Drosophila melanogaster as an Alternative Model to Higher Organisms for In Vivo Lung Research
Abstract
:1. Introduction
2. Mouse Models of Cigarette-Smoke-Induced Early Life Lung Diseases
3. Induction of Lung Disease in the Adult Mammalian Model
4. Drosophila melanogaster as an Alternative In Vivo Model for Studying Cigarette-Smoke-Induced Respiratory Diseases
5. Discussion
6. Outlook: Other Potential Applications in Respiratory Research
6.1. Cigarette-Smoke-Associated Disease
6.2. Cigarette Smoke Replacement
6.3. Non-Cigarette-Smoke-Dependent Diseases
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Global Initiative for Chronic Obstructive Lung Disease (GOLD). Global Strategy for the Diagnosis, Management, and Prevention of Chronic Obstructive Pulmonary Disease. 2024. Available online: https://goldcopd.org/2024-gold-report/ (accessed on 2 July 2024).
- Global Initiative for Asthma (GINA). Global Strategy for Asthma Management and Prevention. 2023. Available online: www.ginaasthma.org (accessed on 2 July 2024).
- World Health Organisation (WHO). Global Health Estimates: Life Expectancy and Leading Causes of Death and Disability. 2019. Available online: https://www.who.int/data/gho/data/themes/mortality-and-global-health-estimates (accessed on 6 March 2024).
- Bui, D.S.; Lodge, C.J.; Burgess, J.A.; Lowe, A.J.; Perret, J.; Bui, M.Q.; Bowatte, G.; Gurrin, L.; Johns, D.P.; Thompson, B.R.; et al. Childhood predictors of lung function trajectories and future COPD risk: A prospective cohort study from the first to the sixth decade of life. Lancet Respir. Med. 2018, 6, 535–544. [Google Scholar] [CrossRef]
- von Mutius, E. Childhood origins of COPD. Lancet Respir. Med. 2018, 6, 482–483. [Google Scholar] [CrossRef] [PubMed]
- Svanes, C.; Sunyer, J.; Plana, E.; Dharmage, S.; Heinrich, J.; Jarvis, D.; de Marco, R.; Norbäck, D.; Raherison, C.; Villani, S.; et al. Early life origins of chronic obstructive pulmonary disease. Thorax 2010, 65, 14–20. [Google Scholar] [CrossRef] [PubMed]
- Bui, D.S.; Perret, J.L.; Walters, E.H.; Lodge, C.J.; Bowatte, G.; Hamilton, G.S.; Thompson, B.R.; Frith, P.; Erbas, B.; Thomas, P.S.; et al. Association between very to moderate preterm births, lung function deficits, and COPD at age 53 years: Analysis of a prospective cohort study. Lancet Respir. Med. 2022, 10, 478–484. [Google Scholar] [CrossRef]
- Dharmage, S.C.; Bui, D.S.; Walters, E.H.; Lowe, A.J.; Thompson, B.; Bowatte, G.; Thomas, P.; Garcia-Aymerich, J.; Jarvis, D.; Hamilton, G.S.; et al. Lifetime spirometry patterns of obstruction and restriction, and their risk factors and outcomes: A prospective cohort study. Lancet Respir. Med. 2023, 11, 273–282. [Google Scholar] [CrossRef] [PubMed]
- Svanes, C.; Holloway, J.W.; Krauss-Etschmann, S. Preconception origins of asthma, allergies and lung function: The influence of previous generations on the respiratory health of our children. J. Intern. Med. 2023, 293, 531–549. [Google Scholar] [CrossRef] [PubMed]
- Tomar, A.; Gomez-Velazquez, M.; Gerlini, R.; Comas-Armangue, G.; Makharadze, L.; Kolbe, T.; Boersma, A.; Dahlhoff, M.; Burgstaller, J.P.; Lassi, M.; et al. Epigenetic inheritance of diet-induced and sperm-borne mitochondrial RNAs. Nature 2024, 630, 720–727. [Google Scholar] [CrossRef]
- Jennings, B.H. Drosophila—A versatile model in biology & medicine. Mater. Today 2011, 14, 190–195. [Google Scholar] [CrossRef]
- Schottenfeld, J.; Song, Y.; Ghabrial, A.S. Tube continued: Morphogenesis of the Drosophila tracheal system. Curr. Opin. Cell Biol. 2010, 22, 633–639. [Google Scholar] [CrossRef]
- Tzou, P.; Ohresser, S.; Ferrandon, D.; Capovilla, M.; Reichhart, J.M.; Lemaitre, B.; Hoffmann, J.A.; Imler, J.L. Tissue-specific inducible expression of antimicrobial peptide genes in Drosophila surface epithelia. Immunity 2000, 13, 737–748. [Google Scholar] [CrossRef]
- Bergman, P.; Esfahani, S.S.; Engstrom, Y. Drosophila as a Model for Human Diseases-Focus on Innate Immunity in Barrier Epithelia. Curr. Top. Dev. Biol. 2017, 121, 29–81. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Janssens, J.; De Waegeneer, M.; Kolluru, S.S.; Davie, K.; Gardeux, V.; Saelens, W.; David, F.P.; Brbić, M.; Spanier, K.; et al. Fly Cell Atlas: A single-nucleus transcriptomic atlas of the adult fruit fly. Science 2022, 375, eabk2432. [Google Scholar] [CrossRef]
- Pandey, U.B.; Nichols, C.D. Human disease models in Drosophila melanogaster and the role of the fly in therapeutic drug discovery. Pharmacol. Rev. 2011, 63, 411–436. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, S.; Jaiswal, M.; Charng, W.L.; Gambin, T.; Karaca, E.; Mirzaa, G.; Wiszniewski, W.; Sandoval, H.; Haelterman, N.A.; Xiong, B.; et al. A drosophila genetic resource of mutants to study mechanisms underlying human genetic diseases. Cell 2014, 159, 200–214. [Google Scholar] [CrossRef] [PubMed]
- Cotterill, S.; Yamaguchi, M. Role of Drosophila in Human Disease Research 3.0. Int. J. Mol. Sci. 2023, 25, 292. [Google Scholar] [CrossRef] [PubMed]
- Duffy, J.B. GAL4 system in Drosophila: A fly geneticist’s Swiss army knife. Genesis 2002, 34, 1–15. [Google Scholar] [CrossRef]
- Prange, R.; Thiedmann, M.; Bhandari, A.; Mishra, N.; Sinha, A.; Hasler, R.; Rosenstiel, P.; Uliczka, K.; Wagner, C.; Yildirim, A.Ö.; et al. A Drosophila model of cigarette smoke induced COPD identifies Nrf2 signaling as an expedient target for intervention. Aging 2018, 10, 2122–2135. [Google Scholar] [CrossRef]
- Kallsen, K.; Zehethofer, N.; Abdelsadik, A.; Lindner, B.; Kabesch, M.; Heine, H.; Roeder, T. ORMDL deregulation increases stress responses and modulates repair pathways in Drosophila airways. J. Allergy Clin. Immunol. 2015, 136, 1105–1108. [Google Scholar] [CrossRef] [PubMed]
- El-Merhie, N.; Kruger, A.; Uliczka, K.; Papenmeier, S.; Roeder, T.; Rabe, K.F.; Wagner, C.; Angstmann, H.; Krauss-Etschmann, S. Sex dependent effect of maternal e-nicotine on F1 Drosophila development and airways. Sci. Rep. 2021, 11, 4441. [Google Scholar] [CrossRef]
- Burggren, W.; Souder, B.M.; Ho, D.H. Metabolic rate and hypoxia tolerance are affected by group interactions and sex in the fruit fly (Drosophila melanogaster): New data and a literature survey. Biol. Open 2017, 6, 471–480. [Google Scholar] [CrossRef] [PubMed]
- Hammer, B.; Wagner, C.; Rankov, A.D.; Reuter, S.; Bartel, S.; Hylkema, M.N.; Krüger, A.; Svanes, C.; Krauss-Etschmann, S. In utero exposure to cigarette smoke and effects across generations: A conference of animals on asthma. Clin. Exp. Allergy 2018, 48, 1378–1390. [Google Scholar] [CrossRef] [PubMed]
- Xiao, R.; Noel, A.; Perveen, Z.; Penn, A.L. In utero exposure to second-hand smoke activates pro-asthmatic and oncogenic miRNAs in adult asthmatic mice. Environ. Mol. Mutagen. 2016, 57, 190–199. [Google Scholar] [CrossRef] [PubMed]
- Ferrini, M.; Carvalho, S.; Cho, Y.H.; Postma, B.; Marques, L.M.; Pinkerton, K.; Roberts, K.; Jaffar, Z. Prenatal tobacco smoke exposure predisposes offspring mice to exacerbated allergic airway inflammation associated with altered innate effector function. Part. Fibre Toxicol. 2017, 14, 30. [Google Scholar] [CrossRef]
- Singh, S.P.; Chand, H.S.; Langley, R.J.; Mishra, N.; Barrett, T.; Rudolph, K.; Tellez, C.; Filipczak, P.T.; Belinsky, S.; Saeed, A.I.; et al. Gestational Exposure to Sidestream (Secondhand) Cigarette Smoke Promotes Transgenerational Epigenetic Transmission of Exacerbated Allergic Asthma and Bronchopulmonary Dysplasia. J. Immunol. 2017, 198, 3815–3822. [Google Scholar] [CrossRef] [PubMed]
- Unachukwu, U.; Trischler, J.; Goldklang, M.; Xiao, R.; D’Armiento, J. Maternal smoke exposure decreases mesenchymal proliferation and modulates Rho-GTPase-dependent actin cytoskeletal signaling in fetal lungs. FASEB J. 2017, 31, 2340–2351. [Google Scholar] [CrossRef]
- Chen, J.; Wang, X.; Schmalen, A.; Haines, S.; Wolff, M.; Ma, H.; Zhang, H.; Stoleriu, M.G.; Nowak, J.; Nakayama, M.; et al. Antiviral CD8(+) T-cell immune responses are impaired by cigarette smoke and in COPD. Eur. Respir. J. 2023, 62, 2201374. [Google Scholar] [CrossRef]
- Hammer, B.; Kadalayil, L.; Boateng, E.; Buschmann, D.; Rezwan, F.I.; Wolff, M.; Reuter, S.; Bartel, S.; Knudsen, T.M.; Svanes, C.; et al. Preconceptional smoking alters spermatozoal miRNAs of murine fathers and affects offspring’s body weight. Int. J. Obes. 2021, 45, 1623–1627. [Google Scholar] [CrossRef]
- van Hees, H.; Ottenheijm, C.; Ennen, L.; Linkels, M.; Dekhuijzen, R.; Heunks, L. Proteasome inhibition improves diaphragm function in an animal model for COPD. Am. J. Physiol. Lung Cell. Mol. Physiol. 2011, 301, L110–L116. [Google Scholar] [CrossRef]
- Fricker, M.; Deane, A.; Hansbro, P.M. Animal models of chronic obstructive pulmonary disease. Expert Opin. Drug Discov. 2014, 9, 629–645. [Google Scholar] [CrossRef]
- Serban, K.A.; Petrache, I. Mouse Models of COPD. Methods Mol. Biol. 2018, 1809, 379–394. [Google Scholar] [CrossRef]
- Takahashi, N.; Nakashima, R.; Nasu, A.; Hayashi, M.; Fujikawa, H.; Kawakami, T.; Eto, Y.; Kishimoto, T.; Fukuyama, A.; Ogasawara, C.; et al. T(3) Intratracheal Therapy Alleviates Pulmonary Pathology in an Elastase-Induced Emphysema-Dominant COPD Mouse Model. Antioxidants 2023, 13, 30. [Google Scholar] [CrossRef] [PubMed]
- Banzato, R.; Pinheiro-Menegasso, N.M.; Novelli, F.; Olivo, C.R.; Taguchi, L.; de Oliveira Santos, S.; Fukuzaki, S.; Teodoro, W.P.R.; Lopes, F.D.; Tibério, I.F.; et al. Alpha-7 Nicotinic Receptor Agonist Protects Mice Against Pulmonary Emphysema Induced by Elastase. Inflammation 2024, 47, 958–974. [Google Scholar] [CrossRef] [PubMed]
- Neavin, D.R.; Liu, D.; Ray, B.; Weinshilboum, R.M. The Role of the Aryl Hydrocarbon Receptor (AHR) in Immune and Inflammatory Diseases. Int. J. Mol. Sci. 2018, 19, 3851. [Google Scholar] [CrossRef]
- Sirocko, K.T.; Angstmann, H.; Papenmeier, S.; Wagner, C.; Spohn, M.; Indenbirken, D.; Ehrhardt, B.; Kovacevic, D.; Hammer, B.; Svanes, C.; et al. Early-life exposure to tobacco smoke alters airway signaling pathways and later mortality in D. melanogaster. Environ. Pollut. 2022, 309, 119696. [Google Scholar] [CrossRef]
- Erzurum, S.C. New Insights in Oxidant Biology in Asthma. Ann. Am. Thorac. Soc. 2016, 13 (Suppl. 1), S35–S39. [Google Scholar] [CrossRef] [PubMed]
- Vitenberga, Z.; Pilmane, M.; Babjoniseva, A. An Insight into COPD Morphopathogenesis: Chronic Inflammation, Remodeling, and Antimicrobial Defense. Medicina 2019, 55, 496. [Google Scholar] [CrossRef] [PubMed]
- Faramawy, M.M.; Mohammed, T.O.; Hossaini, A.M.; Kashem, R.A.; Rahma, R.M.A. Genetic polymorphism of GSTT1 and GSTM1 and susceptibility to chronic obstructive pulmonary disease (COPD). J. Crit. Care 2009, 24, e7–e10. [Google Scholar] [CrossRef] [PubMed]
- Dong, J.; Guo, L.; Liao, Z.; Zhang, M.; Zhang, M.; Wang, T.; Chen, L.; Xu, D.; Feng, Y.; Wen, F. Increased expression of heat shock protein 70 in chronic obstructive pulmonary disease. Int. Immunopharmacol. 2013, 17, 885–893. [Google Scholar] [CrossRef] [PubMed]
- Unver, R.; Deveci, F.; Kirkil, G.; Telo, S.; Kaman, D.; Kuluozturk, M. Serum Heat Shock Protein Levels and the Relationship of Heat Shock Proteins with Various Parameters in Chronic Obstructive Pulmonary Disease Patients. Turk. Thorac. J. 2016, 17, 153–159. [Google Scholar] [CrossRef]
- Almansouri, M. Genetic Impact of Tobacco Smoke on Blood and Airway Epithelium: A Transcriptional Profiling Study. Curr. Trends Biotechnol. Pharm. 2024, 18, 1655–1663. [Google Scholar] [CrossRef]
- Brody, J.S. Transcriptome alterations induced by cigarette smoke. Int. J. Cancer 2012, 131, 2754–2762. [Google Scholar] [CrossRef] [PubMed]
- Spira, A.; Beane, J.; Shah, V.; Liu, G.; Schembri, F.; Yang, X.; Palma, J.; Brody, J.S. Effects of cigarette smoke on the human airway epithelial cell transcriptome. Proc. Natl. Acad. Sci. USA 2004, 101, 10143–10148. [Google Scholar] [CrossRef] [PubMed]
- Piovesan, A.; Antonaros, F.; Vitale, L.; Strippoli, P.; Pelleri, M.C.; Caracausi, M. Human protein-coding genes and gene feature statistics in 2019. BMC Res. Notes 2019, 12, 315. [Google Scholar] [CrossRef] [PubMed]
- Baldarelli, R.M.; Smith, C.L.; Ringwald, M.; Richardson, J.E.; Bult, C.J.; Mouse Genome Informatics Group. Mouse Genome Informatics: An integrated knowledgebase system for the laboratory mouse. Genetics 2024, 227, iyae031. [Google Scholar] [CrossRef]
- Hales, K.G.; Korey, C.A.; Larracuente, A.M.; Roberts, D.M. Genetics on the Fly: A Primer on the Drosophila Model System. Genetics 2015, 201, 815–842. [Google Scholar] [CrossRef]
- Basil, M.C.; Morrisey, E.E. Lung regeneration: A tale of mice and men. Semin. Cell Dev. Biol. 2020, 100, 88–100. [Google Scholar] [CrossRef] [PubMed]
- Russell, R.J.; Boulet, L.; Brightling, C.E.; Pavord, I.D.; Porsbjerg, C.; Dorscheid, D.; Sverrild, A. The airway epithelium: An orchestrator of inflammation, a key structural barrier and a therapeutic target in severe asthma. Eur. Respir. J. 2024, 63, 2301397. [Google Scholar] [CrossRef]
- Roeder, T.; Bossen, J.; Niu, X.; She, X.-Y.; Knop, M.; Hofbauer, B.; Tiedemann, L.; Franzenburg, S.; Bruchhaus, I.; Kraus-Etchmann, S.; et al. The secretory Inka cell of the Drosophila larval trachea has a molecular profile similar to that of neurons. Res. Sq. 2024. [Google Scholar] [CrossRef]
- Li, Y.; Lu, T.; Dong, P.; Chen, J.; Zhao, Q.; Wang, Y.; Xiao, T.; Wu, H.; Zhao, Q.; Huang, H. A single-cell atlas of Drosophila trachea reveals glycosylation-mediated Notch signaling in cell fate specification. Nat. Commun. 2024, 15, 2019. [Google Scholar] [CrossRef]
- Hetz, S.K.; Bradley, T.J. Insects breathe discontinuously to avoid oxygen toxicity. Nature 2005, 433, 516–519. [Google Scholar] [CrossRef]
- Nichols, C.D.; Becnel, J.; Pandey, U.B. Methods to assay Drosophila behavior. J. Vis. Exp. 2012, 61, e3795. [Google Scholar] [CrossRef]
- Rosato, E.; Kyriacou, C.P. Analysis of locomotor activity rhythms in Drosophila. Nat. Protoc. 2006, 1, 559–568. [Google Scholar] [CrossRef] [PubMed]
- Ehrhardt, B.; Angstmann, H.; Hoschler, B.; Kovacevic, D.; Hammer, B.; Roeder, T.; Rabe, K.F.; Wagner, C.; Uliczka, K.; Krauss-Etschmann, S. Airway specific deregulation of asthma-related serpins impairs tracheal architecture and oxygenation in D. melanogaster. Sci. Rep. 2024, 14, 16567. [Google Scholar] [CrossRef] [PubMed]
- Silverman, E.K. Genetics of COPD. Annu. Rev. Physiol. 2020, 82, 413–431. [Google Scholar] [CrossRef]
- Alliance of Genome Resources. Search across Species. 2024. version 7.3.0. Available online: https://www.alliancegenome.org (accessed on 2 September 2024).
- Bult, C.J.; Sternberg, P.W. The alliance of genome resources: Transforming comparative genomics. Mamm. Genome 2023, 34, 531–544. [Google Scholar] [CrossRef]
- Dionne, M.S.; Schneider, D.S. Models of infectious diseases in the fruit fly Drosophila melanogaster. Dis. Models Mech. 2008, 1, 43–49. [Google Scholar] [CrossRef]
- Angstmann, H.; Pfeiffer, S.; Kublik, S.; Ehrhardt, B.; Uliczka, K.; Rabe, K.F.; Roeder, T.; Wagner, C.; Schloter, M.; Krauss-Etschmann, S. The microbial composition of larval airways from Drosophila melanogaster differ between specimens from laboratory and natural habitats. Environ. Microbiome 2023, 18, 55. [Google Scholar] [CrossRef] [PubMed]
- Yatsenko, A.S.; Marrone, A.K.; Kucherenko, M.M.; Shcherbata, H.R. Measurement of metabolic rate in Drosophila using respirometry. J. Vis. Exp. 2014, 88, e51681. [Google Scholar] [CrossRef]
- World Health Organisation (WHO). Lung Cancer. 2023. Available online: https://www.who.int/news-room/fact-sheets/detail/lung-cancer (accessed on 2 July 2024).
- Bossen, J.; Uliczka, K.; Steen, L.; Pfefferkorn, R.; Mai, M.M.; Burkhardt, L.; Spohn, M.; Bruchhaus, I.; Fink, C.; Heine, H.; et al. An EGFR-Induced Drosophila Lung Tumor Model Identifies Alternative Combination Treatments. Mol. Cancer Ther. 2019, 18, 1659–1668. [Google Scholar] [CrossRef]
- Pesola, F.; Smith, K.M.; Phillips-Waller, A.; Przulj, D.; Walton, R.; McRobbie, H.; Coleman, T.; Lewis, S.; Clark, M.; Ussher, M.; et al. Pregnant smokers can be encouraged to switch to vaping. Addiction 2024, 119, 1493–1494. [Google Scholar] [CrossRef]
- El-Husseini, Z.W.; Gosens, R.; Dekker, F.; Koppelman, G.H. The genetics of asthma and the promise of genomics-guided drug target discovery. Lancet Respir. Med. 2020, 8, 1045–1056. [Google Scholar] [CrossRef] [PubMed]
- Holgate, S.T. The sentinel role of the airway epithelium in asthma pathogenesis. Immunol. Rev. 2011, 242, 205–219. [Google Scholar] [CrossRef] [PubMed]
Human | Mouse | Fruit Fly | ||
---|---|---|---|---|
General features | Lifespan | ~80 years | ~2 years | ~90 days |
Body size | Males > females | Males < females | Males < females | |
Chromosomes (n) | 46 | 20 | 4; giant chromosomes in some organs | |
Genes | ~20,000 protein coding [46] | ~20,000 protein coding [47] | ~14,000 protein coding [48] | |
Immune system | Innate and adaptive | Innate and adaptive | Innate | |
Tissue-specific gene manipulation | No | Complex | Fast and easy | |
Respiratory system | Breathing | Active via diaphragm and intercostal muscles | Active via diaphragm and intercostal muscles | Passive via body (larvae) or wing (adult fly) movements |
Airways | 23–26 generations of branching; cartilage rings [49] | 13 generations of branching [49] | 3 generations of branching [12] | |
Airway epithelium | Physical and immunological barrier, built from 8 different cell populations [49,50] | Physical and immunological barrier, built from 8 different cell populations [49] | Larval airways: Physical and immunological barrier, built as single—layered epithelium of airway epithelial cells and other cell types, such as neuroendocrine cells (unpublished data [51]). Pupal airways: nine cell clusters, two cell populations with multipotency [52] | |
Lung parenchyma | 2 lobes on the left and 3 on the right | 1 lobe on the left and 4 on the right | No lung parenchyma | |
Gas exchange | Via alveoli and perialveolar capillary bed [49] | Via alveoli and perialveolar capillary bed [49] | Passive diffusion into surrounding tissues via alveolar like structures (terminal cells) [53] | |
Lung function testing | Used in diagnostics | Detailed analysis, invasive as endpoint. Non-invasive possible, but less informative | Only indirect measurement possible | |
Respiratory microbiome | Complex | Complex | Few genera | |
Visualization | CT, Bronchoscopy, Microscopy of biopsies | CT, Bronchoscopy, Histological slices of lung tissue | Micro CT; Microscopy of full body or isolated tracheae (several staining techniques available) | |
Cigarette smoke exposure | Early life | Indirect epidemiological assessment | Difficult to separate from maternal exposure | Possible via larval exposure |
Prenatal life | Indirect epidemiological assessment via smoking mother | Feasible but time-consuming via mothers | Exposure of embryos in eggs (fast) | |
Smoke exposure of pubescent | Indirect epidemiological assessment | Possible but time-consuming | Virgin adults or Pupae (as equivalent to rapid hormonal and morphological changes) | |
Inter—Transgenerational studies | Embryonic development | In utero | In utero | extracorporeal |
Generations needed to be transgenerational | 3 (maternal) | 3 (maternal) | 2 (maternal) | |
Epigenetic machinery | DNA methylation, Histone modifications, non-coding RNAs | DNA methylation, Histone modifications, non-coding RNAs | Histone modifications and non-coding RNAs | |
Generation time | 20–30 years | ~12 weeks | 10–12 days (25 °C) |
Human COPD Risk Gene (Reviewed by Silverman, E.K. [57]) | Mouse Orthologue [58,59] | Fly Orthologue [58,59] |
---|---|---|
AAT | Aatk | Aatf |
ADAMTSL3 | Adamtsl3 | nolo |
ADCY5 | Adcy5 | CG43373 |
ARNTL | Bmal1 | - |
ASAP2 | Asap2 | Asap |
AGER | AGER | - |
BTC | Btc | - |
C1orf87 | Gm12695 | - |
CCDC69 | Ccdc69 | - |
CHRNA3 | Chrna3 | nAChRα3 |
IREB2 | Ireb2 | Irp-1A |
CHRNA5 | Chrna5 | nAChRβ2 |
CITED2 | Cited2 | - |
COL15A1 | Col15a1 | Mp |
CYP2A6 | Cyp2a5 | phtm |
DDX1 | Ddx1 | Ddx1 |
DENND2D | Dennd2d | - |
DLC1 | Dlc1 | cv-c |
DTWD1 | Dtwd1 | CG2006 |
EML4 | Eml4 | DCX-EMAP |
FAM13A | FAM13A | CG6424 |
FBLN5 | FBLN5 | - |
FGF18 | Fgf18 | - |
HHIP region | HHIP | - |
HSPA4 | Hspa4 | Hsp110 |
ID4 | Id4 | emc |
IER3 | Ier3 | CG32069 |
IREB2 | IREB2 | Irp-1A |
ITGB8 | Itgb8 | Itgbn |
MFHAS1 | Mfhas1 | - |
MMP1 | MMP1 | Mmp1 |
MMP12 | MMP12 | - |
MTCL1 | Mtcl1 | CG18304 |
PPT2 region | Ppt2 | Ppt2 |
PTPRO | Ptpro | - |
RFX6 | Rfx6 | - |
RIN3 | Rin3 | spri |
RREB1 | Rreb1 | peb |
SERP2 | Serp2 | CG32276 |
SERPINA1 | Serpina1a | Spn43Ad Spn28Dc |
SERPINA1 Z | Serpina1a Serpina1d Serpina1e Serpina1c Serpina1b Serpina1f | Spn28Dc |
SERPINA6 | Serpina6 | Spn28Dc |
SFTPD | Sftpd | CG15358 |
SLMAP | Slmap | Slmap |
SNRPF | Snrpf | SmF |
STN1 | Stn1 | - |
TEPP | Spmip8 | - |
TERT | Tert | - |
TGFB2 locus | Tgfb2 | - |
THRA | Thra | - |
VGLL4 | Vgll4 | Tgi |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ehrhardt, B.; Roeder, T.; Krauss-Etschmann, S. Drosophila melanogaster as an Alternative Model to Higher Organisms for In Vivo Lung Research. Int. J. Mol. Sci. 2024, 25, 10324. https://doi.org/10.3390/ijms251910324
Ehrhardt B, Roeder T, Krauss-Etschmann S. Drosophila melanogaster as an Alternative Model to Higher Organisms for In Vivo Lung Research. International Journal of Molecular Sciences. 2024; 25(19):10324. https://doi.org/10.3390/ijms251910324
Chicago/Turabian StyleEhrhardt, Birte, Thomas Roeder, and Susanne Krauss-Etschmann. 2024. "Drosophila melanogaster as an Alternative Model to Higher Organisms for In Vivo Lung Research" International Journal of Molecular Sciences 25, no. 19: 10324. https://doi.org/10.3390/ijms251910324
APA StyleEhrhardt, B., Roeder, T., & Krauss-Etschmann, S. (2024). Drosophila melanogaster as an Alternative Model to Higher Organisms for In Vivo Lung Research. International Journal of Molecular Sciences, 25(19), 10324. https://doi.org/10.3390/ijms251910324