Secondary Metabolites and Their Biological Evaluation from the Aerial Parts of Staehelina uniflosculosa Sibth. & Sm. (Asteraceae)
Abstract
:1. Introduction
2. Results
2.1. Isolated Compounds
2.2. Biological Activities
2.3. In Silico Analysis of the Secondary Metabolites Isolated from S. uniflosculosa
3. Discussion
3.1. Chemotaxonomic Significance of Isolation of Compounds
3.2. Biological Activitiy of Isolated Compounds
3.3. In Silico Studies of Isolated Compounds
4. Materials and Methods
4.1. Plant Material and Isolation of Secondary Metabolites
4.1.1. Plant Material
4.1.2. Isolation of Compounds
4.1.3. Chromatographic Techniques
4.1.4. Spectroscopic Data
4.2. Biological Activity Studies
4.2.1. Chemicals
4.2.2. Determination of the Antioxidant Activity (Reducing Activity) of the Tested Compounds’ (%) Interaction with the Stable Radical 1,1-Diphenyl-picrylhydrazyl
4.2.3. Soybean LOX Inhibition Study In Vitro
4.2.4. Inhibition of Linoleic Acid Peroxidation
4.2.5. Inhibition of Acetylocholinesterase In Vitro
4.3. In Silico Study
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Petit, D.P. Generic interrelationships of the Cardueae (Compositae): A cladistic analysis of morphological data. Plan Syst. Evol. 1997, 207, 173–203. [Google Scholar] [CrossRef]
- Susanna, A.; Garcia-Jacas, N. Tribe Cardueae. In The Families and Genera of Vascular Plants; Kadereit, J.W., Jeffrey, C., Eds.; Springer: Berlin/Heidelberg, Germany, 2007; Volume 8, pp. 123–146. [Google Scholar]
- Chadwick, M.; Trewin, H.; Gawthrop, F.; Wagstaff, C. Sesquiterpenoids Lactones: Benefits to Plants and People. Int. J. Mol. Sci. 2013, 14, 12780. [Google Scholar] [CrossRef] [PubMed]
- Seaman, C.F. Sesquiterpene lactones as taxonomic characters in the Asteraceae. Bot. Rev. 1982, 48, 121–595. [Google Scholar] [CrossRef]
- Emerenciano, V.P.; Miliãto, J.S.L.T.; Campos, C.C.; Romoff, P.; Kaplan, M.A.C.; Zambon, M.; Brant, A.J.C. Flavonoids as chemotaxonomic markers for Asteraceae. Biochem. Syst. Ecol. 2001, 29, 947. [Google Scholar] [CrossRef]
- Suntar, I. The Medicinal Value of Asteraceae Family Plants in Terms of Wound Healing Activity. FABAD J. Pharm. Sci. 2014, 39, 21–31. [Google Scholar]
- Bessada, S.M.F.; Barreira, J.C.M.; Oliveira, M.B.P.P. Asteraceae species with most prominent bioactivity and their potential applications: A review. Ind. Crops Prod. 2015, 76, 604–615. [Google Scholar] [CrossRef]
- Kavvadas, D. Illustrated Botanical-Phytollogical Dictionary; GP Xenou: Athens, Greece, 1956; Volume H, pp. 3767–3768. [Google Scholar]
- Raynaud, P.J.; Gorunovic, M.; Lebreton, P. Contribution al’etude biochimique de Staehelina dubia. Planta Med. 1971, 20, 199–204. [Google Scholar] [CrossRef]
- Jimeno, M.; del Carmen Apreda-Rojas, M.; Cano, F.; Rodrıguez, B. NMR and x-ray conformational study of artemisiifolin and three other related germacranolides. Magn. Reason. Chem. 2004, 42, 474–483. [Google Scholar] [CrossRef]
- Kotsos, M.; Aligiannis, N.; Myrianthopoulos, V.; Mitaku, S.; Skaltsounis, L. Sesquiterpene lactones from Staehelina fruticosa. J. Nat. Prod. 2008, 71, 847–851. [Google Scholar] [CrossRef]
- Rolnik, A.; Olas, B. The Plants of the Asteraceae Family as Agents in the Protection of Human Health. Int. J. Mol. Sci. 2021, 22, 3009. [Google Scholar] [CrossRef]
- Hiebl, V.; Ladurner, A.; Latkolik, S.; Dirsch, V.M. Natural products as modulators of the nuclear receptors and metabolic sensors LXR, FXR and RXR. Biotechnol. Adv. 2018, 36, 1657–1698. [Google Scholar] [CrossRef] [PubMed]
- Geissman, T.A. Sesquiterpene lactones of Artemisia. A. verlotorum and A. vulgaris. Phytochemistry 1970, 9, 2377–2381. [Google Scholar] [CrossRef]
- Susurluk, H.; Calıskan, Z.; Gurkan, O.; Kırmızıgul, S.; Goren, N. Antifeedant activity of some Tanacetum species and biossay guided isolation of the secondary metabolites of Tanacetum cadneum ssp. cadneum (Compositae). Ind. Crops Prod. 2007, 26, 220–228. [Google Scholar] [CrossRef]
- Fang, F.; Sang, S.; Chen, K.; Gosslau, A.; Ho, C.T.; Rosen, R. Isolation and identification of cytotoxic compounds from Bay leaf (Laurus nobilis). Food Chem. 2005, 93, 497–501. [Google Scholar] [CrossRef]
- Hilmi, F.; Sticher, O.; Heilmann, J. New cytotoxic sesquiterpene lactones from Warionia saharae. Planta Med. 2003, 69, 462–464. [Google Scholar] [CrossRef]
- Bohlmann, F.; Adler, A.; Jakupovic, J.; King, R.M.; Robinson, H. A dimeric germacranolide and other sesquiterpene lactones from Mikania species. Phytochemistry 1982, 21, 1349–1355. [Google Scholar] [CrossRef]
- Xu, W.Z.; Jin, H.Z.; Fu, J.J.; Hu, X.J.; Yan, S.K.; Shen, Y.H.; Zhang, W.; Zhang, W.D. Chemical constituents from Daphne pedunculata. Chem. Nat. Compd. 2009, 45, 417–419. [Google Scholar] [CrossRef]
- Gören, N.; Ulubelen, A.; Bozok-Johansson, C.; Tahtasakal, E. Sesquiterpene lactones from Tanacetum densum subsp. amani. Phytochemistry 1993, 33, 1157–1159. [Google Scholar] [CrossRef]
- Choi, J.Y.; Choi, E.H.; Jung, H.W.; Jung, H.W.; Oh, J.S.; Lee, W.H.; Lee, J.G.; Son, J.K.; Kim, Y.; Lee, S.H. Melanogenesis inhibitory compounds from Saussureae Radix. Arch. Pharm. Res. 2008, 31, 294–299. [Google Scholar] [CrossRef]
- Julianti, E.; Jang, K.H.; Lee, S.; Lee, D.; Mar, W.; Oh, K.B.; Shin, J. Sesquiterpenes from the leaves of Laurus nobilis L. Phytochemistry 2012, 80, 70–76. [Google Scholar] [CrossRef]
- Jakupovic, J.; Lehmann, L.; Bohlmann, F.; King, R.M.; Robinson, H. Sesquiterpene lactones and other constituents from Cassinia, Actinobole and Anaxeton species. Phytochemistry 1988, 27, 3831–3839. [Google Scholar] [CrossRef]
- Fernadez, I.; Garcia, B.; Pedro, J.R.; Varea, A. Lignans and flavonoids from Carduus assoi. Phytochemistry 1991, 30, 1030–1032. [Google Scholar] [CrossRef]
- Tsiftsoglou, O.S.; Krigas, N.; Gounaris, C.; Papitsa, C.; Nanouli, M.; Vartholomatos, E.; Markopoulos, G.S.; Isyhou, R.; Alexiou, G.; Lazari, D. Isolation of Secondary Metabolites from Achillea grandifolia Friv. (Asteraceae) and Main Compounds’ Effects on a Glioblastoma Cellular Model. Pharmaceutics 2023, 15, 1383. [Google Scholar] [CrossRef] [PubMed]
- Herz, W.; Sumi, Y. Constituents of Ambrosia hispida Pursh. J. Org. Chem. 1964, 29, 3438–3439. [Google Scholar] [CrossRef]
- Nacer, A.; Bernard, A.; Boustie, J.; Touzani, R.; Kabouche, Z. Aglycone flavonoids of Centaurea tougourensis from Algeria. Chem. Nat. Compd. 2006, 42, 230–231. [Google Scholar] [CrossRef]
- Khan, M.; Yu, B.; Rasul, A.; Al Shawi, A.; Yi, F.; Yang, H.; Ma, T. Jaceosidin Induces Apoptosis in U87 Glioblastoma Cells through G2/M Phase Arrest. Evid. Based Complement. Alternat. Med. 2012, 2012, 703034. [Google Scholar] [CrossRef]
- Stefanakis, M.K.; Tsiftsoglou, O.S.; Mašković, P.Z.; Lazari, D.; Katerinopoulos, H.E. Chemical Constituents and Anticancer Activities of the Extracts from Phlomis × commixta Rech. f. (P. cretica × P. lanata). Int. J. Mol. Sci. 2024, 25, 816. [Google Scholar] [CrossRef]
- Shen, Z.; Theander, O. Flavonoid glycosides from needles of Pinus smassoniana. Phytochemistry 1985, 24, 155–158. [Google Scholar] [CrossRef]
- Matsuda, H.; Morikawa, T.; Toguchida, I.; Harima, S.; Yoshikawa, M. Medicinal flowers. VI. Absolute stereostructures of two new flavanone glycosides and a phenylbutanoid glycoside from the flowers of Chrysanthemum indicum L.: Their inhibitory activities for rat lens aldose reductase. Chem. Pharm. Bull. 2002, 50, 972–975. [Google Scholar] [CrossRef]
- Gutzeit, D.; Wray, V.; Winterhalter, P.; Jerz, G. Preparative isolation and purification of flavonoids and protocatechuic acid from sea Buckthorn juice concentrate (Hippophae rhamnoides L. ssp. rhamnoides) by high-speed counter-current chromatography. Chroma 2007, 65, 1–7. [Google Scholar] [CrossRef]
- Cepanec, I.; Litvić, M. Simple and efficient synthesis of arbutin. Arkivoc 2008, ii, 19–24. [Google Scholar] [CrossRef]
- Cottiglia, F.; Bonsignore, L.; Casu, L.; Deidda, D.; Pompei, R.; Casu, M.; Floris, C. Phenolic constituents from Ephedra nebrodensis. Nat. Prod. Res. 2005, 19, 117–123. [Google Scholar] [CrossRef] [PubMed]
- Available online: https://www.molinspiration.com/docu/miscreen/virtualscreening.html (accessed on 7 July 2024).
- Garcez, W.S.; Garcez, F.R.; da Silva, L.M.G.E.; Shimabukuro, A.A. Indole alkaloid and other constituents from Ocotea minarum. J. Braz. Chem. Soc. 2005, 16, 1382–1386. [Google Scholar] [CrossRef]
- Guo, H.; Zhou, J. Isolation and structure elucidation of glycosides in n-butanol extracts from rhizome of Periploca calophylla. Zhongguo Zhongyao Zazhi 2005, 30, 44–46. [Google Scholar]
- Mei, W.; Ni, W.; Chen, C. Two new compounds from Dichotomanthes tristaniaecarpa. Yunnan Zhiwu Yanjiu 2002, 24, 792–794. [Google Scholar]
- Samek, Z.; Holub, M.; Grabarczyk, H.; Drozdz, B.; Herbout, V. On terpenes. CCXXIX. Structure of sesquiterpenic lactones from Tanacetum vulgare L. Collect. Czech. Chem. Commun. 1973, 38, 1971–1976. [Google Scholar] [CrossRef]
- Choi, J.Y.; Na, M.; Hyun Hwang, I.; Ho Lee, S.; Young Bae, E.; Yeon Kim, B.; Seog Ahn, J. Isolation of Betulinic Acid, its Methyl Ester and Guaiane Sesquiterpenoids with Protein Tyrosine Phosphatase 1B Inhibitory Activity from the Roots of Saussurea lappa C.B. Clarke. Molecules 2009, 14, 266. [Google Scholar] [CrossRef]
- Fraga, B.M.; Terrero, D.; Cabrera, I.; Reina, M. Studies on the sesquiterpene lactones from Laurus novocanariensis lead to the clarification of the structures of 1-epi-tatridin B and its epimer tatridin B. Phytochemistry 2018, 153, 48–52. [Google Scholar] [CrossRef]
- Pareek, A.; Suthar, M.; Rathore, G.S.; Bansal, V. Feverfew (Tanacetum parthenium L.): A systematic review. Pharmacogn. Rev. 2011, 5, 103–110. [Google Scholar] [CrossRef]
- Martínez MJ, A.; Del Olmo LM, B.; Ticona, L.A.; Benito, P.B. Chapter 2—The Artemisia L. genus: A review of bioactive sesquiterpene lactones. Stud. Nat. Prod. Chem. 2012, 37, 43–65. [Google Scholar] [CrossRef]
- Staneva, J.D.; Todorova, M.N.; Evstatieva, L.N. Sesquiterpene lactones as chemotaxonomic markers in genus Anthemis. Phytochemistry 2008, 69, 607–618. [Google Scholar] [CrossRef] [PubMed]
- Nemeth, E.; Bernath, J. Biological activities of yarrow species (Achillea spp.). Curr. Pharm. Des. 2008, 14, 3151–3167. [Google Scholar] [CrossRef] [PubMed]
- Triana, J.; Eiroa, J.; Ortega, J.; Leσn, F.; Brouard, I.; Hernαndez, J.; Estιvez, F.; Bermejo, J. Chemotaxonomy of Gonospermum and related genes. Phytochemistry 2010, 71, 627–634. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Expósito, R.L.; Nocchi, N.; Reyes-Batlle, M.; Sifaoui, I.; Suárez-Gómez, B.; Díaz-Marrero, A.R.; Souto, M.L.; Piñero, J.E.; Fernández, J.J.; Lorenzo-Morales, J. Antiamoebic effects of sesquiterpene lactones isolated from the zoanthid Palythoa aff. clavata. Bioorg. Chem. 2021, 108, 104682. [Google Scholar] [CrossRef]
- Bethencourt-Estrella, C.J.; Nocchi, N.; López-Arencibia, A.; San Nicolás-Hernández, D.; Souto, M.L.; Suárez-Gómez, B.; Díaz-Marrero, A.R.; Fernández, J.J.; Lorenzo-Morales, J.; Piñero, J.E. Antikinetoplastid Activity of Sesquiterpenes Isolated from the Zoanthid Palythoa aff. clavata. Pharmaceuticals 2021, 14, 1095. [Google Scholar] [CrossRef]
- El-Feraly, S.; Chan, Y.M.; Fairchild, E.H.; Doskotch, R.W. Peroxycostunolide and peroxyparthenolide: Two cytotoxic germacranolide hydroperoxides from Magnolia grandiflora. Structural revision of verlotorin and artemorin. Tetrahedron Lett. 1977, 18, 1973–1975. [Google Scholar] [CrossRef]
- Dall’Acqua, S.; Viola, G.; Giorgetti, M.; Loi, M.C.; Innocenti, G. Two new sesquiterpene lactones from the leaves of Laurus nobilis. Chem. Pharm. Bull. 2006, 54, 1187–1189. [Google Scholar] [CrossRef]
- Xu, S.; Tang, Y.; Li, Y.; Yang, J.; Gu, W.; Hao, X.; Yuan, C. Discovery of diverse sesquiterpenoids from Magnolia grandiflora with cytotoxic activities by inducing cell apoptosis. Bioorg. Chem. 2023, 139, 106707. [Google Scholar] [CrossRef]
- Nagah, N.; Mostafa, I.; Osman, A.; Dora, G.; El-Sayed, Z.; Ateya, A. Bioguided Isolation and in-Silico Analysis of Hep-G2 Cytotoxic Constituents From Laurus nobilis Linn. Cultivated In Egypt. Egypt. J. Chem. 2021, 64, 2731–2745. [Google Scholar] [CrossRef]
- Duan, K.F.; Zang, X.Y.; Shang, M.Y.; Zhang, W.; Xie, B.B.; Wang, L.; Xu, F.; Cai, S.Q. Non-ephedrine constituents from the herbaceous stems of Ephedra sinica. Fitoterapia 2021, 153, 104998. [Google Scholar] [CrossRef]
- Cherchar, H.; Faraone, I.; DʼAmbola, M.; Sinisgalli, C.; Dal Piaz, F.; Oliva, P.; Kabouche, A.; Kabouche, Z.; Milella, L.; Vassallo, A. Phytochemistry and Antioxidant Activity of Aerial Parts of Phagnalon sordidum L. Planta Med. 2019, 85, 1008–1015. [Google Scholar] [CrossRef] [PubMed]
- Gou, P.; Xiao, Y.; Lv, L.; Xie, H. Hydroquinone and terpene glucosides from Leontopodium leontopodioides and their lipase inhibitory activity. Fitoterapia 2018, 130, 89–93. [Google Scholar] [CrossRef] [PubMed]
- Muhammad, A.; Anis, I.; Ali, Z.; Awadelkarim, S.; Khan, A.; Khalid, A.; Shah, M.R.; Galal, M.; Khan, I.A.; Choudhary, M.I. Methylenebissantin: A rare methylene-bridged bisflavonoid from Dodonaea viscosa which inhibits Plasmodium falciparum enoyl-ACP reductase. Bioorg. Med. Chem. Lett. 2012, 22, 610–612. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Li, L.; Chen, L.; Hu, L.; Jiang, H.; Shen, X. Structure basis of bigelovin as a selective RXR agonist with a distinct binding mode. J. Mol. Biol. 2011, 407, 13–20. [Google Scholar] [CrossRef] [PubMed]
- Isigkeit, L.; Kärcher, A.; Adouvi, G.; Arifi, S.; Merk, D. Rational design and virtual screening identify mimetics of the RXR agonist valerenic acid. Chem. Med. Chem. 2024, 19, e202300379. [Google Scholar] [CrossRef]
- Pavić, K.; Perković, I.; Gilja, P.; Kozlina, F.; Ester, K.; Kralj, M.; Schols, D.; Hadjipavlou-Litina, D.; Pontiki, E.; Zorc, B. Design, Synthesis and Biological Evaluation of Novel Primaquine-Cinnamic Acid Conjugates of the Amide and Acylsemicarbazide Type. Molecules 2016, 21, 1629. [Google Scholar] [CrossRef]
- Pontiki, E.; Hadjipavlou-Litina, D. Synthesis and pharmacochemical evaluation of novel aryl-acetic acid inhibitors of lipoxygenase, antioxidants and anti-inflammatory agents. Bioorg. Med. Chem. 2007, 15, 5819–5827. [Google Scholar] [CrossRef]
- Liargkova, T.; Hadjipavlou-Litina, D.; Koukoulitsa, C.; Voulgari, E.; Avgoustakis, C. Simple chalcones and bis-chalcones ethers as possible pleiotropic agents. J. Enzym. Inhib. Med. Chem. 2016, 31, 302–313. [Google Scholar] [CrossRef]
Compounds | % DPPH Radical Scavenging Capacity [%] at 100 μM Concentration 1 | % Inhibition of AAPH 1 |
---|---|---|
(1) Artemorin | 20.0 ± 0.1 | No |
(2) Tamirin | 10.2 ± 0.4 | No |
(3) Tanachin | 20.0 ± 1.0 | No |
(4) Reynosin | No | No |
(5) Baynol C | 92.0 ± 3.2 | 32.0 ± 1.2 |
(7) | No | No |
(9) | 30.0 ± 1.4 | 37.0 ± 1.8 |
(10) | No | No |
(11) | 27.0 ± 0.7 | No |
(13) Loliolide | 7.4 ± 0.2 | No |
(22) Nebrodenside A | 100.0 ± 2.5 | 12.0 ± 0.6 |
NDGA | 95 ± 2.1 | - |
Trolox | 91 ± 1.1 | 76.0 ± 2.3 |
Vitamin C | 94.5 ± 3.6 | - |
Compounds | % Inhibition of LOX 1 | % Inhibition of AChE 1 |
---|---|---|
(1) Artemorin | 33.0 ± 0.4 | 20.0 ± 0.5 |
(2) Tamirin | 29.0 ± 0.3 | 21.0 ± 0.7 |
(3) Tanachin | 31.0 ± 0.4 | 28.0 ± 0.3 |
(4) Reynosin | 6.0 ± 0.1 | - |
(5) Baynol C | 18.5 ± 0.1 | - |
(7) 1β,4α,6α-trihydroxyeudesm-11-en-8α,12-olide | 14.0 ± 0.1 | - |
(9) | 1.0 ± 00 | - |
(10) | 10.0 ± 0.1 | - |
(11) | 42.0 ± 0.8 | - |
(12) Pinoresinol | No | 14.0 ± 0.1 |
(13) Loliolide | 38.0 ± 1.00 | - |
(14) Hispidulin | 8.0 ± 00 | 14.0 ± 0.5 |
(15) Nepetin | 26.0 ± 1.2 | 32.0 ± 0.7 |
(17) Eriodictyol | 22.0 ± 0.6 | 7.0 ± 0.9 |
(18) Eriodictyol-3′-O-β-D-glc | 90.0 ± 2.2 | 20.0 ± 0.4 |
(20) Protocatechuic acid | 15.0 ± 0.7 | No |
(21) Arbutin | 18.0 ± 0.2 | 20.0 ± 1.3 |
(22) Nebrodenside A | 10.5 ± 0.2 | - |
NDGA | 83 ± 1.1 | - |
Physostigmine | - | 76 ± 2.1 |
Compound | GPCR Receptor | Ion Channel Modulator | Kinase Inhibitor | Nuclear Receptor Ligand | Protease Inhibitor |
---|---|---|---|---|---|
(1) Artemorin | 0.42 | 0.20 | −0.37 | 1.30 | −0.11 |
(2) Tamirin | 0.03 | −0.10 | −0.93 | 1.08 | −0.23 |
(3) Tanachin | 0.32 | 0.14 | 1.37 | −0.43 | −0.17 |
(4) Reynosin | −0.04 | 0.34 | 0.74 | −0.64 | −0.03 |
(5) BaynolC | 0.05 | 0.18 | −0.56 | 0.71 | −0.08 |
(6) | 0.20 | 0.03 | −0.38 | 1.23 | 0 |
(7) | 0.40 | 0.28 | −0.19 | 1.06 | 0.16 |
(8) 1β-hydroxy-arbusculin | 0.22 | 0.03 | −0.38 | 1.09 | 0.06 |
(9) | 0.35 | 0.33 | −0.34 | 1.15 | 0.04 |
(10) | 0.12 | 0.22 | −0.58 | 0.70 | −0.03 |
(11) | 0.08 | 0.14 | −0.46 | 0.72 | 0.06 |
(12) Pinoresinol | 0.01 | −0.26 | −0.21 | 0.02 | −0.17 |
(13) Loliolide | −0.45 | −0.39 | −0.91 | −0.04 | −0.33 |
(14) Hispidulin | −0.07 | −0.22 | 0.21 | 0.20 | −0.33 |
(15) Nepetin | −0.08 | −0.23 | 0.22 | 0.17 | −0.31 |
(16) Jaceosidin | −0.09 | −0.24 | 0.21 | 0.14 | −0.31 |
(17) Eriodictyol | 0.07 | −0.20 | −0.22 | 0.46 | −0.09 |
(18) Eriodictyol-3′-O-β-D-glc * | 0.21 | −0.12 | −0.07 | 0.39 | 0.24 |
(19) Eriodictyol-7-O-β-D-glr * | 0.21 | −0.09 | −0.20 | 0.45 | 0.28 |
(20) Protocatechuic acid | −0.88 | −0.35 | −1.10 | −0.58 | −1.09 |
(21) Arbutin | 0.13 | 0.06 | −0.06 | 0.16 | 0.21 |
(22) Nebrodenside A | 0.28 | 0.09 | 0.02 | 0.53 | 0.30 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lazanaki, M.; Tsikalas, G.; Tsiftsoglou, O.S.; Katerinopoulos, H.; Hadjipavlou-Litina, D.; Lazari, D. Secondary Metabolites and Their Biological Evaluation from the Aerial Parts of Staehelina uniflosculosa Sibth. & Sm. (Asteraceae). Int. J. Mol. Sci. 2024, 25, 10586. https://doi.org/10.3390/ijms251910586
Lazanaki M, Tsikalas G, Tsiftsoglou OS, Katerinopoulos H, Hadjipavlou-Litina D, Lazari D. Secondary Metabolites and Their Biological Evaluation from the Aerial Parts of Staehelina uniflosculosa Sibth. & Sm. (Asteraceae). International Journal of Molecular Sciences. 2024; 25(19):10586. https://doi.org/10.3390/ijms251910586
Chicago/Turabian StyleLazanaki, Maria, George Tsikalas, Olga S. Tsiftsoglou, Haralambos Katerinopoulos, Dimitra Hadjipavlou-Litina, and Diamanto Lazari. 2024. "Secondary Metabolites and Their Biological Evaluation from the Aerial Parts of Staehelina uniflosculosa Sibth. & Sm. (Asteraceae)" International Journal of Molecular Sciences 25, no. 19: 10586. https://doi.org/10.3390/ijms251910586
APA StyleLazanaki, M., Tsikalas, G., Tsiftsoglou, O. S., Katerinopoulos, H., Hadjipavlou-Litina, D., & Lazari, D. (2024). Secondary Metabolites and Their Biological Evaluation from the Aerial Parts of Staehelina uniflosculosa Sibth. & Sm. (Asteraceae). International Journal of Molecular Sciences, 25(19), 10586. https://doi.org/10.3390/ijms251910586