Potential Teratogenicity Effects of Metals on Avian Embryos
Abstract
:1. Introduction
1.1. Cadmium
1.2. Copper
1.3. Lead
2. Results
2.1. Early Developmental Stage
2.1.1. Embryo Mortality
- Injection method
- Immersion method
2.1.2. Developmental Aberration
- Injection method
- Immersion method
2.2. Late Developmental Stage (on Day 19)
2.2.1. Embryo Mortality
- Injection method
- Immersion method
2.2.2. Developmental Aberration
- Injection method
- Immersion method
2.2.3. Body Weight
- Injection method
- Immersion method
2.2.4. Skeleton Staining
- Injection method
- Immersion method
2.2.5. Histopathology
3. Discussion
3.1. Mortality
3.2. Body Weight
3.3. Developmental Aberration
4. Materials and Methods
4.1. Materials
4.1.1. Animals
4.1.2. Test Substances
4.2. Methods
4.2.1. Treatment
Treatment Method
Injection Method
Immersion Method
4.2.2. Hatching
4.2.3. Processing
Preparation of Germinal Disc
Skeleton Staining
Histopathology
4.2.4. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Murphy, E.A.; Aucott, M.A. Methodology to Assess the Amounts of Pesticidal Mercury Used Historically in New Jersey. J. Soil Contam. 1999, 8, 131–148. [Google Scholar] [CrossRef]
- Eeva, T.; Lehikoinen, E. Pollution: Recovery of breeding success in wild birds. Nature 2000, 403, 851–852. [Google Scholar] [CrossRef] [PubMed]
- Hughes, M.F.; Beck, B.D.; Chen, Y.; Lewis, A.S.; Thomas, D.J. Arsenic exposure and toxicology: A historical perspective. Toxicol. Sci. 2011, 123, 305–332. [Google Scholar] [CrossRef] [PubMed]
- Azimi, S.; Rocher, R.; Garnaud, S.; Varrault, G.; Thévenot, D.R. Decrease of atmospheric deposition of heavy metals in an urban area from 1994 to 2002 (Paris, France). Chemosphere 2005, 61, 645–651. [Google Scholar] [CrossRef]
- Hill, M.K. Understanding Environmental Pollution, 3rd ed.; Cambridge University Press: Cambridge, UK, 2010; Available online: https://agrostrat.gr/sites/default/files/inventory/Understanding%20envir%20pollution_2010.pdf (accessed on 15 December 2023).
- Sheppard, S.C.; Grant, C.A.; Sheppard, M.I.; De Jong, R.; Long, J. Risk indicator for agricultural inputs of trace elements to Canadian soils. J. Environ. Qual. 2009, 38, 919–932. [Google Scholar] [CrossRef]
- Campbell, P.G.C.; Stokes, P.M.; Galloway, J.N. The effect of atmospheric deposition on the geochemical cycling and biological availability of metals. In Heavy Metals in the Environment; CEP Consultants: Heidelberg, Germany; Edinburgh, UK, 1983; Volume 2, pp. 760–763. [Google Scholar]
- Hazrat, A.; Ezzat, K.; Ikram, I. Environmental Chemistry and Ecotoxicology of Hazardous Heavy Metals: Environmental Persistence, Toxicity, and Bioaccumulation. J. Chem. 2019, 1–14. [Google Scholar] [CrossRef]
- Speir, T.W.; Van Schaik, A.P.; Percival, H.J.; Close, M.E.; Pang, L. Heavy Metals in Soil, Plants and Groundwater Following High-Rate Sewage Sludge Application to Land. Water Air Soil Pollut. 2003, 150, 319–358. [Google Scholar] [CrossRef]
- Tsipoura, N.; Burger, J.; Newhouse, M.; Jeitner, C.; Gochfeld, M.; Mizrahi, D. Lead, mercury, cadmium, chromium, and arsenic levels in eggs, feathers, and tissues of Canada geese of the New Jersey Meadowlands. Environ. Res. 2011, 111, 775–784. [Google Scholar] [CrossRef]
- Gautam, R.K.; Sharma, S.K.; Mahiya, S.; Chattopadhyaya, M.C. Contamination of heavy metals in aquatic media: Transport, toxicity and technologies for remediation. In Heavy Metals in Water: Presence, Removal and Safety; Sharma, S., Ed.; The Royal Society of Chemistry: London, UK, 2014; pp. 1–24. [Google Scholar] [CrossRef]
- Pachana, K.; Wattanakornsiri, A.; Nanuam, J. Heavy metal transport and fate in the environmental compartments. NU Int. J. Sci. 2010, 7, 1–11. [Google Scholar]
- Samad, A.; Roy, D.; Hasan, M.M.; Ahmed, K.S.; Sarker, S.; Hossain, M.M.; Shajahan, M. Intake of toxic metals through dietary eggs consumption and its potential health risk assessment on the peoples of the capital city Dhaka, Bangladesh. Arab. J. Chem. 2023, 16, 105104. [Google Scholar] [CrossRef]
- Yousuf, S.; Donald, A.N.; Hassan, A.B.U.M.; Iqbal, A.; Bodlah, M.A.; Sharf, B.; Noshia, N.; Asif, M. A review on particulate matter and heavy metal emissions; impacts on the environment, detection techniques and control strategies. MOJ Ecol. Environ. Sci. 2022, 7, 1–5. [Google Scholar]
- Yahaya, M.I.; Ezeh, G.C.; Musa, Y.F.; Mohammad, S.Y. Analysis of heavy metals concentration in road sidessoil in Yauri, Nigeria. Afr. J. Pure Appl. Chem. 2010, 4, 22–30. [Google Scholar]
- Edokpayi, J.N.; Odiyo, J.O.; Popoola, O.E.; Msagati, T.A. Assessment of trace metals contamination of surface water and sediment: A case study of Mvudi River, South Africa. Sustainability 2016, 8, 135. [Google Scholar] [CrossRef]
- Dehghani, A.; Roohi Aminjan, A.; Dehghani, A. Trophic transfer, bioaccumulation, and health risk assessment of heavy metals in Aras River: Case study—Amphipoda–zander–human. Environ. Sci. Pollut. Res. 2022, 29, 30764–30773. [Google Scholar] [CrossRef] [PubMed]
- El-Metwally, M.E.; Abu El-Regal, M.A.; Abdelkader, A.I.; Sanad, E.F. Heavy metal accumulation in zooplankton and impact of water quality on its community structure. Arab. J. Geosci. 2022, 15, 1–14. [Google Scholar] [CrossRef]
- Ahmed, A.A.H.; Mohammed, E.E.P.; Yahia, D.; Faried, A.S.M. Lead, Cadmium and Copper Levels in Table Eggs. J. Adv. Vet. Res. 2017, 7, 66–70. [Google Scholar]
- Aljohani, A.S.M. Heavy metal toxicity in poultry: A comprehensive review. Front. Vet. Sci. 2023, 10, 1161354. [Google Scholar] [CrossRef]
- Burger, J.; Gochfeld, M.; Jeitner, C.; Burke, S.; Volz, C.D.; Snigaroff, R.; Snigaroff, D.; Shukla, T.; Shukla, S. Mercury and other metals in eggs and feathers of glaucous-winged gulls (Larus glaucescens) in the Aleutians. Environ. Monit. Assess. 2009, 152, 179–194. [Google Scholar] [CrossRef]
- Grúz, A.; Szemerédy, G.; Kormos, É.; Budai, P.; Majoros, S.; Tompai, E.; Lehel, J. Monitoring of heavy metal burden in mute swan (Cygnus olor). Environ. Sci. Pollut. Res. 2015, 22, 15903–15909. [Google Scholar] [CrossRef]
- Giri, S.; Singh, A.K. Heavy metals in eggs and chicken and the associated human health risk assessment in the mining areas of Singhbhum copper belt, India. Arch. Environ. Occup. Health 2017, 74, 161–170. [Google Scholar] [CrossRef]
- Jabeen, S.; Jamil, I.; Parveen, K.; Mansab, S.; Hussain, M.; Hussain, S. Quantification of toxic metals in chicken egg and chicken feed via SOM-artificial neural network. Environ. Monit. Assess. 2024, 196, 197. [Google Scholar] [CrossRef] [PubMed]
- Kabeer, M.S.; Hameed, I.; Kashif, S.-U.-R.; Khan, M.; Tahir, A.; Anum, F.; Khan, S.; Raza, S. Contamination of heavy metals in poultry eggs: A study presenting relation between heavy metals in feed intake and eggs. Arch. Environ. Occup. Health 2020, 3, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Nisianakis, P.; Giannenas, I.; Gavriil, A.; Kontopidis, G.; Kyriazakis, I. Variation in trace element contents among chicken, turkey, duck, goose, and pigeon eggs analyzed by inductively coupled plasma mass spectrometry (ICP-MS). Biol. Trace Elem. Res. 2009, 128, 62–71. [Google Scholar] [CrossRef]
- Burger, J. Heavy metals in avian eggshells: Another excretion method. J. Ecotoxicol. Environ. Health 1994, 41, 207–220. [Google Scholar] [CrossRef]
- Kertész, V.; Bakonyi, G.; Farkas, B. Water pollution by Cu and Pb can adversely affect mallard embryonic development. Ecotoxicol. Environ. Saf. 2006, 65, 67–73. [Google Scholar] [CrossRef]
- Ali, H.; Khan, E. Assessment of potentially toxic heavy metals and health risk in water, sediments, and different fish species of River Kabul, Pakistan. Hum. Ecol. Risk Assess. 2018, 24, 2101–2118. [Google Scholar] [CrossRef]
- Farahani, S.; Eshghi, N.; Abbasi, A.; Karimi, F.; Malekabad, E.S.; Rezaei, M. Determination of heavy metals in albumen of hen eggs from the Markazi Province (Iran) using ICP-OES technique. Toxin. Rev. 2015, 34, 96–100. [Google Scholar] [CrossRef]
- Goran, G.V.; Badea, E.; Buga, M.L.; Crivineanu, V. Cadmium, lead and zinc levels in organic and conventional eggs. AgroLife Sci. J. 2019, 8, 107–112. [Google Scholar]
- Islam, M.S.; Zafar, M.; Ahmed, M. Determination of heavy metals from table poultry eggs in Peshawar-Pakistan. J. Pharmacogn. Phytochem. 2014, 3, 64–67. [Google Scholar]
- Aendo, P.; Netvichian, R.; Tippayalak, S.; Sanguankiat, A.; Khuntamoon, T.; Songserm, T.; Tulayakul, P. Health risk contamination of heavy metals in yolk and albumen of duck eggs collected in central and western Thailand. Biol. Trace Elem. Res. 2018, 184, 501–507. [Google Scholar] [CrossRef]
- Aendo, P.; Netvichian, R.; Viriyarampa, S.; Songserm, T.; Tulayakul, P. Comparison of zinc, lead, cadmium, cobalt, manganese, iron, chromium and copper in duck eggs from three duck farm systems in Central and Western, Thailand. Ecotoxicol. Environ. Saf. 2018, 161, 691–698. [Google Scholar] [CrossRef] [PubMed]
- Aliu, H.; Dizman, S.; Sinani, A.; Hodolli, G. Comparative study of heavy metal concentration in eggs originating from industrial poultry farms and free-range hens in Kosovo. J. Food Qual. 2021, 2021, 6615289. [Google Scholar] [CrossRef]
- Hossain, A.; Ahmed, M.W.; Rabin, M.H.; Kaium, A.; Razzaque, M.A.; Zamil, S.S. Heavy metal quantification in chicken meat and egg: An emerging food safety concern. J. Food Comp. Anal. 2024, 126, 105876. [Google Scholar] [CrossRef]
- Khan, Z.; Sultan, A.; Khan, R.; Khan, S.; Imranullah, F.K.; Farid, K. Concentrations of heavy metals and minerals in poultry eggs and meat produced in Khyber Pakhtunkhwa, Pakistan. Meat Sci. Vet. Public Health 2016, 1, 4–10. [Google Scholar]
- Saad Eldin, W.F.; Raslan, A.A. Residues of some toxic heavy metals and trace elements in chicken eggs. Zagazig Vet. J. 2018, 46, 8–16. [Google Scholar] [CrossRef]
- Voica, C.; Cristea, G.; Iordache, A.M.; Roba, C.; Curean, V. Elemental Profile in Chicken Egg Components and Associated Human Health Risk Assessment. Toxics 2023, 11, 900. [Google Scholar] [CrossRef]
- Cifuentes, J.M.; Becker, P.H.; Sommer, U.; Pacheco, P.; Schlatter, R. Seabird eggs as bioindicators of chemical contamination in Chile. Environ. Pollut. 2003, 126, 123–137. [Google Scholar] [CrossRef]
- Heinz, G.H.; Hoffman, D.J.; Klimstra, J.D.; Stebbins, K.R.; Kondrad, S.L.; Erwin, C.A. Species differences in the sensitivity of avian embryos to methylmercury. Arch. Environ. Contam. Toxicol. 2009, 56, 129–138. [Google Scholar] [CrossRef]
- Trampel, W.D.; Imerman, M.P.; Carson, L.T.; Kinker, A.J.; Ensley, M.S. Lead contamination of chicken eggs and tissues from a small farm flock. J. Vet. Diagn. Investig. 2003, 15, 418–422. [Google Scholar] [CrossRef]
- Budai, P.; Szabó, R.; Lehel, J.; Kormos, E.; Takács, A.; Tatai, A.; Somody, G. Toxicity of chlorothalonil containing formulation and Cu-sulphate to chicken. Commun. Agric. Appl. Biol. Sci. 2012, 77, 449–454. [Google Scholar] [PubMed]
- Budai, P.; Grúz, A.; Várnagy, L.; Kormos, E.; Somlyay, I.M.; Lehel, J.; Szabó, R. Toxicity of Chlorpyriphos containing formulation and heavy metals (Cd, Pb) to chicken embryos. Commun. Agric. Appl. Biol. Sci. 2015, 80, 393–396. [Google Scholar] [PubMed]
- Szabó, R.; Csonka, D.; Major, L.; Lehel, J.; Budai, P. Toxicity test of individual and combined toxic effects of glyphosate herbicide and heavy metals on chicken embryos. Agrofor. Int. J. 2020, 5, 64–71. [Google Scholar] [CrossRef]
- Lehel, J.; Szemerédy, G.; Szabó, R.; Major, L.; Grúz, A.; Budai, P. Reproductive toxicological changes in avian embryos due to a pesticide and an environmental contaminant. Acta Vet. Hung. 2021, 69, 363–371. [Google Scholar] [CrossRef]
- Elinder, C.G. Cadmium as an environmental hazard. In IARC Sci. Publ.; 1992; 118, pp. 123–129. Available online: https://pubmed.ncbi.nlm.nih.gov/1303935/ (accessed on 15 December 2023).
- ATSDR (Agency for Toxic Substances and Disease Registry). Toxicological Profile for Cadmium; Department of Health and Human Services, Public Health Service: Atlanta, GA, USA, 1999. Available online: https://www.atsdr.cdc.gov/toxprofiles/tp5.pdf (accessed on 15 December 2023).
- Pinot, F.; Kreps, S.E.; Bachelet, M.; Hainaut, P.; Bakonyi, M.; Polla, B.S. Cadmium in the environment: Sources, mechanisms of biotoxicity, and biomarkers. Rev. Environ. Health 2000, 15, 299–323. [Google Scholar] [CrossRef] [PubMed]
- Plachy, J. Cadmium. In U.S. Geological Survey Minerals Yearbook: Cadmium; 2002. Available online: http://minerals.usgs.gov/minerals/pubs/commodity/cadmium/cadmmyb02.pdf (accessed on 25 July 2024).
- He, Q.B.; Singh, B.R. Crop uptake of cadmium from phosphorus fertilizers. Water Air Soil Pollut. 1994, 74, 251–265. [Google Scholar] [CrossRef]
- Hansen, L.G.; Hinesly, T.D. Cadmium from soil amended with sewage sludge: Effects and residues in swine. Environ. Health Perspect. 1979, 28, 51–57. [Google Scholar] [CrossRef]
- ATSDR (Agency for Toxic Substances and Disease Registry). Cadmium Toxicity—Case Studies in Environmental Medicine; U.S. Department of Health and Human Services: Atlanta, GA, USA, 2008. Available online: https://www.atsdr.cdc.gov/csem/cadmium/docs/cadmium.pdf (accessed on 15 December 2023).
- Järup, L.; Åkesson, A. Current status of cadmium as an environmental health problem. Toxicol. Appl. Pharmacol. 2009, 238, 201–208. [Google Scholar] [CrossRef]
- Sarkar, A.; Ravindran, G.; Krishnamurthy, V. A brief review on the effect of cadmium toxicity: From cellular to organ level. Int. J. Biotech. Res. 2013, 3, 17–36. [Google Scholar]
- McDowell, L.R. Minerals in Animal and Human Nutrition; Academic Press: New York, NY, USA, 1992; pp. 359–361. [Google Scholar]
- Hughes, M.R.; Smits, J.E.; Elliot, J.E.; Bennett, D.C. Morphological and pathological effects of cadmium ingestion on Peking ducks exposed to saline. J. Toxicol. Environ. Health A 2000, 61, 591–608. [Google Scholar] [CrossRef]
- Leach, R.M., Jr.; Wang, K.W.; Baker, D.E. Cadmium and the food chain: The effect of dietary cadmium on tissue composition in chicks and laying hens. J. Nutr. 1979, 109, 437–443. [Google Scholar] [CrossRef] [PubMed]
- Bokori, J.; Fekete, S. Complex study of the physiological role of cadmium. I. Cadmium and its physiological role. Acta Vet. Hung. 1995, 43, 3–43. [Google Scholar] [PubMed]
- Bokori, J.; Fekete, S.; Kádár, I.; Albert, M. Complex study of the physiological role of cadmium. II. Effect of cadmium load on the cadmium content of eggs. Acta Vet. Hung. 1995, 43, 45–62. [Google Scholar] [PubMed]
- Bokori, J.; Fekete, S.; Glávits, R.; Kadar, I.; Koncz, J.; Kővári, L. Complex study of the physiological role of cadmium. IV. Effects of prolonged dietary exposure of broiler chickens to cadmium. Acta Vet. Hung. 1996, 44, 57–74. [Google Scholar] [PubMed]
- Hennig, A.; Hartmann, G.; Gruhn, K.; Anke, M. Contraceptive action of cadmium in laying hens. Naturwissenschaften 1968, 55, 551. [Google Scholar] [CrossRef] [PubMed]
- Azza El-Sebam, M. Effect of Two Heavy Metals (Cd and Pb) on Some Physiological and Productive Traits of the Domestic Fowl. Ph.D Thesis, Gödöllői Agrártudományi Egyetem, University of Agricultural Science, Gödöllő, Hungary, 1995. [Google Scholar]
- Yang, S.; Zhang, Z.; He, J.; Li, L.; Zhang, J.; Xing, H.; Xu, S. Ovarian Toxicity Induced by Dietary Cadmium in Hen. Biol Trace Elem. Res. 2012, 148, 53–60. [Google Scholar] [CrossRef]
- Swapna, G.; Reddy, A.G. Effect of cadmium on organ biomarkers and evaluation of certain adaptogens in broilers. Toxicol. Int. 2011, 18, 47–49. [Google Scholar] [CrossRef]
- Kar, I.; Patra, A.K. Tissue bioaccumulation and toxicopathological effects of cadmium and its dietary amelioration in poultry—A review. Biol. Trace Elem. Res. 2021, 199, 3846–3868. [Google Scholar] [CrossRef]
- Klein, N.W.; Vogler, M.A.; Chatot, C.L.; Pierro, L.J. The use of cultured rat embryos to evaluate the teratogenic activity of serum: Cadmium and cyclophosphamide. Teratology 1980, 21, 199–208. [Google Scholar] [CrossRef]
- Valverde, M.; Fortoul, T.I.; Diaz-Barriga, F.; Meija, J.; Rojas Del Castillo, E. Induction of genotixicity by cadmium chloride inhalation in several organs of CD-1 mice. Mutagenesis 2000, 15, 109–114. [Google Scholar] [CrossRef]
- Potts, C.L. Cadmium proteinuria—The health of battery workers exposed to cadmium oxide. Ann. Occup. Hyg. 1965, 8, 55–61. [Google Scholar] [CrossRef] [PubMed]
- Humperdinck, K. Cadmium and lung cancer. Med. Klin. 1968, 63, 948–951. (In German) [Google Scholar] [PubMed]
- NAS (National Academy of Sciences). Mineral Tolerance of Domestic Animals; National Academy of Sciences: Washington, DC, USA, 1986; pp. 6–11. [Google Scholar] [CrossRef]
- Strikauska, S.; Ozola, V.; Berzins, A.; Letvietis, J. Lead and cadmium as a nutritional hazard to farm livestock. In Mengen- und Spurenelementen, 15. Arbeitstagung; Friedrich Schiller Universität: Jena, Germany, 1995; pp. 295–297. ISBN 39292526344. [Google Scholar]
- Pál, K. Cadmium in the environment. In Környezetvédelmi Füzetek; Országos Műszaki Információs Központ és Könyvtár: Budapest, Hungary, 2003; pp. 2–6. (In Hungarian) [Google Scholar]
- Templeton, D.M.; Liu, Y. Multiple roles of cadmium in cell death and survival. Chem. Biol. Interact. 2010, 188, 267–275. [Google Scholar] [CrossRef]
- Marettová, E.; Maretta, M.; Legáth, J. Toxic effects of cadmium on testis of birds and mammals: A review. Anim. Reprod. Sci. 2015, 155, 1–10. [Google Scholar] [CrossRef]
- Criteria of essenciality, beneficiality and toxicity. What is too little and too much. In Cycling of Nutritive Elements in Geo- and Biosphere; Pais, I. (Ed.) IGBP: Budapest, Hungary, 1991; pp. 59–77. [Google Scholar]
- Növényorvosi (Permetezési) Tanácsok; Seprős, I. (Ed.) Szaktudás Kiadó: Budapest, Hungary, 2002; p. 248. (In Hungarian) [Google Scholar]
- Adriano, D.C. Trace Elements in the Terrestrial Environment; Springer-Verlag: New York, NY, USA; Berlin/Heidelberg, Germany; Tokyo, Japan, 1986; p. 533. [Google Scholar] [CrossRef]
- Szabó, S.A.; Regiusné, M.Á.; Győri, D.; Szentmihályi, S. Mikroelemek a mezőgazdaságban. Esszenciális mikroelemek; Mezőgazdasági Kiadó: Budapest, Hungary, 1987; pp. 110–131. (In Hungarian) [Google Scholar]
- Machovich, R. Az aminosavak anyagcseréje. Porfirin-anyagcsere. In Orvosi biokémia; Ádám, V., Ed.; Medicina Könyvkiadó: Budapest, Hungary, 2001; pp. 220–268. (In Hungarian) [Google Scholar]
- Mandl, J. Bioenergetika. Energiatermelés és raktározás az anyagcsere során. In Orvosi biokémia; Ádám, V., Ed.; Medicina Könyvkiadó: Budapest, Hungary, 2001; pp. 55–91. (In Hungarian) [Google Scholar]
- Cinar, M.; Yildirim, E.; Yigit, A.; Yalcinkaya, I.; Duru, O.; Kisa, U.; Atmaca, N. Effects of Dietary Supplementation with Vitamin C and Vitamin E and Their Combination on Growth Performance, Some Biochemical Parameters, and Oxidative Stress Induced by Copper Toxicity in Broilers. Biol. Trace Elem. Res. 2014, 158, 186–196. [Google Scholar] [CrossRef]
- Gaetke, L.M.; Chow, C.K. Copper toxicity, oxidative stress, and antioxidant nutrients. Toxicology 2003, 189, 147–163. [Google Scholar] [CrossRef]
- Pereira, T.C.; Campos, M.M.; Bogo, M.R. Copper toxicology, oxidative stress and inflammation using zebrafish as experimental model. J. Appl. Toxicol. 2016, 36, 876–885. [Google Scholar] [CrossRef]
- Jackson, N.; Stevenson, M.H.; Kirkpatrick, G.M. Effects of the protracted feeding of copper sulfate-supplemented diets to laying, domestic fowl on egg production and on specific tissues, with special reference to mineral content. Br. J. Nutr. 1979, 42, 253–266. [Google Scholar] [CrossRef]
- Jackson, N.; Stevenson, M.H. A study of the effects of dietary added cupric oxide on the laying, domestic fowl and a comparison with the effects of hydrated copper sulfate. Br. J. Nutr. 1981, 45, 99–110. [Google Scholar] [CrossRef]
- Baumgartner, S.; Brown, D.J.; Salevsky, E.; Leach, R.M. Copper deficiency in the laying hen. J. Nutr. 1978, 108, 804–811. [Google Scholar] [CrossRef]
- Berwanger, E.; Vieira, S.L.; Angel, C.R.; Kindlein, L.; Mayer, A.N.; Ebbing, M.A.; Lopes, M. Cu requirements of broiler breeder hens. Poult. Sci. 2018, 97, 2785–2797. [Google Scholar] [CrossRef] [PubMed]
- Hill, G.M.; Shannon, M.C. Copper and Zinc Nutritional Issues for Agricultural Animal Production. Biol. Trace Elem. Res. 2019, 188, 148–159. [Google Scholar] [CrossRef] [PubMed]
- Bhunya, S.P.; Jena, G.B. Clastogenic effects of copper sulphate in chick in vivo test system. Mutat. Res. 1996, 367, 57–63. [Google Scholar] [CrossRef] [PubMed]
- IPCS (International Programme on Chemical Safety). Environmental Health Criteria 85: Lead, Environmental Aspects; World Health Organization: Geneva, Switzerland, 1989; Available online: https://iris.who.int/bitstream/handle/10665/40020/9241542853-eng.pdf?sequence=1 (accessed on 15 December 2023).
- De Francisco, N.; Ruiz Troya, J.D.; Agüera, E.I. Lead and lead toxicity in domestic and free living birds. Avian Pathol. 2003, 32, 3–13. [Google Scholar] [CrossRef]
- Ilesanmi, O.B.; Adeogun, E.F.; Odewale, T.T.; Chikere, B. Lead exposure-induced changes in hematology and biomarkers of hepatic injury: Protective role of TrévoTM supplement. Environ. Anal. Health Toxicol. 2022, 37, e2022007-0. [Google Scholar] [CrossRef]
- Green, R.E.; Pain, D.J.; Krone, O. The impact of lead poisoning from ammunition sources on raptor populations in Europe. Sci. Total Environ. 2022, 823, 154017. [Google Scholar] [CrossRef]
- Bakalli, R.I.; Pesti, G.M.; Ragland, W.L. The magnitude of lead toxicity in broiler chickens. Vet. Hum. Toxicol. 1995, 37, 15–19. [Google Scholar] [PubMed]
- Edens, F.W.; Garlich, J.D. Lead-induced egg production decrease in leghorn and Japanese quail hens. Poult. Sci. 1983, 62, 1757–1763. [Google Scholar] [CrossRef]
- Dalldorf, G.; Williams, R.R. Impairment of reproduction is rats by ingestion of lead. Science 1945, 102, 668–670. [Google Scholar] [CrossRef]
- Puhae, J.; Hrgovic, C.N.; Stankovic, M.; Popovic, S. Laboratory investigations of the possibility of application of lead nitrates compounds as a raticide means decreasing reproductive capability of rats. Acta. Vet. (Beograd) 1963, 13, 3–9. [Google Scholar]
- Veit, H.P.; Kendall, R.J.; Scanlon, P.F. The effect of lead shot ingestion on the testes of adult ringed turtle doves (Streptopelia risoria). Avian Dis. 1983, 27, 442–452. [Google Scholar] [CrossRef]
- Vallverdú-Coll, N.; Mougeot, F.; Ortiz-Santaliestra, M.E.; Castaño, C.; Santiago-Moreno, J.; Mateo, R. Effects of Lead Exposure on Sperm Quality and Reproductive Success in an Avian Model. Environ. Sci. Technol. 2016, 50, 12484–12492. [Google Scholar] [CrossRef] [PubMed]
- Kertész, V.; Fáncsi, T. Adverse effects of (surface water pollutants) Cd, Cr and Pb on the embryogenesis of the mallard. Aqua. Toxicol. 2003, 65, 425–433. [Google Scholar] [CrossRef]
- WHO TRS-922 (World Health Organisation Technical Report Series, 922). Evaluation of Certain Food Additives and Contaminants. Sixty-First Report of the Joint FAO/WHO Expert Committee on Food Additives, Rome, Italy. 2003. Available online: https://www.who.int/publications/i/item/9241209224 (accessed on 15 December 2023).
- Bressler, J.P.; Goldstein, G.W. Mechanism of lead neurotoxicity. Biochem. Pharmacol. 1991, 41, 479–484. [Google Scholar] [CrossRef]
- Goering, P.L. Lead-protein interactions as a basis for lead toxicity. Neurotoxicology 1993, 14, 45–60. [Google Scholar]
- Goldstein, G.W. Evidence that lead acts as a calcium substitute in second messenger metabolism. Neurotoxicology 1993, 14, 97–102. [Google Scholar] [PubMed]
- Hsu, P.C.; Guo, Y.L. Antioxidant nutrients and lead toxicity. Toxicology 2002, 180, 33–44. [Google Scholar] [CrossRef]
- Dowdy, R.P. Copper Metabolism. Am. J. Clin. Nutr. 1969, 2, 887–892. [Google Scholar] [CrossRef]
- Prasad, A.S.; Oberlesa, D.; Rajasekran, G. Essential Micronutrient Elements. Biochemistry and Changes in Liver Disorders. Am. J. Clin. Nutr. 1970, 23, 581–591. [Google Scholar] [CrossRef]
- Peterson, M.E.; Talcott, P.A. Small ANIMAL Toxicology; W. B. Saunders Company: Philadelphia, PA, USA, 2001; pp. 469–473. [Google Scholar]
- Sályi, G.; Bánhidi, G. A juh idült rézmérgezése. Irodalmi összefoglaló. Magyar Állatorvosok Lapja 1989, 44, 73–78. (In Hungarian) [Google Scholar]
- Mérgezések és első orvosi ellátásuk. In Toxikológiai Vademecum; Balla, L. (Ed.) Melania Kiadó: Budapest, Hungary, 1999; p. 138. (In Hungarian) [Google Scholar]
- Murphy, M.J. A Field Guide to Common Animal Poisons; Iowa State University Press: Ames, IA, USA, 1996; p. 66. [Google Scholar]
- Laczay, P. Toxikológia az Alkalmazott Zoológus Szak Hallgatói Számára. Egyetemi Jegyzet; Állatorvos-tudományi Egyetem: Budapest, Hungary, 1999; pp. 84–86. (In Hungarian) [Google Scholar]
- Bolognesi, C.; Landini, E.; Roggieri, P.; Fabbri, R.; Viarengo, A. Genotoxicity biomarkers in the assessment of heavy metal effects in mussels: Experimental studies. Environ. Mol. Mutagen. 1999, 33, 287–292. [Google Scholar] [CrossRef]
- Guecheva, T.; Henriques, J.A.P.; Erdtmann, B. Genotoxic effects of copper sulphate in freshwater planarian in vivo, studied with the single-cell gel test (comet assay). Mutat. Res. /Genet. Toxicol. Environ. Mutagen. 2001, 497, 19–27. [Google Scholar] [CrossRef] [PubMed]
- Hallenbeck, W.M.; Cunningham-Burns, K.M. Pesticides and Human Health; Springer-Verlag: New York, NY, USA, 1985; pp. 40–41. [Google Scholar]
- Georgopoulos, P.G.; Roy, A.; Yonone-Lioy, M.J.; Opiekun, R.E.; Lioy, P.J. Copper: Environmental Dynamics and Human Exposure Issues. Prepared for: The International Copper Association; Nu Horizon Enterprises Inc.: Cranford, NJ, USA, 2001; pp. 44–45. [Google Scholar] [CrossRef]
- Fejes, S.; Budai, P.; Várnagy, L.; Palkovics, A. Embryotoxicity study of a dimethoate containing insecticide formulation and heavy elements (Cu, Cd) in chicken embryos after administration as single compounds or in combination. In Proceedings of the SECOTOX World Congress and the Sixth European Conference on Ecotoxicology and Environmental Safety, Kraków, Poland, 20–24 August 2001; p. 113. [Google Scholar]
- Hoffman, D.J.; Eastin, W.C. Effects of industrial effluents, heavy metals, and inorganic solvents on mallard embryo development. Toxicol. Lett. 1981, 9, 35–40. [Google Scholar] [CrossRef] [PubMed]
- Spahn, S.A.; Sherry, T.W. Cadmium and lead exposure associated with reduced growth rates, poorer fledging success of little blue heron chicks (Egretta caerulea) in south Louisiana wetlands. Arch. Environ. Contam. Toxicol. 1999, 37, 377–384. [Google Scholar] [CrossRef] [PubMed]
- Savage, T.F.; Mirosh, L.W.; Jones, J.L.; Schneiderman, E.T. Blastoderm degeneration, an early embryonic failure in dwarf Comb White Leghorn chickens. J. Hered. 1992, 83, 249–254. [Google Scholar] [CrossRef]
- Batt, B.D.J.; Cooper, J.A.; Cornwell, G.W. The occurrence of twin waterfowl embryos. Condor 1975, 77, 214. [Google Scholar]
- Pettit, T.N.; Whittow, G. Embryonic double monster in the wedge-tailed shearwater. Condor 1981, 83, 91. [Google Scholar] [CrossRef]
- Ebako, G.M.; Morishita, T.Y.; Mattoon, J.S. Four-Legged broiler chicken with two cloacae and three ceca. Avian Dis. 2002, 46, 234–238. [Google Scholar] [CrossRef]
- Mazzullo, G.; Montalbano, G.; Augello, A.; Germana, A.; Macri, B. A case of conjoined cephalopagus twinning in an ostrich (Struthio camelus). Anat. Histol. Embryol. 2007, 36, 263–265. [Google Scholar] [CrossRef]
- Pourlis, A.F. Developmental malformations in avian species. Manifestitations of unknown or genetic etiology—A rewiev. Asian J. Anim. Vet. Adv. 2011, 6, 401–415. [Google Scholar] [CrossRef]
- Riddell, C. Pathology of developmental and metabolic disorders of the skeleton of domestic chickens and turkeys. I. Abnormalities of genetic or unknown aetiology. Vet. Bull. 1975, 45, 629–640. [Google Scholar]
- Pomeroy, D.E. Birds with abnormal bills. Br. Birds 1962, 55, 49–72. [Google Scholar]
- Mierzykowski, S.E.; Todd, C.S. Environmental Contaminants in a Crossed Bill Bald Eagle Recovered in Maine; U.S, Fish an Wildlife Sservice. Spec. Proj. Rep. FY12-MEFO-3-EC; Maine Field Office: Orono, ME, USA, 2012; p. 28. Available online: https://ecos.fws.gov/ServCat/DownloadFile/33259 (accessed on 25 July 2024).
- Golubev, S.V. Aberrant and deformed Antarctic penguins and unusual eggs. Notornis 2020, 67, 459–468. [Google Scholar]
- Zylberberg, M.; Van Hemert, C.; Dumbacher, J.P.; Handel, C.M.; Tihan, T.; DeRisi, J.L. Novel picornavirus associated with avian keratin disorder in Alaskan birds. MBio 2016, 7, e00874-16. [Google Scholar] [CrossRef]
- Van Hemert, C.; Armién, A.G.; Blake, J.E.; Handel, C.M.; O’Hara, T.M. Macroscopic, histologic, and ultrastructural lesions associated with avian keratin disorder in black-capped chickadees (Poecile atricapillus). Vet. Pathol. 2013, 50, 500–513. [Google Scholar] [CrossRef]
- Handel, C.M.; Pajot, L.M.; Matsuoka, S.M.; Hemert, C.V.; Terenzi, J.; Talbot, S.L.; Mulcahy, D.M.; Meteyer, C.U.; Trust, K.A. Epizootic of beak deformities among wild birds in Alaska: An emerging disease in North America? Auk 2010, 127, 882–898. [Google Scholar] [CrossRef]
- Van Hemert, C.; Handel, C.M. Beak deformities in northwestern crows: Evidence of a multispecies epizootic. Auk 2010, 127, 746–751. [Google Scholar] [CrossRef]
- Rogers, D.T.; Dauber, M. Instances of disease and abnormalities in American Kestrels. J. Bird Band. 1977, 48, 73. [Google Scholar] [CrossRef]
- Cooper, J.E. Developmental abnormalities in two British falcons (Falco spp.). Avian Pathol. 1984, 13, 639–645. [Google Scholar] [CrossRef]
- Barreiro, A.; Fdez de Trocóniz, P.; Vila, M.; Lopez-Beceiro, A.M.; Pereira, J.L. Congenital skeletal abnormalities in a Tawny owl chick. Avian Dis. 2003, 47, 774–776. [Google Scholar] [CrossRef]
- Raidal, S.R.; Shearer, P.L.; Cannell, B.L.; Norman, R.J.B. Micromelia in little penguins (Eudyptula minor). J. Avian Med. Surg. 2006, 20, 258–262. [Google Scholar] [CrossRef]
- Gill, K.D.; Pal, R.; Nath, R. Effect of cadmium on lipid peroxidation and antioxidant enzymes in undernourished weanling rat brain. Pharmacol. Toxicol. 1989, 65, 73–77. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Maki, D.; Stapleton, S.R. Mediation of cadmium-induced oxidative damage and glucose-6-phosphate dehydrogenase expression through glutathione depletion. J. Biochem. Mol. Toxicol. 2003, 17, 67–75. [Google Scholar] [CrossRef] [PubMed]
- Jeng, S.L.; Yang, C.P. Determination of lead, cadmium, mercury and copper concentrations in duck eggs in Taiwan. Poult. Sci. 1995, 74, 187–193. [Google Scholar] [CrossRef]
- Lambert, M.; Leven, B.A.; Green, R.M. New Methods of Cleaning Up Heavy Metal in Soils and Water; Environmental Science and Technology Briefs for Citizens; Kansas State University: Manhattan, KS, USA, 2000; Available online: https://engg.k-state.edu/chsr/outreach/resources/docs/metals.pdf (accessed on 15 December 2023).
- Nagajyoti, P.C.; Lee, K.D.; Sreekanth, T.V.M. Heavy metals, occurrence and toxicity for plants: A review. Environ. Chem. Lett. 2010, 8, 199–216. [Google Scholar] [CrossRef]
- Morais, S.; Costa, F.G.; Pereira, M.L. Heavy metals and human health. In Environmental Health—Emerging Issues and Practice; Oosthuizen, J., Ed.; IntechOpen Book: London, UK, 2012; pp. 227–246. [Google Scholar] [CrossRef]
- Jaishankar, M.; Mathew, B.B.; Shah, M.S.; Gowda, K.R.S. Biosorption of Few Heavy Metal Ions Using Agricultural Wastes. J. Environ. Pollut. Hum. Health 2014, 2, 1–6. [Google Scholar] [CrossRef]
- Mosby, C.V.; Glanze, W.D.; Anderson, K.N. Mosby Medical Encyclopedia, The Signet: Revised Edition; C.V. Mosby Company: New York, NY, USA, 1996; ISBN 10. [Google Scholar]
- Ferner, D.J. Toxicity, heavy metals. eMed J. 2001, 2, 1. [Google Scholar]
- Järup, L. Hazards of heavy metal contamination. Br. Med. Bull. 2003, 68, 167–182. [Google Scholar] [CrossRef]
- Fejes, S. Egyes Nehézfémek és Növényvédő Szerek Egyedi és Együttes Méreghatásának Vizsgálata Madár Teratológiai Tesztben. Ph.D. Thesis, Veszprémi Egyetem, Keszthely, Hungary, 2005; pp. 39–42. (In Hungarian). [Google Scholar]
- Garattini, S.; Shore, P.A. Advances in Pharmacology; Academic Press: New York, NY, USA; London, UK, 1966; Volume 4, p. 279. Available online: https://shop.elsevier.com/books/advances-in-pharmacology/garattini/978-0-12-032904-5 (accessed on 15 December 2023).
- Németh, Á.; Hlubik, I.; Kertész, V.; Palkovics, A.; Varga, T.; Várnagy, L.; Vu, K.C. Die Auswirkung von flüssigem N-Mineraldünger auf die Vermehrung am Boden nistender Vögel. Z. Fuer Jagdwiss. 1999, 45, 35–44. [Google Scholar] [CrossRef]
- Strange, J.R.; Allred, P.M.; Kerr, W.E. Teratogenic and toxicological effects of 2,4,5-trichlorophenoxyacetic acid in developing chick embryos. Bull. Environ. Contam. Toxicol. 1976, 75, 682–688. [Google Scholar] [CrossRef]
- Lutz, H. Pesticides et reproduction chez les homeothermes. Bull. Soc. Zool. Fr. 1974, 1, 49–50. [Google Scholar]
- Meiniel, R. Teratogenesis of axial abnormalities induced by an organic phosphorus insecticide (parathion) in the Bird embryo. Wilhelm Roux’s Arch. 1977, 181, 41–63. [Google Scholar] [CrossRef]
- Várnagy, L.; Imre, L.; Fáncsi, I.; Hadházi, Á. Paration és metil-paration hatóanyagú készítmények teratogén hatásának vizsgálata madármagzatokon, különös figyelemmel a csontvázrendszerre. Magyar Állatorvosok Lapja 1982, 37, 389. (In Hungarian) [Google Scholar]
- Proctor, N.H.; Moscioni, A.D.; Casida, J.E. Chicken embryo NAD levels lowered by teratogenic organophosphorus and methylcarbamate insecticides. Biochem. Pharmacol. 1976, 25, 757–762. [Google Scholar] [CrossRef] [PubMed]
- Wilson, J.G. Survey of in vitro systems: Their potential use in teratogenicity screening. In Handbook of Teratology; Wilson, J.G., Fraser, F.C., Eds.; Plenum Press: New York, NY, USA; London, UK, 1978; pp. 147–153. Available online: https://www.proquest.com/scholarly-journals/handbook-teratology/docview/1866023341/se-2 (accessed on 15 December 2023).
- Khera, K.S. Toxic and teratogenic effects of insecticides in duck and chick embryos. Toxicol. Appl. Pharmacol. 1966, 8, 345–348. [Google Scholar]
- Yamada, A. Teratogenic effect of organophosphorus insecticides in the chick embryo. Rep. Osaka City Inst. Hyg. 1968, 30, 121. [Google Scholar]
- Hoffman, D.J.; Albers, P.H. Evaluation of potential embryotoxicity and teratogenicity of 42 herbicides, insecticides, and petroleum contaminants to mallard eggs. Arch. Environ. Contam. Toxicol. 1984, 73, 15–27. [Google Scholar] [CrossRef]
- Wilson, J.G.; Warkany, J. Teratology. Principles and Techniques; University of Chicago Press: Chicago, IL, USA; London, UK, 1965; pp. 194–213. [Google Scholar]
- Hoffman, D.J. Embryotoxicity and teratogenicity of environmental contaminants to bird eggs. Rev. Environ. Contam. Toxicol. 1990, 115, 39–89. [Google Scholar] [CrossRef]
- Lutz, H.; Oterag, Y. Pesticides teratogenese et surric chez les oiseaux. Arch. Anat. Histol. Embryol. 1973, 56, 65–68. [Google Scholar]
- Marilac, J.P.; Verret, M.L. Injections of chemicals into chicken eggs a toxicology test. Fed. Proc. 1963, 21, 450. [Google Scholar]
- Meiniel, R. L’action tératogéne d’un insecticide organophosphore (le-paration) chez l’embryon d’oisseau. Arch. Anat. Histol. Embryol. Norm. Exp. 1973, 56, 233–234. [Google Scholar]
- Várnagy, L. Paration és Metil-Paration Hatóanyagú Inszekticidek Teratogén Hatásának Vizsgálata Csirke-, fürj-, és Fácánmagzatokon; Kandidátusi Értekezés: Keszthely, Hungary, 1981. (In Hungarian) [Google Scholar]
- Hamburger, V.; Hamilton, H.L. A series of normal stages in the development of the chick embryo. J. Morphol. 1951, 88, 49–92. [Google Scholar] [CrossRef] [PubMed]
- Dawson, A.B. A note on the staining of the skeleton of cleared specimens with alizarin red-S. Stain. Tech. 1926, 1, 123–124. [Google Scholar] [CrossRef]
- Krutsay, M. Histological Technique; Medicina Könyvkiadó: Budapest, Hungary, 1980; pp. 17–61. (In Hungarian) [Google Scholar]
- Vetési, F. Veterinary Histopathology; Mezőgazda Kiadó: Budapest, Hungary, 2002; pp. 7–16. (In Hungarian) [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2021; Available online: https://www.r-project.org/ (accessed on 25 July 2024).
- Baráth, C.; Ittzés, A.; Ugrósdy, G. Biometria; Mezőgazda Kiadó: Budapest, Hungary, 1996; pp. 37–217. (In Hungarian) [Google Scholar]
- Reiczigel, J.; Harnos, A.; Solymosi, N. Biostatisztika Nem Statisztikusoknak. 3. Kiadás. 2021. Pars Kft., Nagykovácsi, Hungary. 2021. Available online: https://e-akademia.hu/html/zold12/ (accessed on 25 July 2024). (In Hungarian).
- Várnagy, L. Vörösvérsejt és hematokrit értékek meghatározása fürj, csirke és fácán magzatokból. Magyar Állatorvosok Lapja 1981, 36, 112–113. (In Hungarian) [Google Scholar]
- Kertész, V.; Hlubik, I. Plasma ALP activity and blood PCV value changes in chick fetuses due to exposure of the egg to different xenobiotics. Environ. Pollut. 2002, 117, 323–327. [Google Scholar] [CrossRef]
Group | No. of Eggs | |||
---|---|---|---|---|
Early Stage | Late Stage (Day 19) | |||
Day 2 | Day 3 | Macroscopic Processing, Histopathology | Skeleton Staining | |
Control | 5 | 5 | 50 | 20 |
Copper sulfate | 5 | 5 | 50 | 20 |
Cadmium sulfate | 5 | 5 | 50 | 20 |
Lead acetate | 5 | 5 | 50 | 20 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szabó, R.; Budai, P.; Juhász, É.; Major, L.; Lehel, J. Potential Teratogenicity Effects of Metals on Avian Embryos. Int. J. Mol. Sci. 2024, 25, 10662. https://doi.org/10.3390/ijms251910662
Szabó R, Budai P, Juhász É, Major L, Lehel J. Potential Teratogenicity Effects of Metals on Avian Embryos. International Journal of Molecular Sciences. 2024; 25(19):10662. https://doi.org/10.3390/ijms251910662
Chicago/Turabian StyleSzabó, Rita, Péter Budai, Éva Juhász, László Major, and József Lehel. 2024. "Potential Teratogenicity Effects of Metals on Avian Embryos" International Journal of Molecular Sciences 25, no. 19: 10662. https://doi.org/10.3390/ijms251910662
APA StyleSzabó, R., Budai, P., Juhász, É., Major, L., & Lehel, J. (2024). Potential Teratogenicity Effects of Metals on Avian Embryos. International Journal of Molecular Sciences, 25(19), 10662. https://doi.org/10.3390/ijms251910662