A Prospective Study on Risk Prediction of Preeclampsia Using Bi-Platform Calibration and Machine Learning
Abstract
:1. Introduction
1.1. Aim of This Study
1.2. Literature Review
1.3. Contributions of This Work
- (1)
- A novel missing data imputation method is proposed where multiple strategies are adopted for adapting training data and test data, and independent features and dependent feature pairs. Additionally, a novel PlGF calibration model is established from the excessively small calibration data in this study by training multilayer perceptrons (MLPs) and selecting the one with the median performance for reliably calibrating PlGFs measured by SiMoA and the Elecsys platform.
- (2)
- Typical machine learning algorithms such as MLP, Support Vector Machine (SVM), RF, XGBoost, and AdaBoost (with output thresholding for addressing the data imbalance problem) are compared for the best-performing model for PE risk prediction. The result shows that the RF model is the best model.
- (3)
- RF models trained on various datasets, such as mono-platform vs. bi-platform data, early pregnancy vs. early plus non-early pregnancy data, and real vs. real plus augmented data, are compared. The results show that the two mono-platform datasets combined can improve PE risk prediction performance, while the non-early pregnancy data can enhance the limited early pregnancy data for better early prediction performance. Additionally, using SMOTE-based data augmentation for model training can lead to virtually high but not stable performance.
2. Results
2.1. Selecting Prediction Model
2.2. PE Risk Prediction with Mono-Platform or Bi-Platform Data
2.3. Results on Test Set
2.4. Early PE Risk Prediction
2.5. Feature Importance Ranking
3. Discussion
3.1. Data Augmentation Using SMOTE-Based Algorithms
3.2. Virtually High-Performance Phenomenon
4. Material and Methods
4.1. Quality Participant Selection
4.2. Framework of Using Machine Learning Approaches
4.3. Feature Encoding
4.4. Missing Data Imputation
4.5. PlGF Calibration
4.6. PE Risk Prediction
5. Conclusions
- (1)
- Missing data: This approach, akin to all other machine learning methodologies, employs certain criteria to impute missing data. However, the imputed data may not be, and generally are not, the true values, which has an impact on subsequent studies. Exploring machine learning methods suitable for datasets with missing data directly, rather than relying on the imputation of missing data, is of great significance to ensure that subsequent studies are not skewed.
- (2)
- Small samples and sample imbalance: The number of PlGF calibration samples is only 24, and the other datasets in this study are also small in size. The consequence of small samples may lead to an unreliable model for PlGF calibration, PE risk prediction, and early prediction. In addition, the datasets are seriously imbalanced between cases and controls. In this approach, we adopted a simple output thresholding approach; however, determining the threshold is not trivial.
- (3)
- Intrinsic feature discovery: The RF model has been found to perform the best among other models in PE risk prediction. It utilizes all the currently available features in this research, but some of these features may be highly correlated and more important for the prediction. For instance, among the top five features ranked by importance, MAP, diastolic blood pressure, and systolic blood pressure are related to blood pressure and are believed to be interrelated, implying that the RF approach cannot provide the intrinsic features of the problem nor utilize them for risk prediction. This indicates the existence of a better model than the RF model. Only the model trained using the intrinsic features of the problem can achieve the best performance.
- (4)
- Reliable model construction: This research utilizes multiple rounds of 10-fold cross-validation. This method is solely used for evaluation purposes. Compared to a single instance of 10-fold cross-validation, it can assess model performance more accurately and reliably. However, it is not a means to enhance model performance. How to train the model from a limited dataset to achieve highly reliable, stable, and high performance remains a challenge to the machine learning community.
- (5)
- Omics data utilization: This approach utilizes only a limited biomarker of PE, the PlGF. However, PE is a complex pregnancy disorder with phenotypes characterized by clinical signs and symptoms that may have genetic underpinnings. It requires the use of omics data along with the symptoms for risk prediction, especially early risk prediction. PE has a genetic predisposition, yet it is not a traditional single-gene inherited disease, indicating that genetic factors, along with environmental and lifestyle factors, play a role in pathogenesis.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Anderson, U.; Olsson, M.; Kristensen, K.; Åkerström, B.; Hansson, S. Review: Biochemical markers to predict preeclampsia. Placenta 2012, 33, S42–S47. [Google Scholar] [CrossRef]
- Woldu, B.; Shah, L.M.; Shaddeau, A.K.; Goerlich, E.; Zakaria, S.; Hays, A.G.; Vaught, A.J.; Creanga, A.A.; Blumenthal, R.S.; Sharma, G. The Role of Biomarkers and Imaging to Predict Preeclampsia and Subsequent Cardiovascular Dysfunction. Curr. Treat. Options Cardiovasc. Med. 2021, 23, 42. [Google Scholar] [CrossRef]
- Huhn, E.A.; Hoffmann, I.; De Tejada, B.M.; Lange, S.; Sage, K.M.; Roberts, C.T.; Gravett, M.G.; Nagalla, S.R.; Lapaire, O. Maternal serum glycosylated fibronectin as a short-term predictor of preeclampsia: A prospective cohort study. BMC Pregnancy Childbirth 2020, 20, 128. [Google Scholar] [CrossRef] [PubMed]
- Aouache, R.; Biquard, L.; Vaiman, D.; Miralles, F. Oxidative Stress in Preeclampsia and Placental Diseases. Int. J. Mol. Sci. 2018, 19, 1496. [Google Scholar] [CrossRef] [PubMed]
- Agrawal, S.; Shinar, S.; Cerdeira, A.S.; Redman, C.; Vatish, M. Predictive performance of PlGF (placental growth factor) for screening preeclampsia in asymptomatic women: A systematic review and meta-analysis. Hypertension 2019, 74, 1124–1135. [Google Scholar] [CrossRef] [PubMed]
- Ohkuchi, A.; Saito, S.; Yamamoto, T.; Minakami, H.; Masuyama, H.; Kumasawa, K.; Yoshimatsu, J.; Nagamatsu, T.; Dietl, A.; Grill, S.; et al. Short-term prediction of preeclampsia using the sFlt-1/PlGF ratio: A subanalysis of pregnant Japanese women from the PROGNOSIS Asia study. Hypertens. Res. 2021, 44, 813–821. [Google Scholar] [CrossRef] [PubMed]
- McLaughlin, K.; Snelgrove, J.W.; Audette, M.C.; Syed, A.; Hobson, S.R.; Windrim, R.C.; Melamed, N.; Carmona, S.; Kingdom, J.C. PlGF (Placental Growth Factor) Testing in Clinical Practice: Evidence from a Canadian Tertiary Maternity Referral Center. Hypertension 2021, 77, 2057–2065. [Google Scholar] [CrossRef]
- Poon, L.C.; Shennan, A.; Hyett, J.A.; Kapur, A.; Hadar, E.; Divakar, H.; McAuliffe, F.; da Silva Costa, F.; von Dadelszen, P.; McIntyre, H.D.; et al. The International Federation of Gynecology and Obstetrics (FIGO) initiative on pre-eclampsia: A pragmatic guide for first-trimester screening and prevention. Int. J. Gynecol. Obstet. 2019, 145 (Suppl. S1), 1–27. [Google Scholar] [CrossRef] [PubMed]
- Chaemsaithong, P.; Pooh, R.K.; Zheng, M.; Ma, R.; Chaiyasit, N.; Tokunaka, M.; Shaw, S.W.; Seshadri, S.; Choolani, M.; Wataganara, T.; et al. Prospective evaluation of screening performance of first-trimester prediction models for preterm preeclampsia in an Asian population. Am. J. Obstet. Gynecol. 2019, 221, 650.e1–650.e16. [Google Scholar] [CrossRef]
- Rissin, D.M.; Kan, C.W.; Campbell, T.G.; Howes, S.C.; Fournier, D.R.; Song, L.; Piech, T.; Patel, P.P.; Chang, L.; Rivnak, A.J.; et al. Single-molecule enzyme-linked immunosorbent assay detects serum proteins at subfemtomolar concentrations. Nat. Biotechnol. 2010, 28, 595–599. [Google Scholar] [CrossRef] [PubMed]
- Wanriko, S.; Hnoohom, N.; Wongpatikaseree, K.; Jitpattanakul, A.; Musigavong, O. Risk Assessment of Pregnancy-induced Hypertension Using a Machine Learning Approach. In Proceedings of the 2021 Joint International Conference on Digital Arts, Media and Technology with ECTI Northern Section Conference on Electrical, Electronics, Computer and Telecommunication Engineering, Online, 3–6 March 2021; pp. 233–237. [Google Scholar]
- Chawla, N.V.; Bowyer, K.W.; Hall, L.O.; Kegelmeyer, W.P. SMOTE: Synthetic minority over-sampling technique. J. Artif. Intell. Res. 2002, 16, 321–357. [Google Scholar] [CrossRef]
- Marić, I.; Tsur, A.; Aghaeepour, N.; Montanari, A.; Stevenson, D.K.; Shaw, G.M.; Winn, V.D. Early prediction of preeclampsia via machine learning. Am. J. Obstet. Gynecol. MFM 2020, 2, 100100. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Wang, Z.; Vieira, L.A.; Zheutlin, A.B.; Ru, B.; Schadt, E.; Wang, P.; Copperman, A.B.; Stone, J.; Gross, S.J.; et al. Improving Pre-eclampsia Risk Prediction by Modeling Individualized Pregnancy Trajectories Derived from Routinely Collected Electronic Medical Record Data. medRxiv 2021, 21254178. [Google Scholar]
- Sufriyana, H.; Wu, Y.-W.; Su, E.C.-Y. Prediction of Preeclampsia and Intrauterine Growth Restriction: Development of Machine Learning Models on a Prospective Cohort. JMIR Med. Inform. 2020, 8, e15411. [Google Scholar] [CrossRef] [PubMed]
- Serra, B.; Mendoza, M.; Scazzocchio, E.; Meler, E.; Nolla, M.; Sabrià, E.; Rodríguez, I.; Carreras, E. A new model for screening for early-onset preeclampsia. Am. J. Obstet. Gynecol. 2020, 222, 608.e1–608.e18. [Google Scholar] [CrossRef] [PubMed]
- Garrido-Giménez, C.; Cruz-Lemini, M.; Álvarez, F.V.; Nan, M.N.; Carretero, F.; Fernández-Oliva, A.; Mora, J.; Sánchez-García, O.; García-Osuna, Á.; Alijotas-Reig, J.; et al. Predictive Model for Preeclampsia Combining sFlt-1, PlGF, NT-proBNP, and Uric Acid as Biomarkers. J. Clin. Med. 2023, 12, 431. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, Z.; Li, H.; Li, J.; Li, H.; Liu, M.; Liang, P.; Xi, Q.; Xing, Y.; Yang, L.; et al. A cost-effective machine learning-based method for preeclampsia risk assessment and driver genes discovery. Cell Biosci. 2023, 13, 41. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bennett, R.; Mulla, Z.D.; Parikh, P.; Hauspurg, A.; Razzaghi, T. An Imbalance-Aware Deep Neural Network for Early Prediction of Preeclampsia. PLoS ONE 2022, 17, e0266042. [Google Scholar] [CrossRef] [PubMed]
- Kodepogu, K.R.; Annam, J.R.; Vipparla, A.; Krishna, B.V.N.V.S.; Kumar, N.; Viswanathan, R.; Gaddala, L.K.; Chandanapalli, S.K. A Novel Deep Convolutional Neural Network for Diagnosis of Skin Disease. Trait. Du Signal 2022, 39, 1873–1877. [Google Scholar] [CrossRef]
- Kovacheva, V.P.; Eberhard, B.W.; Cohen, R.Y.; Maher, M.; Saxena, R.; Gray, K.J. Prediction of Preeclampsia from Clinical and Genetic Risk Factors in Early and Late Pregnancy Using Machine Learning and Polygenic Risk Scores. medRxiv 2023. [Google Scholar] [CrossRef] [PubMed]
- Bai, L.; Guo, Y.; Gong, J.; Li, Y.; Huang, H.; Meng, Y.; Liu, X. Machine learning and bioinformatics framework integration reveal potential characteristic genes related to immune cell infiltration in preeclampsia. Front. Physiol. 2023, 14, 107816. [Google Scholar] [CrossRef] [PubMed]
- He, A.; Yip, K.C.; Lu, D.; Liu, J.; Zhang, Z.; Wang, X.; Liu, Y.; Wei, Y.; Zhang, Q.; Yan, R.; et al. Construction of a pathway-level model for preeclampsia based on gene expression data. Hypertens. Res. 2024, 47, 2521–2531. [Google Scholar] [CrossRef]
- Zhu, B.; Geng, H.; Yang, F.; Wu, Y.; Cao, T.; Wang, D.; Wang, Z. Revealing ANXA6 as a Novel Autophagy-related Target for Pre-eclampsia Based on the Machine Learning. Curr. Bioinform. 2024, 19, 446–457. [Google Scholar] [CrossRef]
- Aljameel, S.S.; Alzahrani, M.; Almusharraf, R.; Altukhais, M.; Alshaia, S.; Sahlouli, H.; Aslam, N.; Khan, I.U.; Alabbad, D.A.; Alsumayt, A. Prediction of Preeclampsia Using Machine Learning and Deep Learning Models: A Review. Big Data Cogn. Comput. 2023, 7, 32. [Google Scholar] [CrossRef]
- Mangshor, N.N.A.; Ibrahim, S.; Sabri, N.; Kamaruddin, S.A. Students’ learning habit factors during COVID-19 pandemic using multilayer perceptron (MLP). Int. J. Adv. Technol. Eng. Explor. 2021, 8, 190–198. [Google Scholar]
- Battineni, G.; Chintalapudi, N.; Amenta, F. Machine learning in medicine: Performance calculation of dementia prediction by support vector machines (SVM). Inform. Med. Unlocked 2019, 16, 100200. [Google Scholar] [CrossRef]
- Ogunleye, A.; Wang, Q.G. XGBoost Model for Chronic Kidney Disease Diagnosis. IEEE/ACM Trans. Comput. Biol. Bioinform. 2020, 17, 2131–2140. [Google Scholar]
- Cao, Y.; Miao, Q.-G.; Liu, J.-C.; Gao, L. Advance and Prospects of AdaBoost Algorithm. Acta Autom. Sin. 2013, 39, 745–758. [Google Scholar] [CrossRef]
- Lee, J.; Cai, J.; Li, F.; Vesoulis, Z.A. Predicting mortality risk for preterm infants using random forest. Sci. Rep. 2021, 11, 7308. [Google Scholar] [CrossRef] [PubMed]
- Biau, G.; Scornet, E. A random forest guided tour. TEST 2016, 25, 197–227. [Google Scholar] [CrossRef]
- Liu, M.; Yang, X.; Chen, G.; Ding, Y.; Shi, M.; Sun, L.; Huang, Z.; Liu, J.; Liu, T.; Yan, R.; et al. Development of a prediction model on preeclampsia using machine learning-based method: A retrospective cohort study in China. Front. Physiol. 2022, 13, 896969. [Google Scholar] [CrossRef] [PubMed]
- Zheng, D.; Hao, X.; Khan, M.; Wang, L.; Li, F.; Xiang, N.; Kang, F.; Hamalainen, T.; Cong, F.; Song, K.; et al. Comparison of machine learning and logistic regression as predictive models for adverse maternal and neonatal outcomes of preeclampsia: A retrospective study. Front. Cardiovasc. Med. 2022, 9, 959649. [Google Scholar] [CrossRef]
- Revathi, M.; Ramyachitra, D. A Modified Borderline Smote with Noise Reduction in Imbalanced Datasets. Wirel. Pers. Commun. 2021, 121, 1659–1680. [Google Scholar] [CrossRef]
- Khan, T.M.; Xu, S.; Khan, Z.G.; Chishti, M.U. Implementing Multilabeling, ADASYN, and ReliefF Techniques for Classification of Breast Cancer Diagnostic through Machine Learning: Efficient Computer-Aided Diagnostic System. J. Heal. Eng. 2021, 2021, 5577636. [Google Scholar] [CrossRef] [PubMed]
- Gök, E.C.; Olgun, M.O. SMOTE-NC and gradient boosting imputation based random forest classifier for predicting severity level of COVID-19 patients with blood samples. Neural Comput. Appl. 2021, 33, 15693–15707. [Google Scholar] [CrossRef] [PubMed]
- Demidova, L.; Klyueva, I. Improving the Classification Quality of the SVM Classifier for the Imbalanced Datasets on the Base of Ideas the SMOTE Algorithm. ITM Web Conf. 2017, 10, 02002. [Google Scholar] [CrossRef]
- Douzas, G.; Bacao, F.; Last, F. Improving imbalanced learning through a heuristic oversampling method based on k-means and SMOTE. Inf. Sci. 2018, 465, 1–20. [Google Scholar]
- Li, Q.; Zheng, L.; Gu, Y.; Jiang, D.; Wang, G.; Li, J.; Zhang, L. Early pregnancy stage 1 hypertension and high mean arterial pressure increased risk of adverse pregnancy outcomes in Shanghai, China. J. Hum. Hypertens. 2021, 36, 917–924. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez, P.; Bautista, M.A.; Gonzàlez, J.; Escalera, S. Beyond one-hot encoding: Lower dimensional target embedding. Image Vis. Comput. 2018, 75, 21–31. [Google Scholar] [CrossRef]
Algorithm | Error Rate | F1 | Micro-F1 | Macro-F1 | AUC_ROC |
---|---|---|---|---|---|
MLP | 0.2270 ± 0.0260 | 0.2302 ± 0.1225 | 0.2685 | 0.2644 | 0.6631 ± 0.1020 |
SVM | 0.2270 ± 0.1203 | 0.2353 ± 0.1040 | 0.2677 | 0.3129 | 0.6994 ± 0.1169 |
RF | 0.1916 ± 0.0373 | 0.3380 ± 0.1293 | 0.3462 | 0.3476 | 0.7390 ± 0.0561 |
XGBoost | 0.2127 ± 0.0390 | 0.3205 ± 0.1137 | 0.3605 | 0.3676 | 0.7387 ± 0.0495 |
AdaBoost | 0.1986 ± 0.0288 | 0.3333 ± 0.1275 | 0.2197 | 0.2104 | 0.7245 ± 0.0780 |
Performance | Simoa_Results | Elecsys_Results | Simoa_Elecsys_ Results (Threshold = 0.5) | Simoa_Elecsys_ Results (Threshold = 0.21) | Simoa_Elecsys_ Test_Results (Threshold = 0.21) |
---|---|---|---|---|---|
Error Rate | 0.2133 | 0.2031 | 0.1821 ± 0.0618 | 0.1964 ± 0.0976 | 0.2955 |
True positive rate (TPR) | 0.1243 | 0.1034 | 0.2535 ± 0.0153 | 0.7147 ± 0.1344 | 0.6067 |
False positive rate (FPR) | 0.0000 | 0.0233 | 0.0185 ± 0.0153 | 0.1519 ± 0.1302 | 0.2814 |
AUC_ROC | 0.7051 | 0.6902 | 0.7610 ± 0.1056 | 0.7627 ± 0.1019 | 0.7092 |
AUC_PRC | 0.6556 | 0.1652 | 0.5348 ± 0.1094 | 0.7271 ± 0.1840 | 0.6851 |
F1 | 0.2211 | 0.1734 | 0.3850 ± 0.2441 | 0.5520 ± 0.1302 | 0.3435 |
Performance | First_Trimester_Results | Simoa_Elecsys_Results2 |
---|---|---|
Error Rate | 0.3915 ± 0.1003 | 0.2536 ± 0.0680 |
True positive rate (TPR) | 0.5714 ± 0.1547 | 0.6990 ± 0.1380 |
False positive rate (FPR) | 0.2632 ± 0.0831 | 0.2351 ± 0.0626 |
AUC_ROC | 0.7018 ± 0.1222 | 0.7627 ± 0.1019 |
AUC_PRC | 0.5498 ± 0.2010 | 0.6544 ± 0.1522 |
F1 | 0.4888 ± 0.0908 | 0.5442 ± 0.1134 |
Prediction Performance | Error Rate (%) | F1 | Micro-F1 | Macro-F1 | AUC_ROC |
---|---|---|---|---|---|
Model trained from and tested on real data | 12.95 ± 4.06 | 0.6653 ± 0.1144 | 0.7004 | 0.6871 | 0.8261 ± 0.0717 |
Model trained from and tested on real + augmented data | 6.06 ± 2.75 | 0.9351 ± 0.0284 | 0.9244 | 0.9252 | 0.9602 ± 0.0220 |
Model trained from real + augmented data and tested only on real data | 11.76 ± 5.27 | 0.7577 ± 0.1027 | 0.7027 | 0.7131 | 0.8576 ± 0.0563 |
Prediction Performance Change | Simoa_Results | Elecsys_Results | Simoa_Elecsys_Results | First_Trimester_Results |
---|---|---|---|---|
Error Rate | 0.1914 ± 0.0188 0.1838 ± 0.0449 ↑↓ | 0.1295 ± 0.0406 0.1176 ± 0.0527 ↑↓ | 0.1619 ± 0.0223 0.1490 ± 0.0304 ↑↓ | 0.2115 ± 0.0805 0.2111 ± 0.0816 ↑↓ |
True Positive Rate (TPR) | 0.2762 ± 0.0773 0.2762 ± 0.1507 = ↓ | 0.5588 ± 0.1316 0.6396 ± 0.1229 ↑↑ | 0.4123 ± 0.0861 0.4616 ± 0.0935 ↑↓ | 0.3810 ± 0.2118 0.3875 ± 0.1920 ↑↑ |
False Positive Rate (FPR) | 0.0536 ± 0.0203 0.0536 ± 0.0272 = ↓ | 0.0189 ± 0.0279 0.0381 ± 0.0374 ↓↓ | 0.037 ± 0.0214 0.0413 ± 0.0166 ↓↑ | 0.0526 ± 0.0666 0.0789 ± 0.0704 ↓↓ |
AUC_ROC | 0.7732 ± 0.0445 0.8056 ± 0.0642 ↑↓ | 0.8261 ± 0.0717 0.8576 ± 0.0563 ↑↑ | 0.8170 ± 0.0412 0.8368 ± 0.0457 ↑↓ | 0.7500 ± 0.1172 0.7727 ± 0.1451 ↑↓ |
AUC_PRC | 0.3885 ± 0.1312 0.3765 ± 0.2562 ↓↓ | 0.7807 ± 0.1014 0.7935 ± 0.1114 ↑↓ | 0.6173 ± 0.1159 0.7256 ± 0.1103 ↑↑ | 0.5971 ± 0.3041 0.5756 ± 0.3054 ↓↓ |
F1 | 0.3636 ± 0.0974 0.3693 ± 0.1598 ↑↓ | 0.66533 ± 0.1144 0.75770 ± 0.1027↑↑ | 0.5192 ± 0.0810 0.5891 ± 0.1039 ↑↓ | 0.4000 ± 0.1443 0.5227 ± 0.1729 ↑↓ |
Simoa Set | Elecsys Set | Simoa_Elecsys Set | First_Trimester Set | Test_Set | |
---|---|---|---|---|---|
# cases | 145 | 169 | 314 | 65 | 130 |
# controls | 559 | 525 | 1084 | 190 | 892 |
# samples | 704 | 694 | 1398 | 255 | 1022 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Z.; Dai, J.; Chen, H.; Lu, L.; Li, G.; Yan, H.; Zhang, J. A Prospective Study on Risk Prediction of Preeclampsia Using Bi-Platform Calibration and Machine Learning. Int. J. Mol. Sci. 2024, 25, 10684. https://doi.org/10.3390/ijms251910684
Zhao Z, Dai J, Chen H, Lu L, Li G, Yan H, Zhang J. A Prospective Study on Risk Prediction of Preeclampsia Using Bi-Platform Calibration and Machine Learning. International Journal of Molecular Sciences. 2024; 25(19):10684. https://doi.org/10.3390/ijms251910684
Chicago/Turabian StyleZhao, Zhiguo, Jiaxin Dai, Hongyan Chen, Lu Lu, Gang Li, Hua Yan, and Junying Zhang. 2024. "A Prospective Study on Risk Prediction of Preeclampsia Using Bi-Platform Calibration and Machine Learning" International Journal of Molecular Sciences 25, no. 19: 10684. https://doi.org/10.3390/ijms251910684
APA StyleZhao, Z., Dai, J., Chen, H., Lu, L., Li, G., Yan, H., & Zhang, J. (2024). A Prospective Study on Risk Prediction of Preeclampsia Using Bi-Platform Calibration and Machine Learning. International Journal of Molecular Sciences, 25(19), 10684. https://doi.org/10.3390/ijms251910684