Integration Linkage Mapping and Comparative Transcriptome Analysis to Dissect the Genetic Basis of Rice Salt Tolerance Associated with the Germination Stage
Abstract
:1. Introduction
2. Results
2.1. Phenotypic Variation in the RIL Population
2.2. Linkage Mapping for Salinity Tolerance
2.3. Gene Expression Profile and Comparative Transcriptome Analysis
2.4. Mining the Potential Candidate Genes in the Stable QTL Interval
2.5. Sequence Analysis of the Putative Candidate Genes
3. Discussion
4. Materials and Methods
4.1. Experimental Site and Plant Material
4.2. Evaluation of Salt Tolerance at Seed Germination Stage
4.3. Linkage Mapping
4.4. RNA Sequencing and Data Analyses
4.5. Validation of Candidate Genes Using Quantitative Real-Time PCR and Sequence Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Van, D.M.; Morley, T.; Rau, M.L.; Saghai, Y. A meta-analysis of projected global food demand and population at risk of hunger for the period 2010–2050. Nat. Food 2021, 2, 494–501. [Google Scholar] [CrossRef]
- Rozema, J.; Flowers, T. Crops for a salinized world. Science 2008, 322, 1478–1480. [Google Scholar] [CrossRef] [PubMed]
- Melino, V.; Tester, M. Salt-tolerant crops, time to deliver. Annu. Rev. Plant Biol. 2023, 74, 671–696. [Google Scholar] [CrossRef]
- Finch-Savage, W.E.; Bassel, G.W. Seed vigour and crop establishment, extending performance beyond adaptation. J. Exp. Bot. 2016, 67, 567–591. [Google Scholar] [CrossRef]
- Bohra, A.; Chand Jha, U.; Godwin, I.D.; Kumar, V.R. Genomic interventions for sustainable agriculture. Plant Biotechnol. J. 2020, 18, 2388–2405. [Google Scholar] [CrossRef]
- Khanna, A.; Anumalla, M.; Ramos, J.; Sta Cruz, M.T.; Catolos, M.; Andres Godwin Sajise, A.G.; Glenn Gregorio, G.; Dixit, S.; Ali, J.; Islam, M.R.; et al. Genetic gains in IRRI’s rice salinity breeding and elite panel development as a future breeding resource. Theor. Appl. Genet. 2024, 137, 37–51. [Google Scholar] [CrossRef]
- Haque, M.A.; Rafii, M.Y.; Yusoff, M.M.; Ali, N.S.; Yusuff, O.; Datta, D.R.; Anisuzzaman, M.; Ikbal, M.F. Advanced breeding strategies and future perspectives of salinity tolerance in rice. Agronomy 2021, 11, 1631. [Google Scholar] [CrossRef]
- Ganie, S.A.; Wani, S.H.; Henry, R.; Hensel, G. Improving rice salt tolerance by precision breeding in a new era. Curr. Opin. Plant Biol. 2021, 60, 101996. [Google Scholar] [CrossRef]
- Chen, T.; Shabala, S.; Niu, Y.; Chen, Z.H.; Shabala, L.; Meinke, H.; Venkataraman, G.; Pareek, A.; Xu, J.L.; Zhou, M.X. Molecular mechanisms of salinity tolerance in rice. Crop J. 2021, 9, 506–520. [Google Scholar] [CrossRef]
- Qin, H.; Li, Y.; Huang, R. Advances and challenges in the breeding of salt-tolerant rice. Int. J. Mol. Sci. 2020, 21, 8385. [Google Scholar] [CrossRef]
- Islam, M.S.; Ontoy, J.; Subudhi, P.K. Meta-analysis of quantitative trait loci associated with seedling-stage salt tolerance in rice (Oryza sativa L.). Plants 2019, 8, 33. [Google Scholar] [CrossRef] [PubMed]
- Fan, X.; Jiang, H.; Meng, L.; Chen, J. Gene mapping, cloning and association analysis for salt tolerance in rice. Int. J. Mol. Sci. 2021, 22, 11674. [Google Scholar] [CrossRef] [PubMed]
- Lin, H.X.; Zhu, M.Z.; Yano, M.; Gao, J.P.; Liang, Z.W.; Su, W.A.; Hu, X.Y.; Ren, Z.H.; Chao, D.Y. QTLs for Na+ and K+ uptake of the shoots and roots controlling rice salt tolerance. Theor. Appl. Genet. 2004, 108, 253–260. [Google Scholar] [CrossRef]
- Ren, Z.H.; Gao, J.P.; Li, L.G.; Cai, X.L.; Huang, W.; Chao, D.; Zhu, M.; Wang, Z.; Luan, S.; Lin, H.X. A rice quantitative trait locus for salt tolerance encodes a sodium transporter. Nat. Genet. 2005, 37, 1141–1146. [Google Scholar] [CrossRef]
- Huang, X.Y.; Chao, D.Y.; Gao, J.P.; Zhu, M.Z.; Shi, M.; Lin, H.X. A previously unknown zinc finger protein, DST, regulates drought and salt tolerance in rice via stomatal aperture control. Genes Dev. 2009, 23, 1805–1817. [Google Scholar] [CrossRef]
- Takagi, H.; Tamiru, M.; Abe, A.; Yoshida, K.; Uemura, A.; Yaegashi, H.; Obara, T.; Oikawa, K.; Utsushi, H.; Kanzaki, E.; et al. MutMap accelerates breeding of a salt-tolerant rice cultivar. Nat. Biotechnol. 2015, 33, 445–449. [Google Scholar] [CrossRef]
- Zhang, H.L.; Fu, F.F.; Xie, P.; Sun, S.Y.; Qiao, X.H.; Tang, S.Y.; Chen, C.X.; Yang, S.; Mei, C.; Yang, D.K.; et al. A Gγ protein regulates alkaline sensitivity in crops. Science 2023, 379, eade8416. [Google Scholar] [CrossRef]
- Wei, H.; Wang, X.M.; Zhang, Z.P.; Yang, L.B.; Zhang, Q.Q.; Li, Y.L.; He, H.Y.; Chen, D.D.; Zhang, B.; Zheng, C.K.; et al. Uncovering key salt-tolerant regulators through a combined eQTL and GWAS analysis using the super pan-genome in rice. Natl. Sci. Rev. 2024, 11, nwae043. [Google Scholar] [CrossRef]
- Liu, C.; Mao, B.; Yuan, D.; Chu, C.; Duan, M.J. Salt tolerance in rice, physiological responses and molecular mechanisms. Crop J. 2022, 10, 13–25. [Google Scholar] [CrossRef]
- Ponce, K.S.; Guo, L.; Leng, Y.; Meng, L.J.; Ye, G.Y. Advances in sensing, response and regulation mechanism of salt tolerance in rice. Int. J. Mol. Sci. 2021, 22, 2254. [Google Scholar] [CrossRef]
- Ganie, S.A.; Molla, K.A.; Henry, R.J.; Bhat, K.V.; Mondal, T.K. Advances in understanding salt tolerance in rice. Theor. Appl. Genet. 2019, 132, 851–870. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Yang, B.; He, Y.; Zhan, C.; Cheng, Y.; Zhang, J.H.; Cheng, J.P.; Wang, Z.F. A quantitative trait locus, qSE3, promotes seed germination and seedling establishment under salinity stress in rice. Plant J. 2019, 97, 1089–1104. [Google Scholar] [CrossRef] [PubMed]
- Bevan, M.W.; Uauy, C.; Wulff, B.B.; Zhou, J.; Krasileva, K.; Clark, M.D. Genomic innovation for crop improvement. Nature 2017, 543, 346–354. [Google Scholar] [CrossRef] [PubMed]
- Takeda, S.; Matsuoka, M. Genetic approaches to crop improvement: Responding to environmental and population changes. Nat. Rev. Genet. 2008, 9, 444–457. [Google Scholar] [CrossRef]
- Ismail, A.M.; Horie, T. Genomics, physiology, and molecular breeding approaches for improving salt tolerance. Annu. Rev. Plant Biol. 2017, 68, 405–434. [Google Scholar] [CrossRef]
- Dai, L.P.; Li, P.Y.; Li, Q.; Leng, Y.J.; Zeng, D.L.; Qian, Q. Integrated multi-omics perspective to strengthen the understanding of salt tolerance in rice. Int. J. Mol. Sci. 2022, 23, 5236. [Google Scholar] [CrossRef]
- Kong, W.L.; Zhang, C.H.; Zhang, S.C.; Qiang, Y.L.; Zhang, Y.; Zhong, H.; Li, Y.S. Uncovering the Novel QTLs and Candidate Genes of Salt Tolerance in Rice with Linkage Mapping, RTM-GWAS, and RNA-seq. Rice 2021, 14, 93. [Google Scholar] [CrossRef]
- Li, S.S.; Xu, S.B.; Zheng, J.; Du, H.J.; Li, C.; Shen, S.; Liang, S.M.; Wang, J.G.; Liu, H.L.; Yang, L.M.; et al. Joint QTL mapping and transcriptome sequencing analysis reveal candidate genes for salinity tolerance in Oryza sativa L. ssp. Japonica seedlings. Int. J. Mol. Sci. 2023, 24, 17591. [Google Scholar] [CrossRef]
- Liu, S.J.; Liu, W.H.; Lai, J.Y.; Liu, Q.J.; Zhang, W.H.; Chen, Z.J.; Gao, J.D.; Song, S.G.; Liu, J.; Xiao, Y.H. OsGLYI3, a glyoxalase gene expressed in rice seed, contributes to seed longevity and salt stress tolerance. Plant Physiol. Biochem. 2022, 183, 85–95. [Google Scholar] [CrossRef]
- Han, G.; Lu, C.; Guo, J.; Qiao, Z.; Sui, N.; Qiu, N.; Wang, B. C2H2 zinc finger proteins, master regulators of abiotic stress responses in plants. Front. Plant Sci. 2020, 11, 115. [Google Scholar] [CrossRef]
- Matsuda, S.; Takano, S.; Sato, M.; Furukawa, K.; Nagasawa, H.; Yoshikawa, S.; Kasuga, J.; Tokuji, Y.; Yazaki, K.; Nakazono, M.; et al. Rice stomatal closure requires guard cell plasma membrane ATP-Binding cassette transporter RCN1/OsABCG5. Mol. Plant 2016, 9, 417–427. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Asif, M.H.; Chakrabarty, D.; Tripathi, R.D.; Dubey, R.S.; Trivedi, P.K. Expression of a rice Lambda class of glutathione S-transferase, OsGSTL2, in Arabidopsis provides tolerance to heavy metal and other abiotic stresses. J. Hazard. Mater. 2013, 249, 228–237. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Asif, M.H.; Chakrabarty, D.; Tripathi, R.D.; Dubey, R.S.; Trivedi, P.K. Differential expression of rice lambda class gst gene family members during plant growth, development, and in response to stress conditions. Plant Mol. Biol. Report. 2013, 31, 569–580. [Google Scholar] [CrossRef]
- Wu, J.N.; Kim, S.G.; Kang, K.Y.; Kim, J.G.; Park, S.R.; Gupta, R.; Kim, Y.H.; Wang, Y.M.; Kim, S.T. Overexpression of a pathogenesis-related protein 10 enhances biotic and abiotic stress tolerance in rice. Plant Pathol. J. 2016, 32, 552–562. [Google Scholar] [CrossRef]
- Kaewneramit, T.; Buaboocha, T.; Sangchai, P.; Wutipraditkul, N. OsCaM1-1 overexpression in the transgenic rice mitigated salt-induced oxidative damage. Biol. Plant 2019, 63, 335. [Google Scholar] [CrossRef]
- Takahashi, H.; Kawakatsu, T.; Wakasa, Y.; Hayashi, S.; Takaiwa, F. A rice transmembrane bZIP transcription factor, OsbZIP39, regulates the endoplasmic reticulum stress response. Plant Cell Physiol. 2012, 53, 144–153. [Google Scholar] [CrossRef]
- Ju, C.Y.; Ma, X.D.; Han, B.; Zhang, W.; Zhao, Z.W.; Geng, L.Y.; Cui, D.; Han, L.Z. Candidate gene discovery for salt tolerance in rice (Oryza sativa L.) at the germination stage based on genome-wide association study. Front. Plant Sci. 2023, 13, 1010654. [Google Scholar] [CrossRef]
- Li, X.Z.; Dong, J.F.; Zhu, W.; Zhao, J.J.; Zhou, L.Y. Progress in the study of functional genes related to direct seeding of rice. Mol Breed. 2023, 43, 46. [Google Scholar] [CrossRef]
- Ganapati, R.K.; Naveed, S.A.; Zafar, S.; Wang, W.S.; Xu, J.L. Saline-Alkali tolerance in rice, physiological response, molecular mechanism, and QTL identification and application to breeding. Rice Sci. 2022, 29, 412–434. [Google Scholar] [CrossRef]
- Tiwari, K.; Tiwari, S.; Kumar, N.; Sinha, S.; Krishnamurthy, S.L.; Singh, R.; Kalia, S.; Singh, N.K.; Rai, V. QTLs and genes for salt stress tolerance, a journey from seed to seed continued. Plants 2024, 13, 1099. [Google Scholar] [CrossRef]
- Geng, L.Y.; Zhang, W.; Zou, T.; Du, Q.; Ma, X.D.; Cui, D.; Han, B.; Zhang, Q.X.; Han, L.Z. Integrating linkage mapping and comparative transcriptome analysis for discovering candidate genes associated with salt tolerance in rice. Front. Plant Sci. 2023, 14, 1065334. [Google Scholar] [CrossRef] [PubMed]
- Sabouri, H.; Rezai, A.M.; Moumeni, A.; Kavousi, A.; Katouzi, M.; Sabouri, A. QTLs mapping of physiological traits related to salt tolerance in young rice seedlings. Biol. Plant 2009, 53, 657–662. [Google Scholar] [CrossRef]
- Lei, L.; Zheng, H.L.; Yang, L.M.; Zhao, H.W.; Wang, J.G.; Liu, H.L.; Sun, J.; Zou, D.T. Meta-analysis of salt tolerance QTLs and mining of candidate genes. Acta Agric. Boreali-Sin. 2017, 32, 45–53. [Google Scholar] [CrossRef]
- De Leon, T.B.; Linscombe, S.; Subudhi, P.K. Molecular dissection of seedling salinity tolerance in rice (Oryza sativa L.) using a high-density GBS-based SNP linkage map. Rice 2016, 9, 52. [Google Scholar] [CrossRef]
- Reddy, I.N.B.L.; Kim, B.K.; Yoon, I.S.; Kim, K.H.; Kwon, T.R. Salt tolerance in rice, focus on mechanisms and approaches. Rice Sci. 2017, 24, 123–144. [Google Scholar] [CrossRef]
- Yang, S.; Liu, M.; Chu, N.; Chen, G.; Wang, P.; Mo, J.; Guo, H.; Xu, J.; Zhou, H. Combined transcriptome and metabolome reveal glutathione metabolism plays a critical role in resistance to salinity in rice landraces HD961. Front. Plant Sci. 2022, 13, 952595. [Google Scholar] [CrossRef]
- Cimini, S.; Locato, V.; Giacinti, V.; Molinari, M.; De Gara, L. A multifactorial regulation of glutathione metabolism behind salt tolerance in rice. Antioxidants 2022, 11, 1114. [Google Scholar] [CrossRef]
- Varshney, R.K.; Nayak, S.N.; May, G.D.; Jackson, S.A. Next-generation sequencing technologies and their implications for crop genetics and breeding. Trends Biotechnol. 2009, 27, 522–530. [Google Scholar] [CrossRef]
- Singh, A.K.; Rana, M.K.; Singh, S.; Kumar, S.; Kumar, R.; Singh, R. CAAT box derived polymorphism (CBDP): A novel promoter -targeted molecular marker for plants. J. Plant Biochem. Biotechnol. 2014, 23, 175–183. [Google Scholar] [CrossRef]
- Sripinyowanich, S.; Klomsakul, P.; Boonburapong, B.; Bangyeekhun, T.; Asami, T.; Gu, H.Y.; Buaboocha, T.; Chadchawan, S. Exogenous ABA induces salt tolerance in indica rice (Oryza sativa L.): The role of OsP5CS1 and OsP5CR gene expression during salt stress. Environ. Exp. Bot. 2013, 86, 94–105. [Google Scholar] [CrossRef]
- Van Ooijen, J.W. MapQTL 6, Software for the Mapping of Quantitative Trait Loci in Experimental Population of Diploid Species; Kyazma, B.V.: Wageningen, The Netherlands, 2009. [Google Scholar]
- Chen, Y.R.; Gu, J. Fastp, an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 2018, 34, 884–890. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.; Landmead, B.; Salzberg, S.L. HISAT: A fast spliced aligner with low memory requirements. Nat. Methods 2015, 12, U121–U357. [Google Scholar] [CrossRef] [PubMed]
- Love, M.I.; Huber, W.; Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with Deseq2. Genome Biol. 2014, 15, 550. [Google Scholar] [CrossRef] [PubMed]
- Yu, G.; Wang, L.G.; Han, Y.; He, Q.Y. ClusterProfiler: An r package for comparing biological themes among gene clusters. Omics-J. Integr. Biol. 2012, 16, 284–287. [Google Scholar] [CrossRef] [PubMed]
Trait | QTL | LOD | Chromosome | Genetic Interval (cM) | Physical Interval (Kb) | PVE (%) | Additive |
---|---|---|---|---|---|---|---|
LSRGI | qLSRGI2-1 | 3.65 | 2 | 48.80–62.33 | 11,133.44–19,240.04 | 6.40 | 0.06 |
qLSRGI3-1 * | 6.48 | 3 | 38.49–45.23 | 6112.64–6965.22 | 11.10 | 0.08 | |
qLSRGI3-2 | 6.88 | 3 | 54.76–59.62 | 9618.18–11,348.70 | 11.80 | 0.09 | |
qLSRGI7-1 | 3.55 | 7 | 10.10–14.25 | 2208.42–5052.83 | 6.30 | 0.06 | |
LSRGR | qLSRGR2-1 | 3.61 | 2 | 45.55–48.80 | 10,199.59–11,133.44 | 6.40 | 0.06 |
qLSRGR3-1 | 4.42 | 3 | 36.20–48.97 | 6039.23–8127.61 | 7.70 | 0.07 | |
qLSRGR3-2 | 3.42 | 3 | 52.28–62.18 | 9200.47–11,961.23 | 6.00 | 0.06 | |
LSRCL | qLSRCL3-1 | 5.11 | 3 | 56.28–61.02 | 9799.94–11,603.07 | 8.90 | 0.07 |
qLSRCL7-1 | 3.92 | 7 | 18.72–29.40 | 6046.91–8992.24 | 6.90 | 0.06 | |
HSRGI | qHSRGI2-1 | 3.65 | 2 | 57.65–62.33 | 18,228.53–19,240.04 | 6.40 | 0.05 |
qHSRGI3-1 | 5.39 | 3 | 35.03–42.21 | 5638.24–6928.16 | 9.30 | 0.06 | |
qHSRGI3-2 | 6.16 | 3 | 54.76–58.76 | 9618.18–10,640.21 | 10.60 | 0.07 | |
qHSRGI6-1 | 3.88 | 6 | 49.50–55.14 | 6938.15–8230.83 | 6.80 | 0.05 | |
qHSRGI7-1 | 3.63 | 7 | 12.91–25.40 | 374.59–2208.42 | 6.40 | 0.05 | |
HSRGR | qHSRGR2-1 | 3.79 | 2 | 57.24–62.33 | 18,438.09–19,240.04 | 6.70 | 0.07 |
qHSRGR3-1 | 4.63 | 3 | 36.20–45.23 | 6039.23–6965.22 | 8.10 | 0.08 | |
qHSRGR3-2 | 4.88 | 3 | 52.28–62.18 | 9200.47–11,961.23 | 8.50 | 0.08 | |
qHSRGR6-1 | 3.57 | 6 | 55.25–64.50 | 8036.25–10,246.51 | 6.30 | 0.07 | |
qHSRGR7-1 | 4.01 | 7 | 10.10–25.40 | 374.59–4817.93 | 7.00 | 0.07 | |
HSRCL | qHSRCL3-1 | 9.55 | 3 | 56.28–58.51 | 9799.94–10,540.07 | 16.00 | 0.07 |
Gene ID | Name | Position (bp) | Annotation | Reference |
---|---|---|---|---|
Os03g0277500 | OsGLYI3 | 3:9,418,945–9,419,670 | A glyoxalase gene expressed in rice seed that contributes to seed longevity and salt stress tolerance | [29] |
Os03g0279700 | 3:9,524,919–9,525,850 | ZOS3-09-C2H2 zinc finger protein | [30] | |
Os03g0281900 | OsABCG5 | 3:9,654,333–9,657,024 | Rice stomatal closure requires guard cell plasma membrane ATP-binding cassette transporter | [31] |
Os03g0283100 | OsGSTL2 | 3:9,712,224–9,714,920 | Glutathione S-transferase gene | [32] |
Os03g0283200 | OsGSTL1 | 3:9,717,253–9,719,884 | Glutathione S-transferase gene | [33] |
Os03g0300400 | JIOsPR10 | 3:10,562,231–10,563,277 | Jasmonate inducible pathogenesis-related class 10 protein gene | [34] |
Os03g0319300 | OsCam1-1 | 3:11,522,676–11,524,356 | Salt stress-responsive calmodulin | [35] |
Os03g0322700 | OsbZIP29 | 3:11,683,525–11,684,400 | Basic leucine zipper transcription factor | [36] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Geng, L.; Zou, T.; Zhang, W.; Wang, S.; Yao, Y.; Zheng, Z.; Du, Q.; Han, L. Integration Linkage Mapping and Comparative Transcriptome Analysis to Dissect the Genetic Basis of Rice Salt Tolerance Associated with the Germination Stage. Int. J. Mol. Sci. 2024, 25, 10376. https://doi.org/10.3390/ijms251910376
Geng L, Zou T, Zhang W, Wang S, Yao Y, Zheng Z, Du Q, Han L. Integration Linkage Mapping and Comparative Transcriptome Analysis to Dissect the Genetic Basis of Rice Salt Tolerance Associated with the Germination Stage. International Journal of Molecular Sciences. 2024; 25(19):10376. https://doi.org/10.3390/ijms251910376
Chicago/Turabian StyleGeng, Leiyue, Tuo Zou, Wei Zhang, Shuo Wang, Yutao Yao, Zhenyu Zheng, Qi Du, and Longzhi Han. 2024. "Integration Linkage Mapping and Comparative Transcriptome Analysis to Dissect the Genetic Basis of Rice Salt Tolerance Associated with the Germination Stage" International Journal of Molecular Sciences 25, no. 19: 10376. https://doi.org/10.3390/ijms251910376
APA StyleGeng, L., Zou, T., Zhang, W., Wang, S., Yao, Y., Zheng, Z., Du, Q., & Han, L. (2024). Integration Linkage Mapping and Comparative Transcriptome Analysis to Dissect the Genetic Basis of Rice Salt Tolerance Associated with the Germination Stage. International Journal of Molecular Sciences, 25(19), 10376. https://doi.org/10.3390/ijms251910376