Insulin Signaling Pathway Mediates FoxO–Pepck Axis Regulation of Glucose Homeostasis in Drosophila suzukii
Abstract
:1. Introduction
2. Results
2.1. Impact of High Sugar on Survival, Fecundity, and Insulin Content in D. suzukii
2.2. Insulin Affects Carbohydrates and Expression of Genes Related to Glycometabolism in D. suzukii
2.3. Insulin Affects FoxO Phosphorylation and Regulates FoxO Nuclear Localization via the Insulin Signaling Pathway
2.4. FoxO Regulates Glycometabolism Homeostasis
2.5. FoxO Promotes Pepck Expression to Activate Gluconeogenesis
3. Discussion
4. Materials and Methods
4.1. Experimental Insects and S2 Cells
4.2. Detection of Life History Traits
4.3. Hormone Stimulation
4.4. Insulin Determination
4.5. Glucose Determination
4.6. Glycogen Determination
4.7. Trehalose Determination
4.8. Pyruvate Determination
4.9. qRT-PCR
4.10. Western Blotting
4.11. RNAi in the S2 Cells Line
4.12. Immunocytochemistry
4.13. ChIP-PCR
4.14. Luciferase Reporter Assay
4.15. Date Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rota-Stabelli, O.; Blaxter, M.; Anfora, G. Drosophila suzukii. Curr. Biol. 2013, 23, R8–R9. [Google Scholar] [CrossRef] [PubMed]
- Atallah, J.; Teixeira, L.; Salazar, R.; Zaragoza, G.; Kopp, A. The making of a pest: The evolution of a fruit-penetrating ovipositor in Drosophila suzukii and related species. Proc. R. Soc. B Biol. Sci. 2014, 281, 20132840. [Google Scholar] [CrossRef] [PubMed]
- Karageorgi, M.; Bräcker, L.B.; Lebreton, S.; Minervino, C.; Cavey, M.; Siju, K.P.; Grunwald Kadow, I.C.; Gompel, N.; Prud′homme, B. Evolution of Multiple Sensory Systems Drives Novel Egg-Laying Behavior in the Fruit Pest Drosophila suzukii. Curr. Biol. 2017, 27, 847–853. [Google Scholar] [CrossRef] [PubMed]
- Goodhue, R.E.; Bolda, M.; Farnsworth, D.; Williams, J.C.; Zalom, F.G. Spotted wing drosophila infestation of California strawberries and raspberries: Economic analysis of potential revenue losses and control costs. Pest. Manag. Sci. 2011, 67, 1396–1402. [Google Scholar] [CrossRef]
- Dalton, D.T.; Walton, V.M.; Shearer, P.W.; Walsh, D.B.; Caprile, J.; Isaacs, R. Laboratory survival of Drosophila suzukii under simulated winter conditions of the Pacific Northwest and seasonal field trapping in five primary regions of small and stone fruit production in the United States. Pest. Manag. Sci. 2011, 67, 1368–1374. [Google Scholar] [CrossRef]
- Rombaut, A.; Guilhot, R.; Xuéreb, A.; Benoit, L.; Chapuis, M.P.; Gibert, P.; Fellous, S. Invasive Drosophila suzukii facilitates Drosophila melanogaster infestation and sour rot outbreaks in the vineyards. R. Soc. Open Sci. 2017, 4, 170117. [Google Scholar] [CrossRef]
- Little, C.M.; Chapman, T.W.; Hillier, N.K. Plasticity Is Key to Success of Drosophila suzukii (Diptera: Drosophilidae) Invasion. J. Insect Sci. 2020, 20, 5. [Google Scholar] [CrossRef]
- Gao, H.H.; Zhao, S.; Wang, R.J.; Qin, D.Y.; Chen, P.; Zhang, A.S.; Zhuang, Q.Y.; Zhai, Y.F.; Zhou, X.H. Gut bacterium promotes host fitness in special ecological niche by affecting sugar metabolism in Drosophila suzukii. Insect Sci. 2023, 30, 1713–1733. [Google Scholar] [CrossRef]
- Milan, N.F.; Kacsoh, B.Z.; Schlenke, T.A. Alcohol Consumption as Self-Medication against Blood-Borne Parasites in the Fruit Fly. Curr. Biol. 2012, 22, 488–493. [Google Scholar] [CrossRef]
- Miyamoto, T.; Amrein, H. Neuronal Gluconeogenesis Regulates Systemic Glucose Homeostasis in Drosophila melanogaster. Curr. Biol. 2019, 29, 1263–1272.e5. [Google Scholar] [CrossRef]
- Portincasa, P.; Bonfrate, L.; Vacca, M.; De Angelis, M.; Farella, I.; Lanza, E.; Khalil, M.; Wang, D.Q.; Sperandio, M.; Di Ciaula, A. Gut Microbiota and Short Chain Fatty Acids: Implications in Glucose Homeostasis. Int. J. Mol. Sci. 2022, 23, 1105. [Google Scholar] [CrossRef] [PubMed]
- Fernie, A.R.; Carrari, F.; Sweetlove, L.J. Respiratory metabolism: Glycolysis, the TCA cycle and mitochondrial electron transport. Curr. Opin. Plant Biol. 2004, 7, 254–261. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Huang, H.; Zhao, Y. Interplay between metabolic reprogramming and post-translational modifications: From glycolysis to lactylation. Front. Immunol. 2023, 14, 1211221. [Google Scholar] [CrossRef] [PubMed]
- Barraza, A.; Sánchez, F. Trehalases: A neglected carbon metabolism regulator? Plant Signal. Behav. 2013, 8, e24778. [Google Scholar] [CrossRef]
- Wang, X.P.; Huang, Z.; Li, Y.L.; Jin, K.Y.; Dong, D.J.; Wang, J.X.; Zhao, X.F. Krüppel-like factor 15 integrated autophagy and gluconeogenesis to maintain glucose homeostasis under 20-hydroxyecdysone regulation. PLoS Genet. 2022, 18, e1010229. [Google Scholar] [CrossRef]
- Han, H.S.; Kang, G.; Kim, J.S.; Choi, B.H.; Koo, S.H. Regulation of glucose metabolism from a liver-centric perspective. Exp. Mol. Med. 2016, 48, e218. [Google Scholar] [CrossRef]
- Shah, A.; Wondisford, F.E. Gluconeogenesis Flux in Metabolic Disease. Annu. Rev. Nutr. 2023, 43, 153–177. [Google Scholar] [CrossRef]
- Walker, R.P.; Chen, Z.H.; Famiani, F. Gluconeogenesis in Plants: A Key Interface between Organic Acid/Amino Acid/Lipid and Sugar Metabolism. Molecules 2021, 26, 5129. [Google Scholar] [CrossRef]
- Wargnies, M.; Bertiaux, E.; Cahoreau, E.; Ziebart, N.; Crouzols, A.; Morand, P.; Biran, M.; Allmann, S.; Hubert, J.; Villafraz, O.; et al. Gluconeogenesis is essential for trypanosome development in the tsetse fly vector. PLoS Pathog. 2018, 14, e1007502. [Google Scholar] [CrossRef]
- Miyamoto, T.; Amrein, H. Gluconeogenesis: An ancient biochemical pathway with a new twist. Fly 2017, 11, 218–223. [Google Scholar] [CrossRef]
- Hietakangas, V.; Cohen, S.M. TORCing up metabolic control in the brain. Cell Metab. 2008, 7, 357–358. [Google Scholar] [CrossRef]
- Roach, P.J.; Depaoli-Roach, A.A.; Hurley, T.D.; Tagliabracci, V.S. Glycogen and its metabolism: Some new developments and old themes. Biochem. J. 2012, 441, 763–787. [Google Scholar] [CrossRef] [PubMed]
- Roach, P.J. Glycogen and its metabolism. Curr. Mol. Med. 2002, 2, 101–120. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Wang, H.; Chen, J.; Shen, Q.; Wang, S.; Xu, H.; Tang, B. Glycogen Phosphorylase and Glycogen Synthase: Gene Cloning and Expression Analysis Reveal Their Role in Trehalose Metabolism in the Brown Planthopper, Nilaparvata lugens Stål (Hemiptera: Delphacidae). J. Insect Sci. 2017, 17, 42. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Zhou, J.J.; Li, Y.; Gou, Y.; Quandahor, P.; Liu, C. Trehalose and glucose levels regulate feeding behavior of the phloem-feeding insect, the pea aphid Acyrthosiphon pisum Harris. Sci. Rep. 2021, 11, 15864. [Google Scholar] [CrossRef]
- Fraga, A.; Ribeiro, L.; Lobato, M.; Santos, V.; Silva, J.R.; Gomes, H.; da Cunha Moraes, J.L.; de Souza Menezes, J.; de Oliveira, C.J.; Campos, E.; et al. Glycogen and glucose metabolism are essential for early embryonic development of the red flour beetle Tribolium castaneum. PLoS ONE 2013, 8, e65125. [Google Scholar] [CrossRef]
- Zhang, J.B.; Lu, Z.J.; Yu, H.Z. Silencing of Glycogen Synthase Kinase 3 Significantly Inhibits Chitin and Fatty Acid Metabolism in Asian Citrus Psyllid, Diaphorina citri. Int. J. Mol. Sci. 2022, 23, 9654. [Google Scholar] [CrossRef]
- Matsuda, H.; Yamada, T.; Yoshida, M.; Nishimura, T. Flies without trehalose. J. Biol. Chem. 2015, 290, 1244–1255. [Google Scholar] [CrossRef]
- Elbein, A.D. The metabolism of alpha,alpha-trehalose. Adv. Carbohydr. Chem. Biochem. 1974, 30, 227–256. [Google Scholar]
- Behm, C.A. The role of trehalose in the physiology of nematodes. Int. J. Parasitol. 1997, 27, 215–229. [Google Scholar] [CrossRef]
- Hůla, P.; Moos, M.; Des Marteaux, L.; Šimek, P.; Koštál, V. Insect cross-tolerance to freezing and drought stress: Role of metabolic rearrangement. Proceedings. Biol. Sci. 2022, 289, 20220308. [Google Scholar] [CrossRef] [PubMed]
- Nishimura, T. Feedforward Regulation of Glucose Metabolism by Steroid Hormones Drives a Developmental Transition in Drosophila. Curr. Biol. 2020, 30, 3624–3632.e5. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Fan, H.; Li, Y.; Zhang, T.F.; Liu, Y.H. Trehalose-6-phosphate phosphatases are involved in trehalose synthesis and metamorphosis in Bactrocera minax. Insect Sci. 2022, 29, 1643–1658. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Haddad, G.G. Role of trehalose phosphate synthase and trehalose during hypoxia: From flies to mammals. J. Exp. Biol. 2004, 207, 3125–3129. [Google Scholar] [CrossRef]
- Huang, Q.; Zhang, G.; Nan, J.; Cheng, W.; Zhu-Salzman, K. Characterization of trehalose metabolic genes and corresponding enzymatic activities during diapause of Sitodiplosis mosellana. J. Insect Physiol. 2021, 135, 104324. [Google Scholar] [CrossRef]
- Kikawada, T.; Saito, A.; Kanamori, Y.; Nakahara, Y.; Iwata, K.; Tanaka, D.; Watanabe, M.; Okuda, T. Trehalose transporter 1, a facilitated and high-capacity trehalose transporter, allows exogenous trehalose uptake into cells. Proc. Natl. Acad. Sci. USA 2007, 104, 11585–11590. [Google Scholar] [CrossRef]
- Zhang, X.; Cheng, Z.; Dong, S.; Rayner, C.; Wu, T.; Zhong, M.; Zhang, G.; Wang, K.; Hu, S. Effects of ileal glucose infusion on enteropancreatic hormone secretion in humans: Relationship to glucose absorption. Metab. Clin. Exp. 2022, 131, 155198. [Google Scholar] [CrossRef]
- Song, T.; Jo, J. Tripartite cell networks for glucose homeostasis. Phys. Biol. 2019, 16, 051001. [Google Scholar] [CrossRef]
- Zeigerer, A.; Sekar, R.; Kleinert, M.; Nason, S.; Habegger, K.M.; Müller, T.D. Glucagon’s Metabolic Action in Health and Disease. Compr. Physiol. 2021, 11, 1759–1783. [Google Scholar]
- Pirkis, J.; Burgess, P. Suicide and recency of health care contacts. A systematic review. Br. J. Psychiatry J. Ment. Sci. 1998, 173, 462–474. [Google Scholar] [CrossRef]
- Czech, M.P.; Corvera, S. Signaling mechanisms that regulate glucose transport. J. Biol. Chem. 1999, 274, 1865–1868. [Google Scholar] [CrossRef] [PubMed]
- Lochhead, P.A.; Coghlan, M.; Rice, S.Q.; Sutherland, C. Inhibition of GSK-3 selectively reduces glucose-6-phosphatase and phosphatase and phosphoenolypyruvate carboxykinase gene expression. Diabetes 2001, 50, 937–946. [Google Scholar] [CrossRef] [PubMed]
- Altintas, O.; Park, S.; Lee, S.J. The role of insulin/IGF-1 signaling in the longevity of model invertebrates, C. elegans and D. melanogaster. BMB Rep. 2016, 49, 81–92. [Google Scholar] [CrossRef] [PubMed]
- Nakai, J.; Chikamoto, N.; Fujimoto, K.; Totani, Y.; Hatakeyama, D.; Dyakonova, V.E.; Ito, E. Insulin and Memory in Invertebrates. Front. Behav. Neurosci. 2022, 16, 882932. [Google Scholar] [CrossRef]
- Al Baki, M.A.; Jung, J.K.; Kim, Y. Regulation of hemolymph trehalose titers by insulin signaling in the legume pod borer, Maruca vitrata (Lepidoptera: Crambidae). Peptides 2018, 106, 28–36. [Google Scholar] [CrossRef]
- Vital, W.; Rezende, G.L.; Abreu, L.; Moraes, J.; Lemos, F.J.; Vaz Ida, S., Jr.; Logullo, C. Germ band retraction as a landmark in glucose metabolism during Aedes aegypti embryogenesis. BMC Dev. Biol. 2010, 10, 25. [Google Scholar] [CrossRef]
- Pri-Tal, B.M.; Brown, J.M.; Riehle, M.A. Identification and characterization of the catalytic subunit of phosphatidylinositol 3-kinase in the yellow fever mosquito Aedes aegypti. Insect Biochem. Mol. Biol. 2008, 38, 932–939. [Google Scholar] [CrossRef]
- Riehle, M.A.; Brown, M.R. Molecular analysis of the serine/threonine kinase Akt and its expression in the mosquito Aedes aegypti. Insect Mol. Biol. 2003, 12, 225–232. [Google Scholar] [CrossRef]
- Zhao, S.; Wang, R.; Liu, Y.; Su, L.; Dai, X.; Qin, D.; Chen, H.; Yin, Z.; Zheng, L.; Zhai, Y. DsFoxO knockout affects development and fecundity of Drosophila suzukii. Front. Physiol. 2023, 14, 1290732. [Google Scholar] [CrossRef]
- Jünger, M.A.; Rintelen, F.; Stocker, H.; Wasserman, J.D.; Végh, M.; Radimerski, T.; Greenberg, M.E.; Hafen, E. The Drosophila forkhead transcription factor FOXO mediates the reduction in cell number associated with reduced insulin signaling. J. Biol. 2003, 2, 20. [Google Scholar] [CrossRef]
- Kramer, J.M.; Davidge, J.T.; Lockyer, J.M.; Staveley, B.E. Expression of Drosophila FOXO regulates growth and can phenocopy starvation. BMC Dev. Biol. 2003, 3, 5. [Google Scholar] [CrossRef] [PubMed]
- Puig, O.; Marr, M.T.; Ruhf, M.L.; Tjian, R. Control of cell number by Drosophila FOXO: Downstream and feedback regulation of the insulin receptor pathway. Genes. Dev. 2003, 17, 2006–2020. [Google Scholar] [CrossRef] [PubMed]
- Koštál, V.; Štětina, T.; Poupardin, R.; Korbelová, J.; Bruce, A.W. Conceptual framework of the eco-physiological phases of insect diapause development justified by transcriptomic profiling. Proc. Natl. Acad. Sci. USA 2017, 114, 8532–8537. [Google Scholar] [CrossRef] [PubMed]
- Accili, D.; Arden, K.C. FoxOs at the crossroads of cellular metabolism, differentiation, and transformation. Cell 2004, 117, 421–426. [Google Scholar] [CrossRef]
- Link, W. Introduction to FOXO Biology. Methods Mol. Biol. 2019, 1890, 1–9. [Google Scholar]
- Dobson, A.J.; Ezcurra, M.; Flanagan, C.E.; Summerfield, A.C.; Piper, M.D.W.; Gems, D.; Alic, N. Nutritional Programming of Lifespan by FOXO Inhibition on Sugar-Rich Diets. Cell Rep. 2017, 18, 299–306. [Google Scholar] [CrossRef]
- Lee, S.; Dong, H.H. FoxO integration of insulin signaling with glucose and lipid metabolism. J. Endocrinol. 2017, 233, R67–R79. [Google Scholar] [CrossRef]
- Barthel, A.; Schmoll, D.; Unterman, T.G. FoxO proteins in insulin action and metabolism. Trends Endocrinol. Metab. TEM 2005, 16, 183–189. [Google Scholar] [CrossRef]
- Murphy, C.T.; Hu, P.J. Insulin/insulin-Like Growth Factor Signaling in C. elegans. In WormBook: The Online Review of C. elegans Biology; Oxford Academic: Oxford, UK, 2013; pp. 1–43. [Google Scholar]
- Link, W.; Fernandez-Marcos, P.J. FOXO transcription factors at the interface of metabolism and cancer. Int. J. Cancer 2017, 141, 2379–2391. [Google Scholar] [CrossRef]
- Homan, E.P.; Brandão, B.B.; Softic, S.; El Ouaamari, A.; O’Neill, B.T.; Kulkarni, R.N.; Kim, J.K.; Kahn, C.R. Differential roles of FOXO transcription factors on insulin action in brown and white adipose tissue. J. Clin. Investig. 2021, 131, e143328. [Google Scholar] [CrossRef]
- Yuan, Y.; Wang, Y.; Ye, W.; Yuan, E.; Di, J.; Chen, X.; Xing, Y.; Sun, Y.; Ge, F. Functional evaluation of the insulin/insulin-like growth factor signaling pathway in determination of wing polyphenism in pea aphid. Insect Sci. 2022, 30, 816–828. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.Y.; Gao, H.; Askar, A.; Li, X.P.; Zhang, G.C.; Jing, T.Z.; Zou, H.; Guan, H.; Zhao, Y.H.; Zou, C.S. Steroid hormone 20-hydroxyecdysone disturbs fat body lipid metabolism and negatively regulates gluconeogenesis in Hyphantria cunea larvae. Insect Sci. 2023, 30, 771–788. [Google Scholar] [CrossRef] [PubMed]
- Chandel, N.S. Carbohydrate Metabolism. Cold Spring Harb. Perspect. Biol. 2021, 13, a040568. [Google Scholar] [CrossRef] [PubMed]
- Michels, P.A.M.; Villafraz, O.; Pineda, E.; Alencar, M.B.; Cáceres, A.J.; Silber, A.M.; Bringaud, F. Carbohydrate metabolism in trypanosomatids: New insights revealing novel complexity, diversity and species-unique features. Exp. Parasitol. 2021, 224, 108102. [Google Scholar] [CrossRef]
- Norton, L.; Shannon, C.; Gastaldelli, A.; DeFronzo, R.A. Insulin: The master regulator of glucose metabolism. Metab. Clin. Exp. 2022, 129, 155142. [Google Scholar] [CrossRef]
- Legouis, D.; Faivre, A.; Cippà, P.E.; de Seigneux, S. Renal gluconeogenesis: An underestimated role of the kidney in systemic glucose metabolism. Nephrol. Dial. Transplant. Off. Publ. Eur. Dial. Transplant. Assoc. Eur. Ren. Assoc. 2022, 37, 1417–1425. [Google Scholar] [CrossRef]
- Steele, R. The influences of insulin on the hepatic metabolism of glucose. Ergeb. Physiol. Biol. Chem. Exp. Pharmakol. 1966, 57, 91–189. [Google Scholar] [CrossRef]
- Inoue, H. Central insulin-mediated regulation of hepatic glucose production. Endocr. J. 2016, 63, 1–7. [Google Scholar] [CrossRef]
- Durkin, S.M.; Chakraborty, M.; Abrieux, A.; Lewald, K.M.; Gadau, A.; Svetec, N.; Peng, J.; Kopyto, M.; Langer, C.B.; Chiu, J.C.; et al. Behavioral and Genomic Sensory Adaptations Underlying the Pest Activity of Drosophila suzukii. Mol. Biol. Evol. 2021, 38, 2532–2546. [Google Scholar] [CrossRef]
- Wang, W.; Dweck, H.K.M.; Talross, G.J.S.; Zaidi, A.; Gendron, J.M.; Carlson, J.R. Sugar sensation and mechanosensation in the egg-laying preference shift of Drosophila suzukii. eLife 2022, 11, e81703. [Google Scholar] [CrossRef]
- Cavey, M.; Charroux, B.; Travaillard, S.; Manière, G.; Berthelot-Grosjean, M.; Quitard, S.; Minervino, C.; Detailleur, B.; Grosjean, Y.; Prud’homme, B. Increased sugar valuation contributes to the evolutionary shift in egg-laying behavior of the fruit pest Drosophila suzukii. PLoS Biol. 2023, 21, e3002432. [Google Scholar] [CrossRef] [PubMed]
- Chng, W.A.; Hietakangas, V.; Lemaitre, B. Physiological Adaptations to Sugar Intake: New Paradigms from Drosophila melanogaster. Trends Endocrinol. Metab. TEM 2017, 28, 131–142. [Google Scholar] [CrossRef] [PubMed]
- Blundell, J.E.; Gibbons, C.; Caudwell, P.; Finlayson, G.; Hopkins, M. Appetite control and energy balance: Impact of exercise. Obes. Rev. An. Off. J. Int. Assoc. Study Obes. 2015, 16, 67–76. [Google Scholar] [CrossRef] [PubMed]
- Suzawa, M.; Bland, M.L. Insulin signaling in development. Development 2023, 150, dev201599. [Google Scholar] [CrossRef]
- Boucsein, A.; Kamstra, K.; Tups, A. Central signalling cross-talk between insulin and leptin in glucose and energy homeostasis. J. Neuroendocrinol. 2021, 33, e12944. [Google Scholar] [CrossRef]
- Gäde, G.; Hoffmann, K.H.; Spring, J.H. Hormonal regulation in insects: Facts, gaps, and future directions. Physiol. Rev. 1997, 77, 963–1032. [Google Scholar] [CrossRef]
- Yao, Z.; Scott, K. Glucose-Sensing Neurons Reciprocally Regulate Insulin and Glucagon. Trends Neurosci. 2020, 43, 2–5. [Google Scholar] [CrossRef]
- Li, Y.N.; Ren, X.B.; Liu, Z.C.; Ye, B.; Zhao, Z.J.; Fan, Q.; Liu, Y.B.; Zhang, J.N.; Li, W.L. Insulin-Like Peptide and FoxO Mediate the Trehalose Catabolism Enhancement during the Diapause Termination Period in the Chinese Oak Silkworm. Insects 2021, 12, 784. [Google Scholar] [CrossRef]
- Riehle, M.A.; Fan, Y.; Cao, C.; Brown, M.R. Molecular characterization of insulin-like peptides in the yellow fever mosquito, Aedes aegypti: Expression, cellular localization, and phylogeny. Peptides 2006, 27, 2547–2560. [Google Scholar] [CrossRef]
- Zhao, J.; Tan, Y.; Jiang, Y.; Zhu-Salzman, K.; Xiao, L. CRISPR/Cas9-mediated methoprene-tolerant 1 knockout results in precocious metamorphosis of beet armyworm (Spodoptera exigua) only at the late larval stage. Insect Mol. Biol. 2023, 32, 132–142. [Google Scholar] [CrossRef]
- Nuttall, F.Q.; Ngo, A.; Gannon, M.C. Regulation of hepatic glucose production and the role of gluconeogenesis in humans: Is the rate of gluconeogenesis constant? Diabetes Metab. Res. Rev. 2008, 24, 438–458. [Google Scholar] [CrossRef] [PubMed]
- Taniguchi, C.M.; Emanuelli, B.; Kahn, C.R. Critical nodes in signalling pathways: Insights into insulin action. Nat. Reviews. Mol. Cell Biol. 2006, 7, 85–96. [Google Scholar] [CrossRef] [PubMed]
- Nässel, D.R.; Vanden Broeck, J. Insulin/IGF signaling in Drosophila and other insects: Factors that regulate production, release and post-release action of the insulin-like peptides. Cell. Mol. Life Sci. CMLS 2016, 73, 271–290. [Google Scholar] [CrossRef] [PubMed]
- Yamaguchi, S.T.; Tomita, J.; Kume, K. Insulin signaling in clock neurons regulates sleep in Drosophila. Biochem. Biophys. Res. Commun. 2022, 591, 44–49. [Google Scholar] [CrossRef]
- Xie, Y.; Shi, X.; Sheng, K.; Han, G.; Li, W.; Zhao, Q.; Jiang, B.; Feng, J.; Li, J.; Gu, Y. PI3K/Akt signaling transduction pathway, erythropoiesis and glycolysis in hypoxia. Mol. Med. Rep. 2019, 19, 783–791. [Google Scholar] [CrossRef]
- Das, D.; Arur, S. Conserved insulin signaling in the regulation of oocyte growth, development, and maturation. Mol. Reprod. Dev. 2017, 84, 444–459. [Google Scholar] [CrossRef]
- Savova, M.S.; Mihaylova, L.V.; Tews, D.; Wabitsch, M.; Georgiev, M.I. Targeting PI3K/AKT signaling pathway in obesity. Biomed. Pharmacother. 2023, 159, 114244. [Google Scholar] [CrossRef]
- Orea-Soufi, A.; Paik, J.; Bragança, J.; Donlon, T.A.; Willcox, B.J.; Link, W. FOXO transcription factors as therapeutic targets in human diseases. Trends Pharmacol. Sci. 2022, 43, 1070–1084. [Google Scholar] [CrossRef]
- Saltiel, A.R.; Kahn, C.R. Insulin signalling and the regulation of glucose and lipid metabolism. Nature 2001, 414, 799–806. [Google Scholar] [CrossRef]
- Nakadate, Y.; Kawakami, A.; Sato, H.; Sato, T.; Oguchi, T.; Omiya, K.; Matsuoka, T.; Schricker, T.; Matsukawa, T. PI3K/Akt pathway mediates the positive inotropic effects of insulin in Langendorff-perfused rat hearts. Sci. Rep. 2022, 12, 9793. [Google Scholar] [CrossRef]
- Maehama, T.; Dixon, J.E. The tumor suppressor, PTEN/MMAC1, dephosphorylates the lipid second messenger, phosphatidylinositol 3,4,5-trisphosphate. J. Biol. Chem. 1998, 273, 13375–13378. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Tang, N.; Hadden, T.J.; Rishi, A.K. Akt, FoxO and regulation of apoptosis. Biochim. Biophys. Acta 2011, 1813, 1978–1986. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Colman, M.J.; Dansen, T.B.; Burgering, B.M.T. FOXO transcription factors as mediators of stress adaptation. Nat. Reviews. Mol. Cell Biol. 2024, 25, 46–64. [Google Scholar] [CrossRef] [PubMed]
- Lechler, M.C.; David, D.C. More stressed out with age? Check your RNA granule aggregation. Prion 2017, 11, 313–322. [Google Scholar] [CrossRef]
- Marnik, E.A.; Updike, D.L. Membraneless organelles: P granules in Caenorhabditis elegans. Traffic 2019, 20, 373–379. [Google Scholar] [CrossRef]
- Izquierdo, M.C.; Harris, M.; Shanmugarajah, N.; Zhong, K.; Ozcan, L.; Fredman, G.; Haeusler, R.A. Insulin sensitization by hepatic FoxO deletion is insufficient to lower atherosclerosis in mice. bioRxiv 2023. [Google Scholar] [CrossRef]
- Unterman, T.G. Regulation of Hepatic Glucose Metabolism by FoxO Proteins, an Integrated Approach. Curr. Top. Dev. Biol. 2018, 127, 119–147. [Google Scholar]
- Lu, Z.; Meng, Z.; Wen, M.; Kang, X.; Zhang, Y.; Liu, Q.; Zhao, P.; Xia, Q. Overexpression of BmFoxO inhibited larval growth and promoted glucose synthesis and lipolysis in silkworm. Mol. Genet. Genom. MGG 2019, 294, 1375–1383. [Google Scholar] [CrossRef]
- Armstrong, A.R.; Drummond-Barbosa, D. Insulin signaling acts in adult adipocytes via GSK-3β and independently of FOXO to control Drosophila female germline stem cell numbers. Dev. Biol. 2018, 440, 31–39. [Google Scholar] [CrossRef]
- Tomizawa, M.; Kumar, A.; Perrot, V.; Nakae, J.; Accili, D.; Rechler, M.M. Insulin inhibits the activation of transcription by a C-terminal fragment of the forkhead transcription factor FKHR. A mechanism for insulin inhibition of insulin-like growth factor-binding protein-1 transcription. J. Biol. Chem. 2000, 275, 7289–7295. [Google Scholar] [CrossRef]
- Yeagley, D.; Guo, S.; Unterman, T.; Quinn, P.G. Gene- and activation-specific mechanisms for insulin inhibition of basal and glucocorticoid-induced insulin-like growth factor binding protein-1 and phosphoenolpyruvate carboxykinase transcription. Roles of forkhead and insulin response sequences. J. Biol. Chem. 2001, 276, 33705–33710. [Google Scholar] [CrossRef] [PubMed]
- Martins, R.; Lithgow, G.J.; Link, W. Long live FOXO: Unraveling the role of FOXO proteins in aging and longevity. Aging Cell 2016, 15, 196–207. [Google Scholar] [CrossRef] [PubMed]
- Onken, B.; Kalinava, N.; Driscoll, M. Gluconeogenesis and PEPCK are critical components of healthy aging and dietary restriction life extension. PLoS Genet. 2020, 16, e1008982. [Google Scholar] [CrossRef] [PubMed]
- Kang, X.; Wang, Y.; Liang, W.; Tang, X.; Zhang, Y.; Wang, L.; Zhao, P.; Lu, Z. Bombyx mori nucleopolyhedrovirus downregulates transcription factor BmFoxO to elevate virus infection. Dev. Comp. Immunol. 2021, 116, 103904. [Google Scholar] [CrossRef]
- Betancourt, N.J.; Rajpurohit, S.; Durmaz, E.; Fabian, D.K.; Kapun, M.; Flatt, T.; Schmidt, P. Allelic polymorphism at foxo contributes to local adaptation in Drosophila melanogaster. Mol. Ecol. 2021, 30, 2817–2830. [Google Scholar] [CrossRef]
- Liao, J.; Barthel, A.; Nakatani, K.; Roth, R.A. Activation of protein kinase B/Akt is sufficient to repress the glucocorticoid and cAMP induction of phosphoenolpyruvate carboxykinase gene. J. Biol. Chem. 1998, 273, 27320–27324. [Google Scholar] [CrossRef]
- Quinn, P.G.; Yeagley, D. Insulin regulation of PEPCK gene expression: A model for rapid and reversible modulation. Curr. Drug Targets. Immune Endocr. Metab. Disord. 2005, 5, 423–437. [Google Scholar] [CrossRef]
- Martins da Silva, R.; de Oliveira Daumas Filho, C.R.; Calixto, C.; Nascimento da Silva, J.; Lopes, C.; da Silva Vaz, I., Jr.; Logullo, C. PEPCK and glucose metabolism homeostasis in arthropods. Insect Biochem. Mol. Biol. 2023, 160, 103986. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zang, S.; Wang, R.; Liu, Y.; Zhao, S.; Su, L.; Dai, X.; Chen, H.; Yin, Z.; Zheng, L.; Liu, Q.; et al. Insulin Signaling Pathway Mediates FoxO–Pepck Axis Regulation of Glucose Homeostasis in Drosophila suzukii. Int. J. Mol. Sci. 2024, 25, 10441. https://doi.org/10.3390/ijms251910441
Zang S, Wang R, Liu Y, Zhao S, Su L, Dai X, Chen H, Yin Z, Zheng L, Liu Q, et al. Insulin Signaling Pathway Mediates FoxO–Pepck Axis Regulation of Glucose Homeostasis in Drosophila suzukii. International Journal of Molecular Sciences. 2024; 25(19):10441. https://doi.org/10.3390/ijms251910441
Chicago/Turabian StyleZang, Shuting, Ruijuan Wang, Yan Liu, Shan Zhao, Long Su, Xiaoyan Dai, Hao Chen, Zhenjuan Yin, Li Zheng, Qingxin Liu, and et al. 2024. "Insulin Signaling Pathway Mediates FoxO–Pepck Axis Regulation of Glucose Homeostasis in Drosophila suzukii" International Journal of Molecular Sciences 25, no. 19: 10441. https://doi.org/10.3390/ijms251910441
APA StyleZang, S., Wang, R., Liu, Y., Zhao, S., Su, L., Dai, X., Chen, H., Yin, Z., Zheng, L., Liu, Q., & Zhai, Y. (2024). Insulin Signaling Pathway Mediates FoxO–Pepck Axis Regulation of Glucose Homeostasis in Drosophila suzukii. International Journal of Molecular Sciences, 25(19), 10441. https://doi.org/10.3390/ijms251910441