenstein, M.; Fahrig, M.; Vandenhoeck, A.; Harpal, K.; Eberhardt, C.; et al. Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele. Nature 1996, 380, 435–439. [Google Scholar] [CrossRef]
- Ferrara, N.; Carver-Moore, K.; Chen, H.; Dowd, M.; Lu, L.; O’Shea, K.S.; Powell-Braxton, L.; Hillan, K.J.; Moore, M.W. Heterozygous embryonic lethality induced by targeted inactivation of the VEGF gene. Nature 1996, 380, 439–442. [Google Scholar] [CrossRef]
- Sheibani, N.; Morrison, M.E.; Gurel, Z.; Park, S.; Sorenson, C.M. BIM deficiency differentially impacts the function of kidney endothelial and epithelial cells through modulation of their local microenvironment. Am. J. Physiol. Renal Physiol. 2012, 302, F809–F819. [Google Scholar] [CrossRef] [PubMed]
- Morrison, M.E.; Palenski, T.L.; Jamali, N.; Sheibani, N.; Sorenson, C.M. Modulation of vascular cell function by bim expression. Int. J. Cell Biol. 2013, 2013, 297537. [Google Scholar] [CrossRef] [PubMed]
- Grutzmacher, C.; Park, S.; Elmergreen, T.L.; Tang, Y.; Scheef, E.A.; Sheibani, N.; Sorenson, C.M. Opposing effects of bim and bcl-2 on lung endothelial cell migration. Am. J. Physiol. Lung Cell Mol. Physiol. 2010, 299, L607–L620. [Google Scholar] [CrossRef] [PubMed]
- Montero, J.A.; Ruiz-Moreno, J.M.; Sanchis-Merino, E.; Perez-Martin, S. Systemic beta-blockers may reduce the need for repeated intravitreal injections in patients with wet age-related macular degeneration treated by bevacizumab. Retina 2013, 33, 508–512. [Google Scholar] [CrossRef] [PubMed]
- Herold, M.J.; Stuchbery, R.; Merino, D.; Willson, T.; Strasser, A.; Hildeman, D.; Bouillet, P. Impact of conditional deletion of the pro-apoptotic BCL-2 family member BIM in mice. Cell Death Dis. 2014, 5, e1446. [Google Scholar] [CrossRef]
- Lidington, E.A.; Rao, R.M.; Marelli-Berg, F.M.; Jat, P.S.; Haskard, D.O.; Mason, J.C. Conditional immortalization of growth factor-responsive cardiac endothelial cells from H-2K(b)-tsA58 mice. Am. J. Physiol. Cell Physiol. 2002, 282, C67–C74. [Google Scholar] [CrossRef]
- Stahl, A.; Connor, K.M.; Sapieha, P.; Willett, K.L.; Krah, N.M.; Dennison, R.J.; Chen, J.; Guerin, K.I.; Smith, L.E. Computer-aided quantification of retinal neovascularization. Angiogenesis 2009, 12, 297–301. [Google Scholar] [CrossRef]
- Droho, S.; Cuda, C.M.; Perlman, H.; Lavine, J.A. Monocyte-Derived Macrophages Are Necessary for Beta-Adrenergic Receptor-Driven Choroidal Neovascularization Inhibition. Invest. Ophthalmol. Vis. Sci. 2019, 60, 5059–5069. [Google Scholar] [CrossRef]
Gene | ID | Forward 5′ to 3′ | Reverse 5′ to 3′ |
---|---|---|---|
Bcl-2 | NM_009741.5 | GGAGAGCGTCAACAGGGAGA | CAGCCAGGGAAATCAAACAGAG |
Bim EL | NM_207680.2 | AGTGTGACAGAGAAGGTGGACAATT | GGGATTACCTTGCGGTTCTGT |
Il1b | NM_008361 | GTTCCCATTAGACAACTGCACTACA | CCGACAGCACGAGGCTTTT |
Il6 | NM_031168.1 | CAACCACGGCCTTCCCTACT | TTGGGAGTGGTATCCTCTGTGA |
Mcp1 | NM_011333.3 | GTCTGTGCTGACCCCAAGAAG | TGGTTCCGATCCAGGTTTTTA |
Rantes | NM_013653.3 | GCCCACGTCAAGGAGTATTTCT | CAAACACGACTGCAAGATTGGA |
Tnfa | NM_013693.2 | ACCGTCAGCCGATTTGCTAT | TTGACGGCAGAGAGGAGGTT |
Thbs1 | NM_011580 | TGGCCAGCGTTGCCA | TCTGCAGCACCCCCTGAA |
Thbs2 | NM_011581.3 | CCCCAAACTGCCAAATTCC | TCGTCACAAGCATCTCCGATT |
Vegfa isoforms | NM_001025257 NM_95200 NM-001025250 | GGAGAGCAGAAGTCCCATGA | ACTCCAGGGCTTCATCGTTA |
Rpl13a | NM_009438.4 | TCTCAAGGTTGTTCGGCTGAA | GCCAGACGCCCCAGGTA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sheibani, N.; Song, Y.-S.; Farnoodian, M.; Inampudi, S.; Hanna, B.; Wang, S.; Darjatmoko, S.R.; Sorenson, C.M. Bim Expression Influences Choroidal Endothelial Cell Characteristics and Their Response to Therapeutic Intervention. Int. J. Mol. Sci. 2024, 25, 10254. https://doi.org/10.3390/ijms251910254
Sheibani N, Song Y-S, Farnoodian M, Inampudi S, Hanna B, Wang S, Darjatmoko SR, Sorenson CM. Bim Expression Influences Choroidal Endothelial Cell Characteristics and Their Response to Therapeutic Intervention. International Journal of Molecular Sciences. 2024; 25(19):10254. https://doi.org/10.3390/ijms251910254
Chicago/Turabian StyleSheibani, Nader, Yong-Seok Song, Mitra Farnoodian, Samay Inampudi, Barbara Hanna, Shoujian Wang, Soesiawati R. Darjatmoko, and Christine M. Sorenson. 2024. "Bim Expression Influences Choroidal Endothelial Cell Characteristics and Their Response to Therapeutic Intervention" International Journal of Molecular Sciences 25, no. 19: 10254. https://doi.org/10.3390/ijms251910254
APA StyleSheibani, N., Song, Y. -S., Farnoodian, M., Inampudi, S., Hanna, B., Wang, S., Darjatmoko, S. R., & Sorenson, C. M. (2024). Bim Expression Influences Choroidal Endothelial Cell Characteristics and Their Response to Therapeutic Intervention. International Journal of Molecular Sciences, 25(19), 10254. https://doi.org/10.3390/ijms251910254