The Immune Modulation HLA-G*01:01:01 Full Allele Is Associated with Gastric Adenocarcinoma Development
Abstract
:1. Introduction
2. Results
2.1. HLA-G Allelic Distribution in Spanish Gastric Adenocarcinoma Patients
2.2. Allele Ambiguities Are Found in Tumoral Tissue Samples but Not in Paired Non-Tumoral (Distal) Tissue Samples
2.3. Statistical Comparisons within the Gastric Cancer Cohort: Significance of Tumoral Ambiguities Found
2.4. Statistical Comparisons between the Gastric Cancer Spanish Cohort (n = 40) and the Healthy Spanish Cohort (n = 114)
2.4.1. Fisher’s Exact Text and Odds Ratios Calculations for Common Alleles in Both Cohorts (HLA-G*01:01:01, HLA-G*01:04 and HLA-G*01:05N)
2.4.2. Principal Component Analysis (PCA) for Each Allele’s Contribution to Gastric Adenocarcinoma Development
3. Discussion
3.1. HLA-G Frequencies and Polymorphism in the Spanish Gastric Adenocarcinoma Cohort Studied
3.2. Contribution of HLA-G*01:01:01 Allele to Gastric Cancer
3.3. Importance of Haplotypes/Complotypes for HLA-Disease Associations Instead of Single-Allele Studies
3.4. Full Alleles in HLA-Disease Associations
4. Materials and Methods
4.1. Samples
4.2. DNA Extraction, Amplification and Sequencing
4.3. Statistical Analyses
5. Conclusions
- (1)
- The long-lasting negative results in relation to the HLA–disease pathogenesis linkage are probably a reflection of a fundamental lack of knowledge of full HLA/MHC (major histocompatibility complex) function (physiology). It may involve not only antigen presentation or a cluster of HLA/MHC genes that work together for microbial and self-defense, and other undetermined factors like microbiota could also be important [6,7,43];
- (2)
- A further uncertainty is added by not studying full alleles directly, as is generally the case (and sometimes confirmatory [44]) when using class I non-classical modulatory genes, because of more difficult typing. These are usually detected by indirect related markers [37,38,39]. Widespread use of full MHC alleles should be practiced instead in order to minimize the lack of pathogenesis explanation results from HLA/disease studies in the past 50 years.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- The MHC sequencing consortium. Complete sequence and gene map of a human major histocompatibility complex. The MHC sequencing consortium. Nature 1999, 401, 921–923. [Google Scholar] [CrossRef] [PubMed]
- Horton, R.; Wilming, L.; Rand, V.; Lovering, R.C.; Bruford, E.A.; Khodiyar, V.K.; Lush, M.J.; Povey, S.; Talbot, C.C.; Wright, M.W., Jr.; et al. Gene map of the extended human MHC. Nat. Rev. Genet. 2004, 5, 889–899. [Google Scholar] [CrossRef] [PubMed]
- Klein, J.; Sato, A. The HLA system. First of two parts. N. Engl. J. Med. 2000, 343, 702–709. [Google Scholar] [CrossRef] [PubMed]
- Hviid, T.V. HLA-G in human reproduction: Aspects of genetics, function, and pregnancy complications. Hum. Reprod. Update 2006, 12, 209–232. [Google Scholar] [CrossRef] [PubMed]
- Donadi, E.A.; Castelli, E.C.; Arnaiz-Villena, A.; Roger, M.; Rey, D.; Moreau, P. Implications of the polymorphism of HLA-G on its function, regulation, evolution and disease association. Cell Mol. Life Sci. 2011, 68, 369–395. [Google Scholar] [CrossRef]
- Arnaiz-Villena, A.; Juarez, I.; Suarez-Trujillo, F.; López-Nares, A.; Vaquero-Yuste, C.; Palacio-Gruber, J.; Martin-Villa, J.M. HLA-G: Function, polymorphisms and pathology. Int. J. Immunogenet. 2020, 48, 172–192. [Google Scholar] [CrossRef]
- Arnaiz-Villena, A.; Suarez-Trujillo, F.; Juarez, I.; Rodríguez-Sainz, C.; Palacio-Gruber, J.; Vaquero-Yuste, C.; Molina-Alejandre, M.; Fernández-Cruz, E.; Martin-Villa, J.M. Evolution and molecular interactions of major histocompatibility complex (MHC)-G, -E and -F genes. Cell Mol. Life Sci. 2022, 79, 464. [Google Scholar] [CrossRef]
- Alegre, E.; Rizzo, R.; Bortolotti, D.; Fernandez-Landázuri, S.; Fainardi, E.; González, A. Some basic aspects of HLA-G biology. J. Immunol. Res. 2014, 2014, 657625. [Google Scholar] [CrossRef]
- Berger, D.S.; Hogge, W.A.; Barmada, M.M.; Ferrell, R.E. Comprehensive analysis of HLA-G: Implications for recurrent spontaneous abortion. Reprod. Sci. 2010, 17, 331–338. [Google Scholar] [CrossRef]
- Crisa, L.; McMaster, M.T.; Ishii, J.K.; Fisher, S.J.; Salomon, D.R. Identification of a thymic epithelial cell subset sharing expression of the class Ib HLA-G molecule with fetal trophoblasts. J. Exp. Med. 1997, 186, 289–298. [Google Scholar] [CrossRef]
- Mallet, V.; Blaschitz, A.; Crisa, L.; Schmitt, C.; Fournel, S.; King, A.; Loke, Y.W.; Dohr, G.; Le Bouteiller, P. HLA-G in the human thymus: A subpopulation of medullary epithelial but not CD83 (+) dendritic cells expresses HLA-G as a membrane-bound and soluble protein. Int. Immunol. 1999, 11, 889–898. [Google Scholar] [CrossRef] [PubMed]
- Le Discorde, M.; Moreau, P.; Sabatier, P.; Legeais, J.M.; Carosella, E.D. Expression of HLA-G in human cornea, an immuneprivileged tissue. Hum. Immunol. 2003, 64, 1039–1044. [Google Scholar] [CrossRef] [PubMed]
- Menier, C.; Rabreau, M.; Challier, J.C.; Le Discorde, M.; Carosella, E.D.; Rouas-Freiss, N. Erythroblasts secrete the nonclassical HLA-G molecule from primitive to definitive hematopoiesis. Blood 2004, 104, 3153–3160. [Google Scholar] [CrossRef] [PubMed]
- Ito, T.; Ito, N.; Saathoff, M.; Stampachiacchiere, B.; Bettermann, A.; Bulfone-Paus, S.; Takigawa, M.; Nickoloff, B.J.; Paus, R. Immunology of the human nail apparatus: The nail matrix is a site of relative immune privilege. J. Investig. Dermatol. 2005, 125, 1139–1148. [Google Scholar] [CrossRef] [PubMed]
- Cirulli, V.; Zalatan, J.; McMaster, M.; Prinsen, R.; Salomon, D.R.; Ricordi, C.; Torbett, B.E.; Meda, P.; Crisa, L. The class I HLA repertoire of pancreatic islets comprises the nonclassical class Ib antigen HLA-G. Diabetes 2006, 55, 1214–1222. [Google Scholar] [CrossRef]
- Rebmann, V.; da Silva Nardi, F.; Wagner, B.; Horn, P.A. HLA-G as a Tolerogenic Molecule in Transplantation and Pregnancy. J. Immunol. Res. 2014, 2014, 297073. [Google Scholar] [CrossRef]
- Rizzo, R.; Bortolotti, D.; Bolzani, S.; Fainardi, E. HLA-G Molecules in Autoimmune Diseases and Infections. Front. Immunol. 2014, 5, 592. [Google Scholar] [CrossRef]
- Amiot, L.; Vu, N.; Samson, M. Immunomodulatory Properties of HLA-G in Infectious Diseases. J. Immunol. Res. 2014, 2014, 298569. [Google Scholar] [CrossRef]
- Lafon, M.; Prehaud, C.; Megret, F.; Lafage, M.; Mouillot, G.; Roa, M.; Moreau, P.; Rouas-Freiss, N.; Carosella, E.D. Modulation of HLA-G Expression in Human Neural Cells After Neurotropic Viral Infections. J. Virol. 2005, 79, 15226–15237. [Google Scholar] [CrossRef]
- Urosevic, M.; Dummer, R. Human Leukocyte Antigen–G and Cancer Immunoediting. Cancer Res. 2008, 68, 627–630. [Google Scholar] [CrossRef]
- Pucułek, M.; Machlowska, J.; Wierzbicki, R.; Baj, J.; Maciejewski, R.; Sitarz, R. Helicobacter Pylori Associated Factors in the Development of Gastric Cancer With Special Reference to the Early-Onset Subtype. Oncotarget 2018, 9, 31146–31162. [Google Scholar] [CrossRef] [PubMed]
- WHO. Global Cancer Burden Growing, Amidst Mounting Need for Services. Available online: https://www.who.int/news/item/01-02-2024-global-cancer-burden-growing--amidst-mounting-need-for-services (accessed on 10 June 2024).
- Li, Y.; Feng, A.; Zheng, S.; Chen, C.; Lyu, J. Recent Estimates and Predictions of 5-Year Survival in Patients with Gastric Cancer: A Model-Based Period Analysis. Cancer Control. J. Moffitt Cancer Cent. 2022, 29, 10732748221099227. [Google Scholar] [CrossRef] [PubMed]
- Loumagne, L.; Baudhuin, J.; Favier, B.; Montespan, F.; Carosella, E.D.; Rouas-Freiss, N. In Vivo Evidence That Secretion of HLA-G by Immunogenic Tumor Cells Allows Their Evasion From Immunosurveillance. Int. J. Cancer 2014, 135, 2107–2117. [Google Scholar] [CrossRef] [PubMed]
- Oucherif, O.; Naimi, D. Function of HLA-G in Cancer Immunoediting and its Clinical Benefits. Afr. J. Cancer 2015, 7, 132–139. [Google Scholar] [CrossRef]
- Rodrıguez, J.A. HLA-Mediated Tumor Escape Mechanisms That may Impair Immunotherapy Clinical Outcomes via T-Cell Activation. Oncol. Lett. 2017, 14, 4415–4427. [Google Scholar] [CrossRef]
- Suárez, M.B.; Morales, P.; Castro, M.J.; Fernández, V.; Varela, P.; Alvarez, M.; Martínez-Laso, J.; Arnaiz-Villena, A. A new HLA-G allele (HLA-G*0105N) and its distribution in the Spanish population. Immunogenetics 1997, 45, 464–465. [Google Scholar] [CrossRef]
- Drabbels, J.J.M.; Welleweerd, R.; van Rooy, I.; Johnsen, G.M.; Staff, A.C.; Haasnoot, G.W.; Westerink, N.; Claas, F.H.J.; Rozemuller, E.; Eikmans, M. HLA-G whole gene amplification reveals linkage disequilibrium between the HLA-G 3’UTR and coding sequence. HLA 2020, 96, 179–185. [Google Scholar] [CrossRef]
- Castelli, E.C.; Mendes-Junior, C.T.; Viana de Camargo, J.L.; Donadi, E.A. HLA-G polymorphism and transitional cell carcinoma of the bladder in a Brazilian population. Tissue Antigens 2008, 72, 149–157. [Google Scholar] [CrossRef]
- Khorrami, S.; Rahimi, R.; Mohammadpour, H.; Bahrami, S.; Yari, F.; Pustchi, H.; Malekzadeh, R. Association of HLA-G*01:01:02:01/G*01:04:01 polymorphism with gastric adenocarcinoma. Hum. Immunol. 2016, 77, 153–157. [Google Scholar] [CrossRef]
- Boicean, A.; Boeras, I.; Birsan, S.; Ichim, C.; Todor, S.B.; Onisor, D.M.; Brusnic, O.; Bacila, C.; Dura, H.; Roman-Filip, C.; et al. In Pursuit of Novel Markers: Unraveling the Potential of miR-106, CEA and CA 19-9 in Gastric Adenocarcinoma Diagnosis and Staging. Int. J. Mol. Sci. 2024, 25, 7898. [Google Scholar] [CrossRef]
- Dawkins, R.L.; Christiansen, F.T.; Kay, P.H.; Garlepp, M.; McCluskey, J.; Hollingsworth, P.N. Disease associations with complotypes, supratypes and haplotypes. Immunol. Rev. 1983, 70, 5–22. [Google Scholar] [CrossRef] [PubMed]
- Dawkins, R.; Leelayuwat, C.; Gaudieri, S.; Tay, G.; Hui, J.; Cattley, S.; Martinez, P.; Kulski, J. Genomics of the major histocompatibility complex: Haplotypes, duplication, retroviruses and disease. Immunol. Rev. 1999, 167, 275–304. [Google Scholar] [CrossRef]
- Segurado, O.G.; Iglesias-Casarrubios, P.; Morales, P.; Martinez-Laso, J.; Partanen, J.; Campbell, R.D.; Arnaiz-Villena, A. Genetic structure of the novel low-frequency haplotype HLA-B49, SC01, DR4 and its contribution to insulin-dependent diabetes susceptibility. Immunogenetics 1999, 37, 69–72. [Google Scholar] [CrossRef]
- Sciurti, M.; Fornaroli, F.; Gaiani, F.; Bonaguri, C.; Leandro, G.; Di Mario, F.; De’Angelis, G.L. Genetic susceptibility and celiac disease: What role do HLA haplotypes play? Acta Biomed. 2018, 89, 17–21. [Google Scholar] [CrossRef] [PubMed]
- Cassia, F.F.; Cardoso, J.F.; Porto, L.C.; Ramos-E-Silva, M.; Carneiro, S. Association of HLA alleles and HLA haplotypes with psoriasis, psoriatic arthritis and disease severity in a miscegenated population. Psoriasis 2021, 11, 41–51. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Chen, S.; Jia, S.; Zhu, Z.; Gao, X.; Dong, D.; Gao, Y. Association of HLA-G 3’UTR 14-Bp Insertion/Deletion Polymorphism With HepatocellularCarcinoma Susceptibility in a Chinese Population. DNA Cell Biol. 2011, 30, 1027–1032. [Google Scholar] [CrossRef]
- Dias, F.C.; Castelli, E.C.; Collares, C.V.A.; Moreau, P.; Donadi, E.A. The Role of HLAGMolecule and HLA-G Gene Polymorphisms Tumors, Viral Hepatitis, and Parasitic Diseases. Front. Immunol. 2015, 6, 9. [Google Scholar] [CrossRef]
- Gautam, S.; Kumar, U.; Kumar, M.; Kanga, U.; Dada, R. Association of HLA-G3’utr Polymorphisms With Soluble HLA-G Levels and Disease Activity inPatients With Rheumatoid Arthritis: A Case-Control Study. Immunol. Investg. 2020, 49, 88–105. [Google Scholar] [CrossRef]
- Santiago, J.M.R.; Sasako, M.; Osorio, J. TNM-7th Edition 2009 (UICC/AJCC) and Japanese Classification 2010 in Gastric Cancer. Towards Simplicity and Standardisation in the Management of Gastric Cancer. Cir. Esp. 2011, 89, 275–281. [Google Scholar] [CrossRef]
- Robinson, J.; Halliwell, J.A.; Hayhurst, J.D.; Flicek, P.; Parham, P.; Marsh, S.G. The IPD and IMGT/HLA database: Allele variant databases. Nucleic Acids Res. 2015, 43, D423–D431. [Google Scholar] [CrossRef]
- Kumar, S.; Stecher, G.; Tamura, K. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. MolBiol. Evol. 2016, 33, 1870–1874. [Google Scholar] [CrossRef] [PubMed]
- Arnaiz-Villena, A.; Juarez, I.; Vaquero-Yuste, C.; Lledo, T.; Martin-Villa, J.M.; Suarez-Trujillo, F. Complex Interactions between the Human Major Histocompatibility Complex (MHC) and Microbiota: Their Roles in Disease Pathogenesis and Immune System Regulation. Biomedicines 2024, 12, 1928. [Google Scholar] [CrossRef] [PubMed]
- Vaquero-Yuste, C.; Juarez, I.; Molina-Alejandre, M.; Molaes-López, E.M.; López-Nares, A.; Suárez-Trujillo, F.; Gutiérrez-Calvo, A.; López-García, A.; Lasa, I.; Gómez, R.; et al. HLA-G 3′UTR polymorphisms are linked to susceptibility and survival in Spanish gastric adenocarcinoma patients. Front. Immunol. 2021, 12, 698438. [Google Scholar] [CrossRef] [PubMed]
Healthy Population (n = 114) | Gastric Adenocarcinoma Population (n = 40) | ||
---|---|---|---|
HLA-G Allele | Frequency (%) | HLA-G Allele | Frequency (%) |
01:01:01 | 51.31 | 01:01:01 | 80.00 |
01:01:02 | 25.10 | 01:01:08 | 5.00 |
01:01:03 | 7.26 | 01:04:01/01:23 | 5.00 |
01:04 | 11.11 | 01:05N | 7.5 |
01:05N | 3.09 | 01:06:01 | 2.50 |
Patient | Sample (T/NT) | HLA-G Allele |
---|---|---|
1 | Tumoral | 01:05N |
Non-tumoral (distal) | 01:05N | |
2 | Tumoral | 01:01:01 |
Non-tumoral (distal) | 01:01:01 | |
3 | Tumoral | 01:01:01 |
Non-tumoral (distal) | 01:01:01 | |
4 | Tumoral | 01:04:01/01:23 |
Non-tumoral (distal) | 01:04:01/01:23 | |
5 | Tumoral | 01:01:01 |
Non-tumoral (distal) | 01:01:01 | |
6 | Tumoral | 01:01:01 |
Non-tumoral (distal) | 01:01:01 | |
7 | Tumoral | 01:01:01 |
Non-tumoral (distal) | 01:01:01 | |
8 | Tumoral | 01:01:01 |
Non-tumoral (distal) | 01:01:01 | |
9 | Tumoral | 01:01:01 |
Non-tumoral (distal) | 01:01:01 | |
10 | Tumoral | 01:01:01 |
Non-tumoral (distal) | 01:01:01 | |
11 | Tumoral | 01:01:01 |
Non-tumoral (distal) | 01:01:01 | |
12 | Tumoral | 01:01:01 |
Non-tumoral (distal) | 01:01:01 | |
13 | Tumoral | 01:01:01 |
Non-tumoral (distal) | 01:01:01 | |
14 | Tumoral | 01:01:01 |
Non-tumoral (distal) | 01:01:01 | |
15 | Tumoral | 01:01:01 |
Non-tumoral (distal) | 01:01:01 | |
16 | Tumoral | 01:01:01 |
Non-tumoral (distal) | 01:01:01 | |
17 | Tumoral | 01:01:02/01:01:22/01:24/01:26 |
Non-tumoral (distal) | 01:06:01 | |
18 | Tumoral | 01:01:08/01:01:06/01:03:01/01:01:01 |
Non-tumoral (distal) | 01:01:08 | |
19 | Tumoral | 01:01:01 |
Non-tumoral (distal) | 01:01:01 | |
20 | Tumoral | 01:01:01 |
Non-tumoral (distal) | 01:01:01 | |
21 | Tumoral | 01:05N |
Non-tumoral (distal) | 01:05N | |
22 | Tumoral | 01:01:01 |
Non-tumoral (distal) | 01:01:01 | |
23 | Tumoral | 01:01:01 |
Non-tumoral (distal) | 01:01:01 | |
24 | Tumoral | 01:01:01 |
Non-tumoral (distal) | 01:01:01 | |
25 | Tumoral | 01:01:01 |
Non-tumoral (distal) | 01:01:01 | |
26 | Tumoral | 01:01:01 |
Non-tumoral (distal) | 01:01:01 | |
27 | Tumoral | 01:01:01 |
Non-tumoral (distal) | 01:01:01 | |
28 | Tumoral | 01:01:01 |
Non-tumoral (distal) | 01:01:01 | |
29 | Tumoral | 01:05N |
Non-tumoral (distal) | 01:05N | |
30 | Tumoral | 01:01:02/01:01:22/01:24/01:26 |
Non-tumoral (distal) | 01:01:08 | |
31 | Tumoral | 01:01:01 |
Non-tumoral (distal) | 01:01:01 | |
32 | Tumoral | 01:01:01 |
Non-tumoral (distal) | 01:01:01 | |
33 | Tumoral | 01:01:01 |
Non-tumoral (distal) | 01:01:01 | |
34 | Tumoral | 01:01:01 |
Non-tumoral (distal) | 01:01:01 | |
35 | Tumoral | 01:01:01 |
Non-tumoral (distal) | 01:01:01 | |
36 | Tumoral | 01:01:01 |
Non-tumoral (distal) | 01:01:01 | |
37 | Tumoral | 01:01:01 |
Non-tumoral (distal) | 01:01:01 | |
38 | Tumoral | 01:04:01 / 01:23 |
Non-tumoral (distal) | 01:04:01 / 01:23 | |
39 | Tumoral | 01:01:01 |
Non-tumoral (distal) | 01:01:01 | |
40 | Tumoral | 01:01:01 |
Non-tumoral (distal) | 01:01:01 |
Patient | Sample (T/NT) | HLA-G Allele |
---|---|---|
17 | Tumoral | 01:01:02/01:01:22/01:24/01:26 |
Non-tumoral (distal) | 01:06:01 | |
18 | Tumoral | 01:01:01/01:01:06/01:01:08/01:03:01 |
Non-tumoral (distal) | 01:01:08 | |
30 | Tumoral | 01:01:02/01:01:22/01:24/01:26 |
Non-tumoral (distal) | 01:01:08 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Suarez-Trujillo, F.; Juarez, I.; Vaquero-Yuste, C.; Gutierrez-Calvo, A.; Lopez-García, A.; Lasa, I.; Gomez, R.; Martin-Villa, J.M.; Arnaiz-Villena, A. The Immune Modulation HLA-G*01:01:01 Full Allele Is Associated with Gastric Adenocarcinoma Development. Int. J. Mol. Sci. 2024, 25, 10645. https://doi.org/10.3390/ijms251910645
Suarez-Trujillo F, Juarez I, Vaquero-Yuste C, Gutierrez-Calvo A, Lopez-García A, Lasa I, Gomez R, Martin-Villa JM, Arnaiz-Villena A. The Immune Modulation HLA-G*01:01:01 Full Allele Is Associated with Gastric Adenocarcinoma Development. International Journal of Molecular Sciences. 2024; 25(19):10645. https://doi.org/10.3390/ijms251910645
Chicago/Turabian StyleSuarez-Trujillo, Fabio, Ignacio Juarez, Christian Vaquero-Yuste, Alberto Gutierrez-Calvo, Adela Lopez-García, Inmaculada Lasa, Remedios Gomez, José Manuel Martin-Villa, and Antonio Arnaiz-Villena. 2024. "The Immune Modulation HLA-G*01:01:01 Full Allele Is Associated with Gastric Adenocarcinoma Development" International Journal of Molecular Sciences 25, no. 19: 10645. https://doi.org/10.3390/ijms251910645
APA StyleSuarez-Trujillo, F., Juarez, I., Vaquero-Yuste, C., Gutierrez-Calvo, A., Lopez-García, A., Lasa, I., Gomez, R., Martin-Villa, J. M., & Arnaiz-Villena, A. (2024). The Immune Modulation HLA-G*01:01:01 Full Allele Is Associated with Gastric Adenocarcinoma Development. International Journal of Molecular Sciences, 25(19), 10645. https://doi.org/10.3390/ijms251910645