Testing Green Tea Extract and Ammonium Salts as Stimulants of Physical Performance in a Forced Swimming Rat Experimental Model
Abstract
:1. Introduction
2. Results
2.1. Functional Parameters and Blood Lactate Level after Exercise
2.2. Biochemical Parameters of Blood Plasma on the Next Day after Exercise
2.3. Biochemical Parameters of Red Blood Cells on the Next Day after Exercise
2.4. Hematological Parameters of Rats on the Next Day after Final Exercise Load
2.5. Immunological Parameters of Rats on the Next Day after Final Exercise Load
2.6. Effect of GTE and Low Doses of Ammonium Salts on Gene Expression in Rat Muscles on the Next Day after Final Exercise Load
2.7. The Influence of GTE and Small Doses of Ammonium Salts on the Ultrastructure and Morphometric Parameters of Rat Muscles on the Next Day after Final Exercise Load
3. Discussion
4. Materials and Methods
4.1. Chemicals and Green Tea Extract
4.2. Forced Swimming Model and Experimental Scheme
4.3. Peripheral Blood Lymphocyte Immunophenotyping
4.4. Determination of Biochemical Parameters of Blood Plasma
4.5. Determination of Biochemical Parameters of Erythrocytes
4.6. Isolation and Purification of RNA
4.7. Real-Time PCR after Reverse Transcription
4.8. Transmission Electron Microscopy (TEM) and Morphometry
4.9. Statistics
5. Conclusions
6. Limitations of the Research
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ACL | ammonium chloride |
ACR | ammonium carbonate |
ALB | Albumin |
ALP | alkaline phosphatase |
ALT | alanine transaminase |
AMPK | 5′-adenosine monophosphate-activated protein kinase |
ATP | adenosine triphosphate |
AQ | aquaporins |
BPG | 2,3-bisphosphoglycerate |
CACNA1S | dihydropyridine receptor, L-type calcium channel |
CASQ | calsequestrin |
Chol | Cholesterol |
CICR | calcium-induced calcium release |
CYB5R | cytochrome-b5 reductase |
DICR | depolarization-induced calcium release |
DNT cells | double-negative T cells |
EC | Epicatechin |
ECC | excitation–contraction coupling |
ECG | epicatechin gallate |
EGC | Epigallocatechin |
EGCG | epigallocatechin-3-gallate |
EDL | m. extensor digitorum longus |
EDTA | ethylenediaminetetraacetic acid |
EMC | electromechanical coupling |
GAPD | glyceraldehyde-3-phosphate dehydrogenase |
GP | glutathione peroxidase |
G6PD | glucose-6-phosphate dehydrogenase |
GR | glutathione reductase |
Gran | Granulocyte |
GSH | reduced glutathione |
GSSG | oxidized glutathione |
GST | glutathione-S-transferase |
GTE | green tea extract |
Hb | Hemoglobin |
HCT | Hematocrit |
HDL | high-density lipoprotein |
HNE | 4-hydroxy-2-nonenal |
LDH | lactate dehydrogenase |
LDL | low-density lipoprotein |
Lymph | Lymphocytes |
metHb | Methemoglobin |
MCH | mean concentration hemoglobin |
MCHC | mean corpuscular hemoglobin concentration |
MCT | monocarboxylate transporter |
MCV | mean corpuscular volume |
MDA | Malondialdehyde |
MPV | mean platelet volume |
MRP1 | multidrug resistance protein 1 |
MyHC | myosin heavy chain |
NEFAs | non-esterified fatty acids |
NF-κB | nuclear factor kappa-light-chain-enhancer of activated B cells |
NK | natural killer cells |
NKT | natural killer T cells |
PCT | Plateletcrit |
PDW | platelet distribution width |
PEPCK | phosphoenolpyruvate carboxykinase |
PGC-1α | peroxisome proliferator-activated receptor gamma coactivator-1α |
PLT | platelet count |
PPAR | peroxisome proliferator-activated receptor |
RBC | red blood cell count |
RDW | red blood cell distribution width |
ROS | reactive oxygen species |
RYR | ryanodine receptor |
SB | sodium bicarbonate |
SC | sodium citrate |
SERCA | calcium ATPase |
SOL | m. soleus |
SR | sarcoplasmic reticulum |
TCR | T-cell receptor |
Tcyt | cytotoxic T cells |
TEM | transmission electron microscopy |
Th | T helper cells |
TMET | transmembrane electron transport |
TP | total protein |
Transf | Transferrin |
Tregs | regulatory T cells |
Trigs | Triglycerides |
UA | uric acid |
WBC | white blood cell count |
References
- Goncharov, N.; Maevsky, E.; Voitenko, N.; Novozhilov, A.; Kubasov, I.; Jenkins, R.; Avdonin, P. Nutraceuticals in sports activities and fatigue. In Nutraceuticals: Efficacy, Safety and Toxicity, 2nd ed.; Gupta, R.C., Lall, R., Srivastava, A., Eds.; Academic Press/Elsevier: Amsterdam, The Netherlands, 2016; pp. 177–188. ISBN 978-0-12-821038-3. [Google Scholar]
- Venables, M.C.; Hulston, C.J.; Cox, H.R.; Jeukendrup, A.E. Green tea extract ingestion, fat oxidation, and glucose tolerance in healthy humans. Am. J. Clin. Nutr. 2008, 87, 78–84. [Google Scholar] [CrossRef] [PubMed]
- Murase, T.; Haramizu, S.; Shimotoyodome, A.; Tokimitsu, I.; Hase, T. Green tea extract improves running endurance in mice by stimulating lipid utilization during exercise. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2006, 290, R1550–R1556. [Google Scholar] [CrossRef] [PubMed]
- Sachdeva, A.K.; Kuhad, A.; Tiwari, V.; Arora, V.; Chopra, K. Protective effect of epigallocatechin gallate in murine water-immersion stress model of chronic fatigue syndrome. Basic Clin. Pharmacol. Toxicol. 2010, 106, 490–496. [Google Scholar] [CrossRef] [PubMed]
- Dorchies, O.M.; Wagner, S.; Buetler, T.M.; Ruegg, U.T. Protection of dystrophic muscle cells with polyphenols from green tea correlates with improved glutathione balance and increased expression of 67LR, a receptor for (−)-epigallocatechin gallate. Biofactors 2009, 35, 279–294. [Google Scholar] [CrossRef]
- Lin, S.P.; Li, C.Y.; Suzuki, K.; Chang, C.K.; Chou, K.M.; Fang, S.H. Green tea consumption after intense taekwondo training enhances salivary defense factors and antibacterial capacity. PLoS ONE 2014, 9, e87580. [Google Scholar] [CrossRef]
- Isbrucker, R.A.; Bausch, J.; Edwards, J.A.; Wolz, E. Safety studies on epigallocatechin gallate (EGCG) preparations. Part 1: Genotoxicity. Food Chem. Toxicol. 2006, 44, 626–635. [Google Scholar] [CrossRef]
- Suganuma, M.; Okabe, S.; Oniyama, M.; Tada, Y.; Ito, H.; Fujiki, H. Wide distribution of [3H] (–)-epigallocatechin gallate, a cancer preventive tea polyphenol, in mouse tissue. Carcinogenesis 1998, 19, 1771–1776. [Google Scholar] [CrossRef]
- Chen, L.; Lee, M.J.; Li, H.; Yang, C.S. Absorption, distribution, elimination of tea polyphenols in rats. Drug Metab. Dispos. 1997, 25, 1045–1050. [Google Scholar]
- Lee, M.J.; Maliakal, P.; Chen, L.; Meng, X.; Bondoc, F.Y.; Prabhu, S.; Lambert, G.; Mohr, S.; Yang, C.S. Pharmacokinetics of tea catechins after ingestion of green tea and (–)-epigallocatechin-3-gallate by humans: Formation of different metabolites and individual variability. Cancer Epidemiol. Biomark. Prev. 2002, 11, 1025–1032. [Google Scholar]
- Chow, H.H.; Cai, Y.; Alberts, D.S.; Hakim, I.; Dorr, R.; Shahi, F.; Crowell, J.A.; Yang, C.S.; Hara, Y. Phase I pharmacokinetic study of tea polyphenols following single-dose administration of epigallocatechin gallate and polyphenon E. Cancer Epidemiol. Biomark. Prev. 2001, 10, 53–58. [Google Scholar]
- Korf, E.A.; Kubasov, I.V.; Novozhilov, A.V.; Matrosova, E.V.; Tavrovskaya, T.V.; Goncharov, N.V.; Vonsky, M.S.; Runov, A.L.; Kurchakova, E.V. Green tea extract increases the expression of genes responsible for regulation of calcium balance in rat slow-twitch muscles under conditions of exhausting exercise. Bull. Exp. Biol. Med. 2017, 164, 6–9. [Google Scholar] [CrossRef] [PubMed]
- Korf, E.A.; Kubasov, I.V.; Vonsky, M.S.; Novozhilov, A.V.; Runov, A.L.; Kurchakova, E.V.; Matrosova, E.V.; Tavrovskaya, T.V.; Goncharov, N.V. Ultrastructural and Gene-Expression Changes in the Calcium Regulation System of Rat Skeletal Muscles under Exhausting Exercise. Cell Tissue Biol. 2017, 11, 371–380. [Google Scholar] [CrossRef]
- Hodgson, A.B.; Randell, R.K.; Jeukendrup, A.E. The effect of green tea extract on fat oxidation at rest and during exercise: Evidence of efficacy and proposed mechanisms. Adv. Nutr. 2013, 4, 129–140. [Google Scholar] [CrossRef] [PubMed]
- Jenkinson, C.; Petroczi, A.; Naughton, D.P. Effects of Dietary Components on Testosterone Metabolism via UDP-Glucuronosyltransferase. Front. Endocrinol. 2013, 4, 80. [Google Scholar] [CrossRef] [PubMed]
- Ferguson, B.S.; Rogatzki, M.J.; Goodwin, M.L.; Kane, D.A.; Rightmire, Z. Lactate metabolism: Historical context, prior misinterpretations, and current understanding. Eur. J. Appl. Physiol. 2018, 118, 69–728. [Google Scholar] [CrossRef] [PubMed]
- Maciejewski, H.; Bourdin, M.; Feasson, L.; Dubouchaud, H.; Denis, C.; Freund, H.; Messonnier, L.A. Muscle MCT4 content is correlated with the lactate removal ability during recovery following all-out supramaximal exercise in highly-trained rowers. Front. Physiol. 2016, 7, 223. [Google Scholar] [CrossRef]
- Opitz, D.; Lenzen, E.; Opiolka, A.; Redmann, M.; Hellmich, M.; Bloch, W.; Brixius, K.; Brinkmann, C. Endurance training alters basal erythrocyte MCT-1 contents and affects the lactate distribution between plasma and red blood cells in T2DM men following maximal exercise. Can. J. Physiol. Pharmacol. 2015, 93, 413–419. [Google Scholar] [CrossRef]
- Hostrup, M.; Bangsbo, J. Limitations in intense exercise performance of athletes—Effect of speed endurance training on ion handling and fatigue development. J. Physiol. 2017, 595, 2897–2913. [Google Scholar] [CrossRef]
- Cheng, I.S.; Wang, Y.W.; Chen, I.F.; Hsu, G.S.; Hsueh, C.F.; Chang, C.K. The supplementation of branched-chain amino acids, arginine, and citrulline improves endurance exercise performance in two consecutive days. J. Sports Sci. Med. 2016, 15, 509–515. [Google Scholar]
- Korf, E.A.; Mindukshev, I.V.; Novozhilov, A.V.; Krivchenko, A.I.; Goncharov, N.V. Ammonium Salts Increase Physical Performance and Reduce Blood Lactate Level in Rats in a Model of Forced Swimming. Bull. Exp. Biol. Med. 2020, 168, 610–613. [Google Scholar] [CrossRef]
- Novozhilov, A.V.; Mindukshev, I.V.; Korf, E.A.; Krivchenko, A.I.; Goncharov, N.V. Ammonium salts promote the functional adaptation of rat erythrocytes in the model of forced swimming. Bull. Exp. Biol. Med. 2020, 168, 444–448. [Google Scholar] [CrossRef] [PubMed]
- Korf, E.A.; Kudryavtsev, I.V.; Serebryakova, M.K.; Novozhilov, A.V.; Mindukshev, I.V.; Goncharov, N.V. Ammonium Salts Promote Adaptive Changes of Rat Immune System to Ultimate Load in the Forced Swimming Model. Bull. Exp. Biol. Med. 2021, 170, 714–718. [Google Scholar] [CrossRef] [PubMed]
- Mindukshev, I.; Sudnitsyna, J.; Goncharov, N.V.; Skverchinskaya, E.; Dobrylko, I.; Nikitina, E.; Krivchenko, A.I.; Gambaryan, S. Low-Dose Ammonium Preconditioning Enhances Endurance in Submaximal Physical Exercises. Sports 2021, 9, 29. [Google Scholar] [CrossRef] [PubMed]
- Lima, W.G.; Martins-Santos, M.E.; Chaves, V.E. Uric acid as a modulator of glucose and lipid metabolism. Biochimie 2015, 116, 17–23. [Google Scholar] [CrossRef] [PubMed]
- Qin, L.; Lu, T.; Qin, Y.; He, Y.; Cui, N.; Du, A.; Sun, J. In Vivo Effect of Resveratrol-Loaded Solid Lipid Nanoparticles to Relieve Physical Fatigue for Sports Nutrition Supplements. Molecules 2020, 25, 5302. [Google Scholar] [CrossRef] [PubMed]
- Derelanko, M.J. Determination of erythrocyte life span in F-344, Wistar, and Sprague-Dawley rats using a modification of the [3H]diisopropylfluorophosphate ([3H]DFP) method. Fundam. Appl. Toxicol. 1987, 9, 271–276. [Google Scholar] [CrossRef]
- Franco, R.S. Measurement of red cell lifespan and aging. Transfus. Med. Hemother. 2012, 39, 302–307. [Google Scholar] [CrossRef]
- Kumar, D.; Rizvi, S.I. Markers of oxidative stress in senescent erythrocytes obtained from young and old age rats. Rejuven. Res. 2014, 17, 446–452. [Google Scholar] [CrossRef]
- Iwatsuki, Y.; Kitamura, K.; Suzuki, K. Shortened Lifespan of Red Blood Cells and the Effects of Erythropoietin in Rats with Nephrogenic Anemia. Blood 2009, 114, 1977. [Google Scholar] [CrossRef]
- Mairbäurl, H. Red blood cells in sports: Effects of exercise and training on oxygen supply by red blood cells. Front. Physiol. 2013, 4, 332. [Google Scholar] [CrossRef]
- Bizjak, D.A.; Tomschi, F.; Bales, G.; Nader, E.; Romana, M.; Connes, P.; Bloch, W.; Grau, M. Does endurance training improve red blood cell aging and hemorheology in moderate-trained healthy individuals? J. Sport Health Sci. 2020, 9, 595–603. [Google Scholar] [CrossRef] [PubMed]
- Ferguson, B.S.; Neidert, L.E.; Rogatzki, M.J.; Lohse, K.R.; Gladden, L.B.; Kluess, H.A. Red blood cell ATP release correlates with red blood cell hemolysis. Am. J. Physiol. Cell Physiol. 2021, 321, C761–C769. [Google Scholar] [CrossRef] [PubMed]
- Rudd, L.P.; Kabler, S.L.; Morrow, C.S.; Townsend, A.J. Enhanced glutathione depletion, protein adduct formation, and cytotoxicity following exposure to 4-hydroxy-2-nonenal (HNE) in cells expressing human multidrug resistance protein-1 (MRP1) together with human glutathione S-transferase-M1 (GSTM1). Chem. Biol. Interact. 2011, 194, 113–119. [Google Scholar] [CrossRef] [PubMed]
- Sharma, R.; Singhal, S.S.; Cheng, J.; Yang, Y.; Sharma, A.; Zimniak, P.; Awasthi, S.; Awasthi, Y.C. RLIP76 is the major ATP-dependent transporter of glutathione-conjugates and doxorubicin in human erythrocytes. Arch. Biochem. Biophys. 2001, 391, 171–179. [Google Scholar] [CrossRef] [PubMed]
- Awasthi, S.; Sharma, R.; Singhal, S.S.; Zimniak, P.; Awasthi, Y.C. RLIP76, a novel transporter catalyzing ATP-dependent efflux of xenobiotics. Drug Metab. Dispos. 2002, 12, 1300–1310. [Google Scholar] [CrossRef]
- Suzuki, Y.; Nakajima, T.; Shiga, T.; Maeda, N. Influence of 2,3-diphosphoglycerate on the deformability of human erythrocytes. Biochim. Biophys. Acta 1990, 1029, 85–90. [Google Scholar] [CrossRef]
- Swietach, P.; Tiffert, T.; Mauritz, J.M.; Seear, R.; Esposito, A.; Kaminski, C.F.; Lew, V.L.; Vaughan-Jones, R.D. Hydrogen ion dynamics in human red blood cells. J. Physiol. 2010, 588, 4995–5014. [Google Scholar] [CrossRef]
- Johnson, D.E.; Casey, J.R. Cytosolic H+ microdomain developed around AE1 during AE1-mediated Cl−/HCO3− exchange. J. Physiol. 2011, 589, 1551–1569. [Google Scholar] [CrossRef]
- Fokina, K.V.; Dainyak, M.B.; Nagradova, N.K.; Muronetz, V.I. A study on the complexes between human erythrocyte enzymes participating in the conversions of 1,3-diphosphoglycerate. Arch. Biochem. Biophys. 1997, 345, 185–192. [Google Scholar] [CrossRef]
- Cho, J.; King, J.S.; Qian, X.; Harwood, A.J.; Shears, S.B. Dephosphorylation of 2,3-bisphosphoglycerate by MIPP expands the regulatory capacity of the Rapoport-Luebering glycolytic shunt. Proc. Natl. Acad. Sci. USA 2008, 105, 5998–6003. [Google Scholar] [CrossRef]
- Nielsen, M.S.; Weber, R.E. Antagonistic interaction between oxygenation-linked lactate and CO2 binding to human hemoglobin. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 2007, 146, 429–434. [Google Scholar] [CrossRef] [PubMed]
- Jensen, F.B. Red blood cell pH, the Bohr effect, and other oxygenation-linked phenomena in blood O2 and CO2 transport. Acta Physiol. Scand. 2004, 182, 215–227. [Google Scholar] [CrossRef] [PubMed]
- Navarro, F.; Bacurau, A.V.; Pereira, G.B.; Araújo, R.C.; Almeida, S.S.; Moraes, M.R.; Uchida, M.C.; Costa Rosa, L.F.; Navalta, J.; Prestes, J.; et al. Moderate exercise increases the metabolism and immune function of lymphocytes in rats. Eur. J. Appl. Physiol. 2013, 113, 1343–1352. [Google Scholar] [CrossRef] [PubMed]
- Giannaki, A.; Georgatzakou, H.Τ.; Fortis, S.P.; Anastasiadi, A.T.; Pavlou, E.G.; Nomikou, E.G.; Drandaki, M.P.; Kotsiafti, A.; Xydaki, A.; Fountzoula, C.; et al. Stratification of βSβ+ Compound Heterozygotes Based on L-Glutamine Administration and RDW: Focusing on Disease Severity. Antioxidants 2023, 12, 1982. [Google Scholar] [CrossRef] [PubMed]
- Casuso, R.A.; Martínez-Amat, A.; Martínez-Romero, R.; Camiletti-Moiron, D.; Hita-Contreras, F.; Martínez-López, E. Plasmatic nitric oxide correlates with weight and red cell distribution width in exercised rats supplemented with quercetin. Int. J. Food Sci. Nutr. 2013, 64, 830–835. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Fu, Q.; Zhang, D.; Chen, D.; Wang, F.; Guo, R.; Xie, X.; Jiang, Z.; Yu, J.; Li, Y. Analysis of Mean Corpuscular Volume and Red Cell Distribution Width in Patients with Aplastic Anemia. Hemoglobin 2023, 47, 31–35. [Google Scholar] [CrossRef] [PubMed]
- Laurent, X.; Bertin, B.; Renault, N.; Farce, A.; Speca, S.; Milhomme, O.; Millet, R.; Desreumaux, P.; Hénon, E.; Chavatte, P. Switching invariant natural killer T (iNKT) cell response from anticancerous to anti-inflammatory effect: Molecular bases. J. Med. Chem. 2014, 57, 5489–5508. [Google Scholar] [CrossRef]
- Wang, Y.; Sedimbi, S.K.; Löfbom, L.; Besra, G.S.; Porcelli, S.A.; Cardell, S.L. Promotion or Suppression of Murine Intestinal Polyp Development by iNKT Cell Directed Immunotherapy. Front. Immunol. 2019, 10, 352. [Google Scholar] [CrossRef]
- Tognarelli, E.I.; Gutiérrez-Vera, C.; Palacios, P.A.; Pasten-Ferrada, I.A.; Aguirre-Muñoz, F.; Cornejo, D.A.; González, P.A.; Carreño, L.J. Natural Killer T Cell Diversity and Immunotherapy. Cancers 2023, 15, 5737. [Google Scholar] [CrossRef]
- Periasamy, M.; Bhupathy, P.; Babu, G.J. Regulation of sarcoplasmic reticulum Ca2+ ATPase pump expression and its relevance to cardiac muscle physiology and pathology. Cardiovasc. Res. 2008, 77, 265–273. [Google Scholar] [CrossRef]
- Beard, N.A.; Laver, D.R.; Dulhunty, A.F. Calsequestrin and the calcium release channel of skeletal and cardiac muscle. Prog. Biophys. Mol. Biol. 2004, 85, 33–69. [Google Scholar] [CrossRef] [PubMed]
- Rossi, D.; Pierantozzi, E.; Amadsun, D.O.; Buonocore, S.; Rubino, E.M.; Sorrentino, V. The Sarcoplasmic Reticulum of Skeletal Muscle Cells: A Labyrinth of Membrane Contact Sites. Biomolecules 2022, 12, 488. [Google Scholar] [CrossRef] [PubMed]
- Nasledov, G.A.; Katina, I.E.; Zhitnikova, Y.V. Changes in the functioning of the electromechanical connection during tetanic contraction. Neurosci. Behav. Physiol. 2007, 37, 153–159. [Google Scholar] [CrossRef] [PubMed]
- Endo, M. Calcium-induced calcium release in skeletal muscle. Physiol. Rev. 2009, 89, 1153–1176. [Google Scholar] [CrossRef] [PubMed]
- Kang, C.; Ji, L.L. Role of PGC-1α signaling in skeletal muscle health and disease. Ann. N. Y. Acad. Sci. 2012, 1271, 110–117. [Google Scholar] [CrossRef] [PubMed]
- Puigserver, P.; Spiegelman, B.M. Peroxisome proliferators-activated receptor gamma coactivator 1α (PGC-1α): Transcriptional coactivator and metabolic regulator. Endocr. Rev. 2003, 24, 78–90. [Google Scholar] [CrossRef]
- Schiaffino, S.; Reggiani, C. Fiber types in mammalian skeletal muscles. Physiol. Rev. 2011, 91, 1447–1531. [Google Scholar] [CrossRef]
- Kwon, I.; Kim, K.S.; Lee, Y. Relationships between endurance exercise training-induced muscle fiber-type shifting and autophagy in slow- and fast-twitch skeletal muscles of mice. Phys. Act. Nutr. 2024, 28, 23–34. [Google Scholar] [CrossRef]
- Stephenson, G.M. Hybrid skeletal muscle fibres: A rare or common phenomenon? Clin. Exp. Pharmacol. Physiol. 2001, 28, 692–702. [Google Scholar] [CrossRef]
- Bloemberg, D.; Quadrilatero, J. Rapid determination of myosin heavy chain expression in rat, mouse, and human skeletal muscle using multicolor immunofluorescence analysis. PLoS ONE 2012, 7, e35273. [Google Scholar] [CrossRef]
- Totsuka, Y.; Nagao, Y.; Horii, T.; Yonekawa, H.; Imai, H.; Hatta, H.; Izaike, Y.; Tokunaga, T.; Atomi, Y. Physical performance and soleus muscle fiber composition in wild-derived and laboratory inbred mouse strains. J. Appl. Physiol. 1985 2003, 95, 720–727. [Google Scholar] [CrossRef] [PubMed]
- Stevens, L.; Bastide, B.; Bozzo, C.; Mounier, Y. Hybrid fibres under slow-to-fast transformations: Expression is of myosin heavy and light chains in rat soleus muscle. Pflug. Arch. 2004, 448, 507–514. [Google Scholar] [CrossRef] [PubMed]
- Vandenboom, R.; Gittings, W.; Smith, I.C.; Grange, R.W.; Stull, J.T. Myosin phosphorylation and force potentiation in skeletal muscle: Evidence from animal models. J. Muscle Res. Cell Motil. 2013, 34, 317–332. [Google Scholar] [CrossRef] [PubMed]
- Plotkin, D.L.; Roberts, M.D.; Haun, C.T.; Schoenfeld, B.J. Muscle Fiber Type Transitions with Exercise Training: Shifting Perspectives. Sports 2021, 9, 127. [Google Scholar] [CrossRef]
- Hoh, J.F.Y. Developmental, physiologic and phylogenetic perspectives on the expression and regulation of myosin heavy chains in mammalian skeletal muscles. J. Comp. Physiol. B 2023, 193, 355–382. [Google Scholar] [CrossRef]
- Ma, W.; Lee, K.H.; Yang, S.; Irving, T.C.; Craig, R. Lattice arrangement of myosin filaments correlates with fiber type in rat skeletal muscle. J. Gen. Physiol. 2019, 151, 1404–1412. [Google Scholar] [CrossRef]
- Hollidge-Horvat, M.G.; Parolin, M.L.; Wong, D.; Jones, N.L.; Heigenhauser, G.J. Effect of induced metabolic acidosis on human skeletal muscle metabolism during exercise. Am. J. Physiol. 1999, 277, E647–E658. [Google Scholar] [CrossRef]
- Carr, A.J.; Hopkins, W.G.; Gore, C.J. Effects of acute alkalosis and acidosis on performance: A meta-analysis. Sports Med. 2011, 41, 801–814. [Google Scholar] [CrossRef]
- Rosbergs, R.; Hutchinson, K.; Hendee, S.; Madden, S.; Siegler, J. Influence of pre-exercise acidosis and alkalosis on the kinetics of acid-base recovery following intense exercise. Int. J. Sport. Nutr. Exerc. Metab. 2005, 15, 59–74. [Google Scholar] [CrossRef]
- Qian, L.; Zhu, Y.; Deng, C.; Liang, Z.; Chen, J.; Chen, Y.; Wang, X.; Liu, Y.; Tian, Y.; Yang, Y. Peroxisome proliferator-activated receptor gamma coactivator-1 (PGC-1) family in physiological and pathophysiological process and diseases. Signal Transduct. Target. Ther. 2024, 9, 50. [Google Scholar] [CrossRef]
- Całkosiński, I.; Majda, J.; Terlecki, G.; Gostomska-Pampuch, K.; Małolepsza-Jarmołowska, K.; Sobolewska, S.; Całkosińska, A.; Kumala, A.; Gamian, A. Dynamic Analysis of Changes of Protein Levels and Selected Biochemical Indices in Rat Serum in the Course of Experimental Pleurisy. Inflammation 2016, 39, 1076–1089. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.D.; Jiang, S.Q.; Yan, F.J.; Ruan, L.; Zhang, C.T.; Quan, X.Q. The association of prealbumin, transferrin, and albumin with immunosenescence among elderly males. Aging Male 2024, 27, 2310308. [Google Scholar] [CrossRef] [PubMed]
- Bian, A.L.; Hu, H.Y.; Rong, Y.D.; Wang, J.; Wang, J.X.; Zhou, X.Z. A study on relationship between elderly sarcopenia and inflammatory factors IL-6 and TNF-α. Eur. J. Med. Res. 2017, 22, 25. [Google Scholar] [CrossRef] [PubMed]
- Rubio-Arias, J.Á.; Ávila-Gandía, V.; López-Román, F.J.; Soto-Méndez, F.; Alcaraz, P.E.; Ramos-Campo, D.J. Muscle damage and inflammation biomarkers after two ultra-endurance mountain races of different distances: 54 km vs 111 km. Physiol. Behav. 2019, 205, 51–57. [Google Scholar] [CrossRef]
- Mariño, M.M.; Grijota, F.J.; Bartolomé, I.; Siquier-Coll, J.; Román, V.T.; Muñoz, D. Influence of physical training on erythrocyte concentrations of iron, phosphorus and magnesium. J. Int. Soc. Sports Nutr. 2020, 17, 8. [Google Scholar] [CrossRef] [PubMed]
- Kumar, D.; Kasukurti, P.; Murthy, S. Erythrocytes and Platelets: A Critical Analysis of their Ontogenic Relationship through Automated Parameters. J. Clin. Diagn. Res. 2017, 11, EC05–BC08. [Google Scholar] [CrossRef]
- Matteucci, E.; Giampietro, O. Electron Pathways through Erythrocyte Plasma Membrane in Human Physiology and Pathology: Potential Redox Biomarker? Biomark. Insights 2007, 2, 321–329. [Google Scholar] [CrossRef]
- Maheshwari, N.; Qasim, N.; Anjum, R.; Mahmood, R. Fluoride enhances generation of reactive oxygen and nitrogen species, oxidizes hemoglobin, lowers antioxidant power and inhibits transmembrane electron transport in isolated human red blood cells. Ecotoxicol. Environ. Saf. 2021, 208, 111611. [Google Scholar] [CrossRef]
- Arif, A.; Salam, S.; Mahmood, R. Bioallethrin-induced generation of reactive species and oxidative damage in isolated human erythrocytes. Toxicol. In Vitro 2020, 65, 104810. [Google Scholar] [CrossRef]
- Crane, F.L.; Löw, H.; Sun, I.; Navas, P.; Gvozdjáková, A. Plasma membrane coenzyme Q: Evidence for a role in autism. Biologics 2014, 8, 199–205. [Google Scholar] [CrossRef]
- Elahian, F.; Sepehrizadeh, Z.; Moghimi, B.; Mirzaei, S.A. Human cytochrome b5 reductase: Structure, function, and potential applications. Crit. Rev. Biotechnol. 2014, 34, 134–143. [Google Scholar] [CrossRef]
- Pallotti, F.; Bergamini, C.; Lamperti, C.; Fato, R. The Roles of Coenzyme Q in Disease: Direct and Indirect Involvement in Cellular Functions. Int. J. Mol. Sci. 2021, 23, 128. [Google Scholar] [CrossRef] [PubMed]
- Hall, R.; Yuan, S.; Wood, K.; Katona, M.; Straub, A.C. Cytochrome b5 reductases: Redox regulators of cell homeostasis. J. Biol. Chem. 2022, 298, 102654. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrez-Merino, C.; Martínez-Costa, O.H.; Monsalve, M.; Samhan-Arias, A.K. Structural Features of Cytochrome b5-Cytochrome b5 Reductase Complex Formation and Implications for the Intramolecular Dynamics of Cytochrome b5 Reductase. Int. J. Mol. Sci. 2021, 23, 118. [Google Scholar] [CrossRef] [PubMed]
- Siendones, E.; Ballesteros, M.; Navas, P. Cellular and Molecular Mechanisms of Recessive Hereditary Methaemoglobinaemia Type II. J. Clin. Med. 2018, 7, 341. [Google Scholar] [CrossRef]
- Passon, P.G.; Reed, D.W.; Hultquist, D.E. Soluble cytochrome b5 from human erythrocytes. Biochim. Biophys. Acta Bioenergy 1972, 275, 51–61. [Google Scholar] [CrossRef]
- Hultquist, D.E.; Passon, P.G. Catalysis of methaemoglobin reduction by erythrocyte cytochrome B5 and cytochrome B5 reductase. Nat. New Biol. 1971, 229, 252–254. [Google Scholar] [CrossRef]
- Villalba, J.M.; Navarro, F.; Gómez-Díaz, C.; Arroyo, A.; Bello, R.I.; Navas, P. Role of cytochrome b5 reductase on the antioxidant function of coenzyme Q in the plasma membrane. Mol. Asp. Med. 1997, 18, S7–S13. [Google Scholar] [CrossRef]
- Soukup, T.; Smerdu, V. Effect of altered innervation and thyroid hormones on myosin heavy chain expression and fiber type transitions: A mini-review. Histochem. Cell Biol. 2015, 143, 123–130. [Google Scholar] [CrossRef]
- Soukup, T.; Diallo, M. Proportions of myosin heavy chain mRNAs, protein isoforms and fiber types in the slow and fast skeletal muscles are maintained after alterations of thyroid status in rats. Physiol. Res. 2015, 64, 111–118. [Google Scholar] [CrossRef]
- Larson, L.; Lioy, J.; Johnson, J.; Medler, S. Transitional Hybrid Skeletal Muscle Fibers in Rat Soleus Development. J. Histochem. Cytochem. 2019, 67, 891–900. [Google Scholar] [CrossRef]
- Wu, L.; Ran, L.; Lang, H.; Zhou, M.; Yu, L.; Yi, L.; Zhu, J.; Liu, L.; Mi, M. Myricetin improves endurance capacity by inducing muscle fiber type conversion via miR-499. Nutr. Metab. 2019, 16, 27. [Google Scholar] [CrossRef] [PubMed]
- Skelton, M.S.; Kremer, D.E.; Smith, E.W.; Gladden, L.B. Lactate influx into red blood cells from trained and untrained human subjects. Med. Sci. Sports Exerc. 1998, 30, 536–542. [Google Scholar] [CrossRef] [PubMed]
- Gmada, N.; Bouhlel, E.; Mrizak, I.; Debabi, H.; Ben Jabrallah, M.; Tabka, Z.; Feki, Y.; Amri, M. Effect of combined active recovery from supramaximal exercise on blood lactate disappearance in trained and untrained man. Int. J. Sports Med. 2005, 26, 874–879. [Google Scholar] [CrossRef] [PubMed]
- Zharikov, S.; Krotova, K.; Hu, H.; Baylis, C.; Johnson, R.J.; Block, E.R.; Patel, J. Uric acid decreases NO production and increases arginase activity in cultured pulmonary artery endothelial cells. Am. J. Physiol. Cell Physiol. 2008, 295, C1183–C1190. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Chen, M.; Zheng, J.; Shui, X.; He, Y.; Luo, H.; Lei, W. Insights into the relationship between serum uric acid and pulmonary hypertension (Review). Mol. Med. Rep. 2024, 29, 10. [Google Scholar] [CrossRef]
- Emoto, Y.; Yoshizawa, K.; Kinoshita, Y.; Yuki, M.; Yuri, T.; Yoshikawa, Y.; Sayama, K.; Tsubura, A. Green Tea Extract-induced Acute Hepatotoxicity in Rats. J. Toxicol. Pathol. 2014, 27, 163–174. [Google Scholar] [CrossRef]
- El-Bakry, H.A.; El-Sherif, G.; Rostom, R.M. Therapeutic dose of green tea extract provokes liver damage and exacerbates paracetamol-induced hepatotoxicity in rats through oxidative stress and caspase 3-dependent apoptosis. Biomed. Pharmacother. 2017, 96, 798–811. [Google Scholar] [CrossRef] [PubMed]
- Elliott, A.J.; Scheiber, S.A.; Thomas, C.; Pardini, R.S. Inhibition of glutathione reductase by flavonoids. A structure-activity study. Biochem. Pharmacol. 1992, 44, 1603–1608. [Google Scholar] [CrossRef]
- Manore, M.M. Effect of physical activity on thiamine, riboflavin, and vitamin B-6 requirements. Am. J. Clin. Nutr. 2000, 72, 598S–606S. [Google Scholar] [CrossRef]
- Hoffman, M.D.; Valentino, T.R.; Stuempfle, K.J.; Hassid, B.V. A Placebo-Controlled Trial of Riboflavin for Enhancement of Ultramarathon Recovery. Sports Med. Open. 2017, 1, 14. [Google Scholar] [CrossRef] [PubMed]
- Gariballa, S.; Forster, S.; Powers, H. Riboflavin status in acutely ill patients and response to dietary supplements. JPEN J. Parenter. Enter. Nutr. 2009, 33, 656–661. [Google Scholar] [CrossRef] [PubMed]
- Rowiński, R.; Kozakiewicz, M.; Kędziora-Kornatowska, K.; Hübner-Woźniak, E.; Kędziora, J. Markers of oxidative stress and erythrocyte antioxidant enzyme activity in older men and women with differing physical activity. Exp. Gerontol. 2013, 48, 1141–1146. [Google Scholar] [CrossRef] [PubMed]
- Patel, S.S.; Molnar, M.Z.; Tayek, J.A.; Ix, J.H.; Noori, N.; Benner, D.; Heymsfield, S.; Kopple, J.D.; Kovesdy, C.P.; Kalantar-Zadeh, K. Serum creatinine as a marker of muscle mass in chronic kidney disease: Results of a cross-sectional study and review of literature. J. Cachexia Sarcopenia Muscle 2013, 4, 19–29. [Google Scholar] [CrossRef] [PubMed]
- Fokina, K.V.; Yazykova, M.Y.; Danshina, P.V.; Schmalhausen, E.V.; Muronetz, V.I. Participation of glyceraldehyde-3-phosphate dehydrogenase in the regulation of 2,3-diphosphoglycerate level in erythrocytes. Biochemistry 2000, 65, 463–468. [Google Scholar]
- Schmalhausen, E.V.; Medvedeva, M.V.; Muronetz, V.I. Glyceraldehyde-3-phosphate dehydrogenase is involved in the pathogenesis of Alzheimer’s disease. Arch. Biochem. Biophys. 2024, 758, 110065. [Google Scholar] [CrossRef]
- Nikinmaa, M. Haemoglobin function in vertebrates: Evolutionary changes in cellular regulation in hypoxia. Respir. Physiol. 2001, 128, 317–329. [Google Scholar] [CrossRef]
- Adeva, M.M.; Souto, G.; Donapetry, C.; Portals, M.; Rodriguez, A.; Lamas, D. Brain edema in diseases of different etiology. Neurochem. Int. 2012, 61, 166–174. [Google Scholar] [CrossRef]
- Hillhouse, E.E.; Lesage, S. A comprehensive review of the phenotype and function of antigen-specific immunoregulatory double negative T cells. J. Autoimmun. 2013, 40, 58–65. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Du, X.; Shen, Z.; Wei, Y.; Wang, Y.; Han, X.; Jin, H.; Zhang, C.; Li, M.; Zhang, Z.; et al. The Critical and Diverse Roles of CD4-CD8- Double Negative T Cells in Nonalcoholic Fatty Liver Disease. Cell Mol. Gastroenterol. Hepatol. 2022, 13, 1805–1827. [Google Scholar] [CrossRef] [PubMed]
- Palmowski, J.; Reichel, T.; Boßlau, T.K.; Krüger, K. The effect of acute running and cycling exercise on T cell apoptosis in humans: A systematic review. Scand. J. Immunol. 2020, 91, e12834. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Iglesias, P.; Estruel-Amades, S.; Camps-Bossacoma, M.; Massot-Cladera, M.; Franch, À.; Pérez-Cano, F.J.; Castell, M. Influence of Hesperidin on Systemic Immunity of Rats Following an Intensive Training and Exhausting Exercise. Nutrients 2020, 12, 1291. [Google Scholar] [CrossRef] [PubMed]
- Trushina, E.N.; Mustafina, O.K.; Aksenov, I.V.; Krasutsky, A.G.; Nikityuk, D.B.; Tutelyan, V.A. Bioactive compounds anthocyanins as a factor in the nutritional recovery of the body’s adaptive potential after intense physical activity in the experiment: Assessment of immunological and hematological indicators of adaptation in Russian. Vopr. Pitan. 2023, 92, 6–15. [Google Scholar] [CrossRef] [PubMed]
- Halestrap, A.P.; Wilson, M.C. The monocarboxylate transporter family—Role and regulation. IUBMB Life 2012, 64, 109–119. [Google Scholar] [CrossRef] [PubMed]
- Ogasawara, Y.; Funakoshi, M.; Ishii, K. Glucose metabolism is accelerated by exposure to t-butylhydroperoxide during NADH consumption in human erythrocytes. Blood Cells Mol. Dis. 2008, 41, 237–243. [Google Scholar] [CrossRef] [PubMed]
- Hegesh, E.; Gruener, N.; Cohen, S.; Bochkovsky, R.; Shuval, H.I. A sensitive micromethod for the determination of methemoglobin in blood. Clin. Chim. Acta 1970, 30, 679–682. [Google Scholar] [CrossRef]
- Kumar, N.; Kant, R.; Maurya, P.K.; Rizvi, S.I. Concentration dependent effect of (−)-Epicatechin on Na+/K+-ATPase and Ca2+-ATPase inhibition induced by free radicals in hypertensive patients: Comparison with L-ascorbic acid. Phytother. Res. 2012, 26, 1644–1647. [Google Scholar] [CrossRef] [PubMed]
- Rakita, S.M.; Čolović1, D.S.; Levart, A.R.; Banjac, V.V.; Čolović, R.R.; Dragojlović, D.M.; Đuragić, O.M. A rapid spectrophotometric method for determination of thiobarbituric acid reactive substances in rainbow trout feed. Food Feed Res. 2020, 47, 43–53. [Google Scholar] [CrossRef]
- Razygraev, A.V.; Baziyan, E.V.; Polyanskikh, L.S.; Petrosyan, M.A. Experience of measuring glutathione peroxidase activity in surgically induced endometrial-like lesions in rats. J. Obstet. Women’s Dis. 2021, 70, 55–61. [Google Scholar] [CrossRef]
- Woodward, G.E.; Fry, E.G. The determination of blood glutathione. J. Biol. Chem. 1932, 97, 465–482. [Google Scholar] [CrossRef]
- Ellman, G.L. Tissue sulfhydryl groups. Arch. Biochem. Biophys. 1959, 82, 70–77. [Google Scholar] [CrossRef] [PubMed]
- Leff, J.A.; Oppegard, M.A.; Curiel, T.J.; Brown, K.S.; Schooley, R.T.; Repine, J.E. Progressive increases in serum catalase activity in advancing human immunodeficiency virus infection. Free Radic. Biol. Med. 1992, 13, 143–149. [Google Scholar] [CrossRef] [PubMed]
- Beutler, E. Red Cell Metabolism: A Manual of Biochemical Methods; Grune & Stratton: New York, NY, USA, 1975; 160p. [Google Scholar]
- Moatamedi Pour, L.; Farahnak, A.; Molaei Rad, M.; Golmohamadi, T.; Eshraghian, M. Activity Assay of Glutathione S-Transferase (GSTs) Enzyme as a Diagnostic Biomarker for Liver Hydatid Cyst in Vitro. Iran J. Public Health 2014, 43, 994–999. [Google Scholar] [PubMed]
- Bergmeyer, H.U.; Bernt, E. Lactate dehydrogenase. UV-assay with pyruvate and NADH. In Methods of Enzymatic Analysis; Bergmeyer, H.U., Ed.; Academic Press: New York, NY, USA, 1974; pp. 574–578. [Google Scholar]
- Roper, D.; Layton, M.; Rees, D.; Lambert, C.; Vulliamy, T.; De la Salle, B.; D’Souza, C. Laboratory diagnosis of G6PD deficiency. A British Society for Haematology Guideline. Br. J. Haematol. 2020, 189, 24–38. [Google Scholar] [CrossRef] [PubMed]
- Rizvi, S.I.; Jha, R.; Maurya, P.K. Erythrocyte plasma membrane redox system in human aging. Rejuven. Res. 2006, 9, 470–474. [Google Scholar] [CrossRef] [PubMed]
- Vandesompele, J.; de Preter, K.; Pattyn, F.; Poppe, B.; Van Roy, N.; De Paepe, A.; Speleman, F. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 2002, 3, research0034. [Google Scholar] [CrossRef] [PubMed]
- Andersen, C.L.; Jensen, J.L.; Orntoft, T.F. Normalization of real-time quantitative reverse transcription-PCR data: A model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res. 2004, 64, 5245–5250. [Google Scholar] [CrossRef]
- Pfaffl, M.W.; Tichopad, A.; Prgomet, C.; Neuvians, T.P. Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper—Excel-based tool using pair-wise correlations. Biotechnol. Lett. 2004, 26, 509–515. [Google Scholar] [CrossRef]
- Silver, N.; Best, S.; Jiang, J.; Thein, S.L. Selection of housekeeping genes for gene expression studies in human reticulocytes using real-time PCR. BMC Mol. Biol. 2006, 7, 33. [Google Scholar] [CrossRef]
- Xie, F.; Xiao, P.; Chen, D.; Xu, L.; Zhang, B. miRDeepFinder: A miRNA analysis tool for deep sequencing of plant small RNAs. Plant Mol. Biol. 2012, 80, 75–84. [Google Scholar] [CrossRef]
- Pfaffl, M.W.; Horgan, G.W.; Dempfle, L. Relative expression software tool (REST) for group-wise comparison and statistical analysis of relative expression results in realtime PCR. Nucleic Acids Res. 2002, 30, e36. [Google Scholar] [CrossRef] [PubMed]
Group | Duration of Swimming on the Last Day of the Experiment, Minutes (min; max) | Average Swimming Time, Minutes (min; max) |
---|---|---|
NaCl (n = 12) | 15 (6; 30) | 16 (8; 29) |
GTE (n = 9) | 15 (8; 33) | 17 (9; 31) |
ACL (n = 19) | 24 (6; 51) ** | 21 (7; 37) * |
ACR (n = 20) | 27 (9; 67) *** | 31 (10; 45) ** |
GTE + ACL (n = 8) | 21 (9; 51) * | 19 (9; 33) |
GTE + ACR (n = 8) | 29 (12; 61) *** | 26 (10; 48) ** |
Group | Lactate Concentration 5 min after Exercise, mmol/L (min; max) | Lactate Concentration 1 h after Exercise, mmol/L (min; max) |
---|---|---|
NaCl (n = 12) | 7.3 (4.0; 12.0) *** | 3.0 (2.1; 4.3) |
GTE (n = 9) | 6.3 (4.3; 9.5) *** | 3.3 (2.3; 3.9) |
ACL (n = 19) | 6.2 (3.6; 16.9) *** | 3.0 (1.9; 4.3) |
ACR (n = 20) | 5.7 (3.1; 11.7) *** | 3.2 (0.8; 5.2) |
GTE + ACL (n = 8) | 6.1 (3.3; 11.2) *** | 3.1 (1.0; 4.0) |
GTE + ACR (n = 8) | 5.8 (4.1; 8.0) *** | 2.8 (0.8; 6.4) |
Control (n = 17) | NaCl (n = 12) | GTE (n = 9) | ACL (n = 19) | ACR (n = 20) | GTE + ACL (n = 8) | GTE + ACR (n = 8) | |
---|---|---|---|---|---|---|---|
TP, g/L | 65.3 (58.1; 78.6) | 61.7 (55.1; 67.3) | 66.2 (53.4; 70.4) | 65.3 (56.8; 69.3) | 63.9 (54.0; 67.0) | 64.4 (62.8; 75.9) | 64.4 (52.3; 67.3) |
ALB, g/L | 30.8 (27.6; 33.1) | 31.3 (29.8; 32.7) | 32.2 (29.4; 33.4) | 30.8 (26.8; 33.4) | 30.4 (29.0; 32.6) | 31.1 (28.9; 33.3) | 31.2 (26.6; 32.8) |
Glucose, mmol/L | 8.5 (7.0; 10.2) | 8.6 (6.7; 9.5) | 9.1 (8.0; 10.3) | 9.0 (7.7; 9.6) | 8.1 (6.8; 9.1) | 8.1 (6.6; 9.1) | 8.2 (6.3; 9.0) |
Lactate, mmol/L | 1.0 (0.6; 2.3) | 0.9 (0.7; 2.3) | 0.9 (0.6; 2.5) | 1.1 (0.4; 2.2) | 0.8 (0.5; 1.1) * | 1.0 (0.6; 1.5) | 1.0 (0.6; 2.5) |
Urea, mmol/L | 3.2 (1.6; 5.4) | 3.3 (1.3; 4.8) | 3.3 (2.0; 6.5) | 3.5 (1.8; 5.1) | 2.5 (1.7; 3.8) * | 3.2 (2.1; 4.1) | 2.7 (2.4; 3.6) |
Creatinine, µmol/L | 43.0 (39.3; 49.0) | 38.0 (31.1; 47.0) * | 43.0 (29.3; 51.0) | 40.3 (35.7; 46.0) | 40.5 (35.0; 43.9) | 40.0 (24.0; 43.0) * | 38.5 (32.0; 48.0) * |
ALT, U/L | 42.5 (12.6; 104.2) | 37.7 (12.6; 71.5) | 50.3 (18.9; 97.6) | 39.7 (12.6; 125.9) | 46.5 (37.4; 107.0) | 44.0 (36.9; 52.3) | 42.3 (30.2; 53.7) |
ALP, U/L | 280 (265; 342) | 268 (201; 287) | 293 (212; 333) | 297 (211; 373) | 296 (227; 352) | 278 (236; 388) | 250 (218; 396) |
Trigs, mmol/L | 1.2 (0.8; 3.6) | 1.3 (0.3; 4.5) | 1.1 (0.8; 2.6) | 1.3 (0.6; 2.3) | 1.2 (0.4; 1.5) | 1.4 (0.8; 3.7) | 0.8 (0.5; 1.2) * |
HDL, mmol/L | 0.69 (0.30; 0.94) | 0.62 (0.25; 0.78) | 0.60 (0.40; 0.99) | 0.62 (0.27; 0.89) | 0.61 (0.40; 0.76) | 0.56 (0.28; 0.76) | 0.45 (0.26; 0.76) * |
LDL, mmol/L | 0.46 (0.30; 0.91) | 0.53 (0.16; 0.99) | 0.46 (0.34; 1.11) | 0.40 (0.18; 0.55) | 0.40 (0.24; 0.71) | 0.43 (0.14; 0.53) | 0.37 (0.19; 0.52) △ |
Chol, mmol/L | 1.5 (0.9; 1.8) | 1.3 (0.7; 1.6) | 1.3 (1.0; 1.8) | 1.3 (0.9; 1.9) | 1.3 (0.9; 1.7) | 1.4 (0.8; 1.7) | 1.2 (0.8; 1.6) * |
NEFAs, mmol/L | 0.70 (0.27; 0.92) | 0.58 (0.13; 0.87) | 0.53 (0.15; 0.88) | 0.54 (0.11; 0.98) | 0.53 (0.16; 1.02) | 0.64 (0.47; 0.83) | 0.59 (0.30; 0.85) |
UA, µmol/L | 40.0 (19.2; 92.3) | 35.4 (20.0; 89.2) | 35.4 (20.0; 58.5) | 33.0 (24.0; 54.0) | 31.7 (19.2; 43.0) * | 40.5 (29.0; 81.0) | 33.5 (21.0; 43.0) |
Phos, mmol/L | 2.9 (2.3; 3.2) | 2.5 (2.1; 3.5) | 2.6 (1.9; 4.7) | 2.8 (2.1; 3.4) | 2.8 (2.3; 3.2) | 3.0 (2.7; 3.2) △ | 2.8 (2.3; 3.6) |
Transf, g/L | 1.35 (1.16; 2.08) | 1.43 (1.12; 1.83) | 1.25 (1.16; 1.89) | 1.26 (1.08; 1.85) | 1.21 (1.03; 1.15) | 1.22 (1.06; 1.50) | 1.18 (1.01; 1.38) * |
Fe, µmol/L | 123.8 (55.8; 171.7) | 129.8 (45.7; 301.6) | 116.8 (55.8; 154.0) | 130.5 (63.4; 195.1) | 112.3 (75.4; 160.9) | 127.2 (67.9; 172.1) | 104.6 (64.5; 173.7) |
GPx3, µmol/min×mL | 74.6 (44.2; 97.9) | 73.6 (51.4; 92.3) | 76.1 (57.4; 86.3) | 61.0 (47.8; 105.4) | 77.6 (55.0; 94.2) | 75.9 (55.0; 91.4) | 66.9 (55.0; 107.3) |
NO3 µmol/L | 54.2 (44.4; 71.7) | 56.2 (38.4; 62.0) | 57.6 (39.8; 66.1) | 54.5 (38.5; 59.1) | 53.0 (38.7; 70.2) | 50.7 (45.1; 75.1) | 55.8 (50.8; 66.8) |
NO2 µmol/L | 6.3 (0.5; 10.9) | 6.2 (2.7; 10.3) | 7.9 (4.8; 11.3) | 5.7 (1.0; 8.3) | 10.3 (1.0; 15.4) | 7.5 (4.3; 16.8) | 4.3 (2.5; 9.2) |
Control (n = 17) | NaCl (n = 12) | GTE (n = 9) | ACL (n = 19) | ACR (n = 20) | GTE + ACL (n = 8) | GTE + ACR (n = 8) | |
---|---|---|---|---|---|---|---|
GAPD, μmol NAD+/min/g_Hb | 108.5 (98.8; 151.0) | 109.2 (95.7; 138.3) | 107.6 (100.5; 114.7) | 102.3 (89.2; 129.4) | 106.2 (91.7; 123.0) | 98.1 (60.2; 104.7) *** | 101.2 (89.8; 123.0) |
Total glutathione, μmol/g_Hb | 9.6 (6.7; 13.1) | 9.4 (7.2; 12.8) | 9.5 (8.3; 12.8) | 9.3 (7.9; 17.4) | 8.1 (6.3; 12.0) | 8.9 (7.1; 10.5) | 9.4 (7.1; 12.0) |
GSSG, μmol GSSG/g_Hb | 2.7 (0.3; 4.3) | 3.1 (1.8; 3.5) | 2.9 (1.8; 5.6) | 2.6 (0.9; 5.0) | 1.8 (0.6; 4.3) △ | 1.7 (0.2; 5.7) | 2.2 (0.8; 3.6) |
GSH, μmol/g_Hb | 6.2 (4.9; 6.6) | 5.8 (2.6; 7.4) | 5.5 (4.0; 6.0) | 6.3 (4.9; 10.8) | 5.5 (1.8; 6.4) | 6.0 (3.9; 6.7) | 5.7 (4.9; 7.9) |
GSH/GSSG | 4.4 (2.9; 34.5) | 3.5 (1.4; 7.5) | 4.2 (1.3; 6.6) | 5.0 (3.9; 9.7) △ | 4.4 (1.0; 13.5) | 6.3 (2.2; 49.8) △ | 4.5 (3.2; 10.3) |
MDA, nmol/g_Hb | 230.6 (188.8; 411.1) | 253.5 (202.8; 293.4) | 217.8 (136.4; 324.6) | 169.5 (147.9; 202.1) *△ | 183.5 (120.8; 333.3) | 224.9 (148.2; 390.1) | 193.5 (125.4; 316.2) |
Catalase, μmol H2O2/min/g_Hb | 139.0 (113.8; 158.6) | 140.3 (120.8; 160.8) | 128.4 (115.1; 157.0) | 140.0 (121.6; 157.4) | 135.9 (111.8; 161.5) | 138.3 (122.3; 160.0) | 140.4 (123.5; 164.5) |
GR, nmol GSH/min/g_Hb | 1591.4 (1135.8; 2241.5) | 1253.7 (806.4; 1748.3) | 941.7 (749.5; 1916.6) | 1254.6 (627.8; 3227.3) | 1100.8 (459.5; 2398.4) ** | 1139.5 (402.7; 1992.1) * | 1027.1 (701.3; 1608.2) * |
GP, μmol GSH/min/g_Hb | 678.1 (376.5; 1017.8) | 792.5 (514.8; 1093.1) | 717.7 (475.2; 1053.3) | 883.3 (554.4; 1040.1) | 797.5 (485.1; 998.6) | 758.8 (639.5; 982.7) | 831.0 (464.8; 899.8) |
MetHb, %/ g_Hb | 0.54 (0.26; 0.67) | 0.28 (0.22; 0.62) | 0.58 (0.31; 0.76) | 0.61 (0.22; 0.70) | 0.58 (0.37; 0.67) | 0.61 (0.33; 0.74) | 0.45 (0.27; 0.76) |
GST, μmol GSHconj/min/g_Hb | 2.7 (2.4; 3.5) | 3.0 (2.6; 3.3) | 2.8 (1.0; 3.4) | 2.9 (0.9; 3.5) | 2.7 (2.1; 3.1) | 2.7 (2.5; 3.1) | 3.1 (2.3; 3.3) |
LDH, μmol/min/g_Hb | 85.9 (23.2; 149.0) | 81.0 (70.4; 111.4) | 104.2 (70.4; 140.4) | 78.1 (37.6; 125.9) | 83.9 (34.7; 128.8) | 100.8 (31.8; 152.9) | 80.1 (43.4; 150.5) |
G6PD, μmol/min/g_Hb | 19.7 (18.8; 24.4) | 19.2 (16.9; 23.7) | 17.3 (15.9; 22.0) | 20.9 (17.8; 27.2) | 19.2 (16.4; 40.1) | 21.6 (17.6; 28.1) | 21.9 (16.9; 25.3) |
ATP, μmol/g_Hb | 5.8 (4.9; 7.6) | 6.4 (5.1; 8.7) | 6.1 (2.4; 12.2) | 5.5 (1.3; 8.0) | 6.1 (2.1; 8.5) | 5.4 (3.9; 9.9) | 5.4 (4.6; 9.2) |
BPG, μmol/g_Hb | 39.3 (28.3; 41.5) | 37.2 (30.5; 69.0) | 34.8 (33.6; 57.0) | 40.9 (35.1; 54.4) | 43.4 (27.3; 66.3) | 50.3 (36.2; 69.6) ** | 45.2 (27.6; 52.1) |
Lactate, μmol/g_Hb | 48.0 (31.4; 52.2) | 42.4 (37.1; 45.0) | 42.7 (25.2; 49.4) | 46.5 (29.9; 60.3) | 37.7 (28.3; 43.5) ** | 37.1 (33.7; 52.1) * | 41.3 (35.4; 52.5) |
Piruvate, μmol/g_Hb | 1.4 (0.9; 1.6) | 1.2 (0.7; 1.4) * | 1.4 (1.1; 2.0) | 1.4 (0.7; 1.8) | 1.2 (0.9; 1.7) | 1.4 (1.1; 1.7) △ | 1.2 (0.8; 1.5) |
Mg2+-ATPase, μmol/hr/g_Hb | 52.9 (39.6; 62.2) | 55.2 (42.8; 66.4) | 50.6 (32.4; 60.0) | 52.9 (41.0; 68.6) | 52.2 (33.9; 70.7) | 49.5 (36.5; 53.7) | 49.6 (40.8; 56.0) |
Na+K+-ATPase, μmol/hr/g_Hb | 38.3 (20.6; 64.2) | 37.4 (20.4; 55.5) | 31.7 (23.0; 58.3) | 40.1 (26.4; 49.6) | 33.4 (3.0; 57.9) | 41.4 (11.9; 66.6) | 32.7 (15.3; 45.3) |
Ca2+-ATPase, μmol/hr/g_Hb | 71.7 (34.6; 101.1) | 72.0 (49.0; 99.7) | 75.4 (26.6; 104.7) | 66.1 (26.1; 89.1) | 72.8 (47.1; 111.1) | 67.9 (49.4; 102.3) | 71.7 (31.0; 97.2) |
Total ATPase, μmol/hr/g_Hb | 145.2 (114.2; 162.9) | 147.5 (107.1; 179.1) | 142.2 (104.9; 164.0) | 131.1 (108.6; 166.8) | 137.0 (120.8; 167.1) | 139.0 (117.2; 155.2) | 129.1 (106.0; 160.5) △ |
5′-nucleotidase, nmol/min/g_Hb | 0.97 (0.37; 1.43) | 1.16 (0.53; 1.66) | 1.13 (0.60; 1.53) | 1.24 (0.82; 2.20) | 1.00 (0.70; 1.58) | 0.98 (0.44; 1.44) | 1.11 (0.59; 1.43) |
TMET, nmol/min/g_Hb | 167.4 (88.0; 200.0) | 107.5 (61.7; 150.0) | 75.8 (69.0; 182.1) | 68.5 (37.7; 289.6) | 86.9 (28.4; 166.4) * | 93.9 (59.2; 139.5) | 49.5 (34.7; 94.7) * |
NO2, µmol/L | 6.3 (0.5; 10.9) | 6.2 (2.7; 10.3) | 7.9 (4.8; 11.3) | 5.7 (1.0; 8.3) | 10.3 (1.0; 15.4) | 7.5 (4.3; 16.8) | 4.3 (2.5; 9.2) |
Control (n = 17) | NaCl (n = 12) | GTE (n = 9) | ACL (n = 19) | ACR (n = 20) | GTE + ACL (n = 8) | GTE + ACR (n = 8) | |
---|---|---|---|---|---|---|---|
WBC, ×109 cells/L | 7.9 (6.0; 11.6) | 8.8 (4.9; 12.5) | 10.8 (4.9; 16.3) | 10.2 (5.3; 16.5) | 7.6 (5.2; 14.5) | 7.7 (4.0; 13.3) | 9.5 (5.1; 10.9) |
Lymph, ×109 cells/L | 5.6 (4.6; 7.7) | 6.1 (3.5; 10.4) | 7.7 (3.6; 11.8) * | 7.5 (3.6; 11.3) | 5.9 (3.5; 10.0) | 5.5 (1.9; 8.9) | 6.4 (4.0; 8.6) |
Lymph % | 69.8 (57.7; 79.7) | 72.5 (60.7; 82.7) | 72.4 (60.7; 79.7) | 73.1 (61.6; 80.9) | 74.4 (68.0; 81.1) | 69.3 (47.7; 72.2) | 77.8 (55.3; 84.3) |
Gran, ×109 cells/L | 1.8 (0.3; 4.2) | 1.8 (1.1; 3.4) | 2.5 (0.2; 4.7) | 2.4 (1.4; 4.1) | 1.6 (0.2; 2.7) | 1.9 (0.7; 4.0) | 1.9 (0.3; 3.3) |
Gran % | 23.4 (5.1; 37.9) | 21.9 (14.0; 36.0) | 23.4 (5.1; 36.1) | 23.5 (16.8; 32.6) | 19.6 (3.3; 25.4) | 25.6 (10.9; 48.5) | 17.8 (6.2; 32.7) |
RBC, ×1012 cells/L | 7.3 (6.4; 8.3) | 7.5 (5.2; 8.3) | 7.7 (5.7; 8.8) | 7.3 (6.3; 8.3) | 7.6 (6.6; 8.4) | 6.8 (6.0; 8.6) | 6.8 (6.4; 8.0) |
Hb, g/L | 131 (120; 172) | 125 (100; 137) | 128 (105; 151) | 130 (114; 152) | 132 (124; 157) | 128 (119; 153) | 126 (119; 138) |
HCT % | 39.7 (30.8; 49.5) | 39.9 (25.5; 45.7) | 40.7 (31.5; 45.6) | 38.7 (31.9; 46.8) | 41.5 (32.6; 45.5) | 34.3 (31.8; 45.4) | 35.4 (31.5; 39.8) |
MCV, fL | 53.3 (47.9; 61.8) | 53.9 (49.4; 56.0) | 52.2 (47.1; 56.0) | 53.1 (45.6; 58.5) | 53.3 (47.1; 57.4) | 52.4 (47.4; 53.4) | 50.1 (49.2; 55.4) |
MCH, pg | 19.0 (18.2; 21.4) | 18.7 (18.1; 19.9) | 18.4 (17.8; 20.8) | 18.4 (17.4; 19.5) | 18.5 (17.8; 19.5) | 18.5 (17.4; 20.1) | 18.8 (17.2; 19.1) |
MCHC, g/L | 344 (339; 350) | 343 (336; 356) | 345 (333; 355) | 335 (324; 347) | 340 (326; 345) | 340 (336; 350) | 341 (332; 346) |
RDW, fL | 20.0 (15.7; 22.1) | 18.5 (15.2; 19.8) | 18.8 (14.9; 22.4) | 19.3 (14.4; 21.8) | 18.7 (14.2; 21.6) | 17.6 (15.1; 20.4) | 17.7 (12.6; 20.2) * |
PLT, ×109 cells/L | 708 (362; 1480) | 634 (436; 965) | 475 (107; 919) | 531 (241; 2536) * | 524 (422; 1114) | 580 (346; 847) | 579 (264; 770) * |
MPV, fL | 5.9 (5.4; 6.4) | 5.9 (5.2; 7.1) | 5.7 (5.4; 7.3) | 6.2 (5.5; 7.1) | 6.1 (5.5; 6.5) | 6.0 (5.7; 6.4) | 6.0 (5.1; 6.9) |
PDW, fL | 16.8 (15.5; 17.6) | 17.0 (16.3; 17.9) | 17.1 (15.9; 17.9) | 17.4 (16.6; 19.9) ** | 17.2 (15.5; 17.9) | 16.9 (16.3; 17.7) | 17.0 (16.4; 18.8) |
PCT % | 0.44 (0.20; 0.86) | 0.35 (0.30; 0.60) | 0.32 (0.07; 0.54) | 0.29 (0.06; 0.43) **△ | 0.33 (0.11; 0.60) * | 0.36 (0.22; 0.52) | 0.33 (0.18; 0.49) |
Control (n = 17) | NaCl (n = 12) | GTE (n = 9) | ACL (n = 19) | ACR (n = 20) | GTE + ACL (n = 8) | GTE + ACR (n = 8) | |
---|---|---|---|---|---|---|---|
B-cells | 1.2 (0.9; 2.9) | 1.7 (0.7; 2.5) | 1.6 (0.9; 3.0) | 1.9 (0.9; 3.1) ** | 1.5 (0.8; 3.7) | 1.6 (0.5; 2.2) | 1.7 (1.0; 2.7) |
Th % | 68.7 (47.1; 83.7) | 77.3 (56.4; 85.6) | 73.4 (47.5; 78.1) | 73.6 (68.8; 83.7) | 66.6 (39.7; 81.6) | 71.4 (57.8; 84.5) | 66.3 (45.0; 76.1) △△ |
Th | 2.6 (1.8; 4.4) | 3.2 (1.3; 6.3) | 4.2 (1.7; 5.7) * | 3.7 (1.5; 6.0) | 2.5 (1.6; 5.3) | 2.6 (1.2; 3.8) | 2.9 (1.4; 4.7) |
Tcyt % | 29.8 (15.0; 51.6) | 21.4 (12.6; 42.6) | 25.0 (20.6; 51.4) | 25.1 (15.0; 30.0) | 32.2 (17.0; 59.0) | 27.2 (14.1; 40.4) | 32.2 (22.8; 52.6) △ |
Tcyt | 1.13 (0.68; 2.57) | 0.88 (0.68; 1.50) | 1.48 (0.52; 2.70) △ | 1.19 (0.54; 1.76) | 1.19 (0.48; 2.57) | 1.01 (0.20; 2.55) | 1.37 (1.15; 2.17) △ |
NKT-cells % | 8.2 (1.0; 27.1) | 2.4 (1.7; 22.0) * | 3.8 (2.6; 25.9) | 2.6 (1.6; 7.1) * | 5.5 (1.7; 29.6) | 4.8 (2.4; 8.9) | 10.6 (2.1; 25.8) △ |
T-cells | 3.9 (3.2; 5.2) | 4.2 (2.3; 7.7) | 5.5 (2.3; 8.3) * | 4.8 (2.1; 7.7) | 3.6 (2.5; 6.6) | 3.7 (1.4; 6.4) | 4.2 (2.7; 6.1) |
CD4/CD8 | 2.4 (0.9; 5.3) | 3.4 (1.3; 6.2) | 2.8 (1.0; 3.7) | 2.9 (2.3; 5.4) | 2.1 (0.7; 4.7) | 2.6 (1.5; 6.0) | 2.1 (1.0; 3.3) △ |
CD4-CD8- | 0.024 (0.010; 0.050) | 0.024 (0.011; 0.042) | 0.029 (0.023; 0.068) * | 0.026 (0.014; 0.065) | 0.023 (0.014; 0.058) | 0.021 (0.008; 0.054) | 0.031 (0.025; 0.061) |
Tcyt 62L− % | 34.5 (3.4; 81.2) | 9.4 (3.3; 83.1) | 17.3 (6.2; 69.2) | 14.5 (4.2; 43.8) | 26.9 (4.7; 89.1) | 33.6 (4.1; 45.3) | 49.7 (10.4; 81.0) △ |
Tcyt 62L− | 0.49 (0.03; 2.09) | 0.15 (0.03; 0.82) | 0.24(0.07; 1.95) | 0.14 (0.03; 0.79) | 0.25 (0.03; 2.08) | 0.28 (0.05; 1.01) | 0.69 (0.12; 1.35) △ |
Tcyt 62L+ % | 65.5 (18.8; 96.7) | 90.6 (16.9; 96.7) | 82.7 (30.8; 93.9) | 85.5 (56.2; 95.9) | 73.1 (10.9; 95.3) | 66.4 (54.8; 95.9) | 50.3 (19.0; 89.7) △ |
Tcyt 62L+ | 0.68 (0.41; 0.93) | 0.62 (0.17; 1.26) | 0.92 (0.32; 1.66) * | 1.01 (0.47; 1.28) * | 0.81 (0.25; 1.26) | 0.68 (0.13; 1.59) | 0.76 (0.31; 1.20) |
Tcyt 44+62L+ % | 7.1 (4.2; 10.9) | 10.0 (2.8; 15.0) | 7.3 (3.1; 15.1) | 8.0 (3.3; 17.7) | 9.5 (1.0; 15.4) | 7.7 (3.7; 12.7) | 5.5 (2.1; 14.9) △ |
Tcyt 44dim62L− % | 30.0 (2.9; 72.6) | 8.2 (2.6; 77.2) | 12.0 (5.1; 59.2) | 10.9 (3.3; 38.4) | 22.9 (3.3; 84.1) | 28.8 (2.8; 38.6) | 46.1 (7.4; 73.1) △△ |
Tcyt 44dim62L− | 0.38 (0.02; 1.87) | 0.13 (0.02; 0.76) | 0.18 (0.05; 1.67) | 0.12 (0.02; 0.69) | 0.21 (0.02; 1.96) | 0.24 (0.03; 0.90) | 0.62 (0.09; 1.26) △ |
Tcyt 44dim62L+ % | 56.4 (14.6; 87.2) | 78.6 (14.1; 86.7) | 74.1 (26.8; 81.8) | 76.6 (50.9; 84.8) | 65.6 (9.8; 83.5) | 60.7 (46.9; 83.2) | 46.3 (15.9; 80.5) △ |
Tcyt 44dim62L+ | 0.60 (0.36; 0.80) | 0.55 (0.14; 1.13) | 0.86 (0.28; 1.44) * | 0.87 (0.42; 1.13) * | 0.71 (0.23; 1.06) | 0.61 (0.12; 1.49) | 0.70 (0.25; 1.11) |
Th 62L− % | 6.4 (3.6; 17.9) | 7.5 (4.0; 13.5) | 7.6 (5.3; 20.7) | 8.9 (3.7; 14.1) | 10.8 (4.1; 17.8) | 9.4 (6.1; 24.2) * | 10.4 (4.3; 15.5) * |
Th 62L− | 0.16 (0.11; 0.47) | 0.23 (0.12; 0.53) | 0.32 (0.13; 0.89) * | 0.31 (0.13; 0.56) * | 0.25 (0.09; 0.48) | 0.24 (0.15; 0.66) | 0.29 (0.14; 0.47) |
Th 62L+ % | 93.6 (82.1; 96.4) | 92.6 (86.5; 96.1) | 92.4 (79.3; 94.7) | 91.1 (85.9; 96.3) | 89.2 (82.2; 95.9) | 90.6 (75.8; 93.9) * | 89.6 (84.5; 95.7) * |
Th 44+62L− % | 3.2 (1.8; 10.4) | 4.5 (2.1; 8.7) | 4.6 (2.8; 14.6) | 5.2 (1.7; 7.9) | 6.1 (2.5; 9.3) * | 6.2 (3.3; 14.0) ** | 6.3 (2.2; 10.3) * |
Th 44+62L− | 0.09 (0.05; 0.25) | 0.13 (0.07; 0.29) | 0.19 (0.07; 0.63) | 0.19 (0.08; 0.39) * | 0.18 (0.06; 0.29) | 0.16 (0.10; 0.37) | 0.16 (0.07; 0.27) |
Th 44dim62L+ % | 80.3 (67.2; 87.9) | 80.7 (73.4; 87.1) | 80.5 (69.1; 84.5) | 79.3 (73.2; 88.9) | 76.8 (70.7; 84.2) | 74.2 (64.7; 79.5) **△△ | 75.8 (70.5; 81.3) |
NaCl (n = 8) | GTE (n = 9) | ACL (n = 9) | ACR (n = 9) | GTE + ACL (n = 8) | GTE + ACR (n = 8) | |
---|---|---|---|---|---|---|
Cacna | 0.744 (0.348–1.303) | 0.869 (0.381–1.849) | 1.000 (0.540–2.395) | 1.393 (0.749–2.628) | 1.087 (0.620–2.203) | 1.374 (0.744–2.347) |
RYR1 | 0.874 (0.513–1.511) | 0.822 (0.420–1.579) | 1.308 (0.659–2.926) | 1.273 (0.804–2.344) | 1.101 (0.669–1.940) | 0.959 (0.664–1.455) |
Casq1 | 0.773 (0.474–1.532) | 0.728 (0.329–1.746) | 1.363 (0.709–2.749) | 1.724 * (0.979–3.158) | 2.091 *** (1.315–3.137) | 1.521 (0.917–2.610) |
Serca1 | 0.636 (0.243–1.823) | 0.501 (0.062–2.404) | 1.187 (0.609–2.263) | 1.195 (0.557–2.560) | 1.121 (0.557–2.366) | 1.096 (0.640–2.030) |
Serca2 | 1.631 (0.464–2.796) | 1.488 (0.428–2.070) | 3.013 * (1.044–3.269) | 3.573 ** (1.200–3.992) | 3.331 * (0.877–78.520) | 3.127 * (0.933–46.857) |
PGC | 0.819 (0.445–1.468) | 0.741 (0.305–1.500) | 1.090 (0.630–1.712) | 0.754 (0.459–1.258) | 0.827 (0.537–1.487) | 0.587 ** (0.406–0.808) |
Myhc1 | 0.567 (0.091–2.154) | 0.472 (0.101–1.639) | 5.644 * (1.387–28.379) | 0.929 (0.193–3.914) | 0.614 (0.122–2.713) | 2.156 (0.291–20.367) |
Myhc2a | 0.153 (0.022–1.872) | 0.496 (0.045–4.171) | 1.318 (0.320–3.296) | 0.947 (0.267–3.543) | 0.169 * (0.029–1.193) | 0.416 (0.071–2.248) |
Myhc2b | 0.802 (0.132–4.792) | 1.666 (0.134–12.406) | 0.613 (0.068–3.447) | 0.786 (0.149–5.522) | 1.687 (0.146–14.481) | 1.441 (0.130–19.267) |
Myhc2xd | 0.531 (0.312–2.127) | 1.813 (0.362–8.460) | 0.378 (0.083–1.426) | 0.920 (0.257–2.997) | 1.144 (0.350–3.100) | 4.252 * (0.995–50.162) |
NaCl (n = 8) | GTE (n = 9) | ACL (n = 9) | ACR (n = 9) | GTE + ACL (n = 8) | GTE + ACR (n = 8) | |
---|---|---|---|---|---|---|
Cacna | 0.597 (0.327–1.058) | 0.708 (0.357–1.533) | 0.960 (0.265–2.926) | 1.615 (0.920–3.593) | 0.907 (0.482–1.597) | 1.245 (0.564–2.493) |
RYR1 | 0.824 (0.501–1.311) | 0.799 (0.498–1.328) | 0.923 (0.317–2.320) | 1.241 (0.699–2.291) | 0.971 (0.562–1.693) | 0.941 (0.579–1.619) |
Casq1 | 0.597 (0.357–0.970) | 0.910 (0.197–2.279) | 1.240 (0.385–2.541) | 1.843 * (1.204–3.046) | 1.656 (0.665–2.503) | 1.125 (0.413–2.441) |
Serca1 | 0.830 (0.423–1.624) | 0.970 (0.543–1.899) | 0.863 (0.333–2.450) | 1.375 (0.640–2.484) | 0.963 (0.587–1.839) | 0.354 (0.139–2.022) |
Serca2 | 3.180 * (1.122–10.418) | 1.261 (0.461–4.134) | 3.400 * (1.013–12.443) | 2.044 (0.807–9.180) | 2.611 * (0.908–8.921) | 4.514 * (1.142–23.062) |
PGC | 1.560 (0.888–2.014) | 0.842 (0.525–1.097) | 1.093 (0.628–1.710) | 1.589 ** (1.088–3.007) | 1.005 (0.695–1.523) | 1.130 (0.697–1.989) |
Myhc1 | 7.017 ** (1.762–24.586) | 0.747 (0.166–5.452) | 2.537 (0.107–47.411) | 1.158 (0.077–21.211) | 1.817 (0.462–18.654) | 12.324 * (1.309–101.184) |
Myhc2a | 0.924 (0.569–1.390) | 0.593 (0.241–1.112) | 1.086 (0.437–3.951) | 0.950 (0.410–2.477) | 1.216 (0.457–2.577) | 1.063 (0.514–2.691) |
Myhc2b | 0.619 (0.261–1.459) | 1.029 (0.526–3.033) | 1.748 (0.762–4.270) | 1.767 (0.562–4.506) | 1.321 (0.555–3.679) | 1.200 (0.543–3.415) |
Myhc2xd | 1.230 (0.805–1.983) | 2.213 * (0.869–5.003) | 1.264 (0.696–2.504) | 1.797 * (0.978–3.367) | 1.728 (0.815–5.628) | 1.212 (0.404–2.999) |
Group | Average Mitochondrial Area (um2 ± SEM) | Average Cross-Sectional Area of T-Tubules (nm2 ± SEM) | Average Area of Longitudinal Section of T-Tubules (um2 ± SEM) |
---|---|---|---|
Control (n = 7) | 0.057 (±0.001) | 3330 (±200) | 9254 (±460) |
NaCl (n = 8) | 0.065 (±0.001) | 2070 (±20) *** | 11,000 (±570) |
GTE (n = 9) | 0.064 (±0.005) | 1620 (±990) *** | 10,636 (±1600) |
ACL (n = 9) | 0.068 (±0.001) * | 2400 (±40) ** | 11,895 (±600) |
ACR (n = 8) | 0.069 (±0.001) *** | 2520 (±20) * | 12,912 (±510) * |
GTE + ACL (n = 8) | 0.118 (±0.003) *** △△△ | 2970 (±40) △△ | 18,590 (±580) *** △△△ |
GTE + ACR (n = 8) | 0.071 (±0.002) ** | 2520 (±70) * | 10,142 (±820) |
Group | Average Mitochondrial Area (um2 ± SEM) | Average Cross-Sectional Area of T-Tubules (nm2 ± SEM) | Average Area of Longitudinal Section of T-Tubules (nm2 ± SEM) |
---|---|---|---|
Control (n = 7) | 0.053 (±0.002) | 2370 (±50) | 9687 (±680) |
NaCl (n = 8) | 0.086 (±0.003) *** | 1850 (±20) | 12,345 (±470) |
GTE (n = 9) | 0.046 (±0.002) △△△ | 2060 (±80) | 9490 (±680) |
ACL (n = 9) | 0.099 (±0.003) *** | 2180 (±10) | 14,284 (±370) *** |
ACR (n = 8) | 0.099 (±0.002) *** | 3610 (±140) *** △△△ | 17,270 (±580) *** △△△ |
GTE+ACL (n = 8) | 0.055 (±0.003) △△△ | 2910 (±70) △△△ | 15,145 (±450) ***△ |
GTE + ACR (n = 8) | 0.109 (±0.003) *** △△ | 2900 (±40) △△△ | 17,129 (±630) *** △△△ |
NaCl (n = 12) | GTE (n = 9) | ACL (n = 19) | ACR (n = 20) | GTE + ACL (n = 8) | GTE + ACR (n = 8) | |
---|---|---|---|---|---|---|
Lactate concentration 5 min after exercise | ↑↑ | ↑↑ | ↑↑ | ↑↑ | ↑↑ | ↑↑ |
Biochemical parameters of blood plasma | Crea ↓ | Urea ↓ UA ↓ Lactate ↓ | Crea ↓ | Transf ↓ Trigs ↓ Crea ↓ HDL ↓ Chol ↓ | ||
Biochemistry of red blood cells | Piruvate ↓ | MDA ↓ | GR ↓ Lactate ↓ TMET ↓↓ | GAPD ↓ GR ↓ BPG ↑ Lactate ↓ | GR ↓ TMET ↓↓ | |
Hematological parameters | Lymph ↑ | PLT ↓ PDW ↓ PCT% ↓ | PCT% ↓ | RDW ↓ PLT ↓ | ||
Immunological parameters | NKT-cells% ↓↓ | T-cells ↑ Th ↑↑ Th 62L− ↑↑ CD4-CD8- ↑ Tcyt 62L+ ↑ Tcyt 44dim62L+ ↑ | B-cells ↑↑ NKT-cells% ↓↓ Tcyt 62L+ ↑ Tcyt 44dim62L+ ↑ Th 62L− ↑↑ Th 44+62L− ↑↑ | Th 44+62L− % ↑↑ | Th 62L− % ↑ Th 62L+ % ↓ Th 44+62L− % ↑↑ Th 44dim62L+ % ↓ | Th 62L− % ↑↑ Th 62L+ % ↓ Th 44+62L− % ↑↑ |
Genes of EDL muscles | Myhc1 ↑↑ Serca2 ↑↑ | Myh2xd ↑↑ | Serca2 ↑↑ | Myh2xd ↑↑ CASQ1 ↑↑ PGC1 ↑↑ | Serca2 ↑↑ | Myhc1 ↑↑ Serca2 ↑↑ |
Genes of SOL muscles | Myhc1 ↑↑ Serca2 ↑↑ | CASQ1 ↑↑ Serca2 ↑↑ | Myhc2a ↓↓ CASQ1 ↑↑ Serca2 ↑↑ | Myh2xd ↑↑ Serca2 ↑↑ PGC1 ↓↓ | ||
Morphometry of EDL muscles | Average mitochondrial area ↑↑ | Average mitochondrial area ↑↑ Average area of longitudinal section of T-tubules ↑ | Average mitochondrial area ↑↑ Average cross-sectional area of T-tubules ↑↑ Average area of longitudinal section of T-tubules ↑↑ | Average area of longitudinal section of T-tubules ↑↑ | Average mitochondrial area ↑↑ Average area of longitudinal section of T-tubules ↑↑ | |
Morphometry of SOL muscles | Average cross-sectional area of T-tubules ↓ | Average cross-sectional area of T-tubules ↓↓ | Average mitochondrial area ↑ Average cross-sectional area of T-tubules ↓ | Average mitochondrial area ↑ Average cross-sectional area of T-tubules ↓ Average area of longitudinal section of T-tubules ↑ | Average mitochondrial area ↑↑ Average area of longitudinal section of T-tubules ↑↑ | Average mitochondrial area ↑↑ Average cross-sectional area of T-tubules ↓ |
GTE (n = 9) | ACL (n = 19) | ACR (n = 20) | GTE + ACL (n = 8) | GTE + ACR (n = 8) | |
---|---|---|---|---|---|
Duration of swimming | Last day ↑↑ Average time ↑ | Last day ↑↑ Average time ↑↑ | Last day ↑ | Last day ↑↑ Average time ↑↑ | |
Biochemical parameters of blood plasma | Phos ↑ | LDL ↓ | |||
Biochemistry of red blood cells | GSH/GSSG ↑ MDA ↓ | GSSG ↓ | GSH/GSSG ↑↑ Piruvate ↑ | Total ATPase ↓ | |
Hematological parameters | PCT% ↓ | ||||
Immunological parameters | Tcyt ↑↑ | Th 44dim62L+% ↓ | Th % ↓ Tcyt % ↑ Tcyt ↑↑ NKT-cells% ↑↑ CD4/CD8 ↓ Tcyt 62L− % ↑↑ Tcyt 62L+ % ↓ Tcyt 62L− ↑↑ Tcyt 44+62L+ % ↓ Tcyt 44dim62L− % ↑↑ Tcyt 44dim62L− ↑↑ Tcyt 44dim62L+ % ↓ | ||
Morphometry of EDL muscles | Average mitochondrial area ↓ | Average cross-sectional area of T-tubules ↑↑ Average area of longitudinal section of T-tubules ↑ | Average mitochondrial area ↓↓ Average cross-sectional area of T-tubules ↑↑ Average area of longitudinal section of T-tubules ↑↑ | Average mitochondrial area ↑ Average cross-sectional area of T-tubules ↑↑ Average area of longitudinal section of T-tubules ↑ | |
Morphometry of SOL muscles | Average mitochondrial area ↑↑ Average cross-sectional area of T-tubules ↑ Average area of longitudinal section of T-tubules ↑↑ |
Gene | Forward Primer | Reverse Primer | Probe |
---|---|---|---|
CASQ1 | 5′-ACCTTCCTACCG-CCCATG-3′ | 5′-ATGTAGACCACAG-TTGGCCCTATAGTA-3′ | 5′-CCGAGCTCCTTG-GGACACTAGGTCATTC-3′ |
CASQ2 | 5′-CAGAATATTACA-AAGCGTTCCAAG-AG-3′ | 5′-CAACTTCTTTGCCA-CCCCC-3′ | 5′-CCGAGCTCCTTG-GGACACTAGGTCAT-TC-3′ |
SERCA1 | 5′-GGTTTGGCAGGA-ACGGAAT-3′ | 5′-GGTGGATTTGATG-GAGAGGAT-3′ | 5′-CGATGTCCCGAG-CCT-TGATCC-3′ |
SERCA2 | 5′-AGTGGCTGATG-GTGCTGAAA-3′ | 5′-GCACCCGAACACC-CTTACAT-3 | 5′-TTACTCCAGTATT-GCAGGCTCCAGGTA-3′ |
RyR1 | 5′-TCATCGTCAATA-ACCTGGGCATC-3′ | 5′-CTTACGCAGTCG-CCCGATA-3′ | 5′-ACACAGCCAACC-GCTT-CATCCAC-3′ |
CACNA1 | 5′-CATGCAGATGT-TCGGGAAGA-3′ | 5′-GCTTGTGGGAAAG-TCTGGAAGT-3′ | 5′-CCATGGTGGACG-GGACGCAAATAAA-3′ |
MYHC1 | 5′-AGACAGAGAAT-GGCAAGACG-3′ | 5′-GGTGTAGATCATCC-AGGAAGCG-3′ | 5′-TTGTCGAACTTG-GGAGGGTTCTGC-3′ |
MYHC2x/d | 5′-CGAGGAAGCG-GAGGAACAAT-3′ | 5′-TGGATCGATCACTC-TTCGCT-3′ | 5′-AAGTTCCGCAAG-ATCCAGCACGA-3′ |
MYHC2a | 5′-GGAGGCTGAGG-AACAATCCA-3′ | 5′-CAGAGCTGCCTTA-CTCTTCACT-3′ | 5′-TCTATCCAAGTT-CCGCAAGCTGCA-3′ |
MYHC2b | 5′-ACACACAGAGT-CAGGTGAGTT-3′ | 5′-TGGCCTTGGACTC-TTCTTCTAG-3′ | 5′TCTCCCGAGGCA-AACAAGCGTTTA-3′ |
PGC1a | 5′-GTGCAGCCAAG-ACTCTGTATGG-3′ | 5′GTCCAGGTCATTCACATCAAGTTC-3′ | 5′-AACCAGGGCAGC-ACACTCTATGTC-3′ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Korf, E.A.; Novozhilov, A.V.; Mindukshev, I.V.; Glotov, A.S.; Kudryavtsev, I.V.; Baidyuk, E.V.; Dobrylko, I.A.; Voitenko, N.G.; Voronina, P.A.; Habeeb, S.; et al. Testing Green Tea Extract and Ammonium Salts as Stimulants of Physical Performance in a Forced Swimming Rat Experimental Model. Int. J. Mol. Sci. 2024, 25, 10438. https://doi.org/10.3390/ijms251910438
Korf EA, Novozhilov AV, Mindukshev IV, Glotov AS, Kudryavtsev IV, Baidyuk EV, Dobrylko IA, Voitenko NG, Voronina PA, Habeeb S, et al. Testing Green Tea Extract and Ammonium Salts as Stimulants of Physical Performance in a Forced Swimming Rat Experimental Model. International Journal of Molecular Sciences. 2024; 25(19):10438. https://doi.org/10.3390/ijms251910438
Chicago/Turabian StyleKorf, Ekaterina A., Artem V. Novozhilov, Igor V. Mindukshev, Andrey S. Glotov, Igor V. Kudryavtsev, Ekaterina V. Baidyuk, Irina A. Dobrylko, Natalia G. Voitenko, Polina A. Voronina, Samarmar Habeeb, and et al. 2024. "Testing Green Tea Extract and Ammonium Salts as Stimulants of Physical Performance in a Forced Swimming Rat Experimental Model" International Journal of Molecular Sciences 25, no. 19: 10438. https://doi.org/10.3390/ijms251910438
APA StyleKorf, E. A., Novozhilov, A. V., Mindukshev, I. V., Glotov, A. S., Kudryavtsev, I. V., Baidyuk, E. V., Dobrylko, I. A., Voitenko, N. G., Voronina, P. A., Habeeb, S., Ghanem, A., Osinovskaya, N. S., Serebryakova, M. K., Krivorotov, D. V., Jenkins, R. O., & Goncharov, N. V. (2024). Testing Green Tea Extract and Ammonium Salts as Stimulants of Physical Performance in a Forced Swimming Rat Experimental Model. International Journal of Molecular Sciences, 25(19), 10438. https://doi.org/10.3390/ijms251910438