Mitogenomic Architecture of Atlantic Emperor Lethrinus atlanticus (Actinopterygii: Spariformes): Insights into the Lineage Diversification in Atlantic Ocean
Abstract
:1. Introduction
2. Results and Discussion
2.1. Mitogenome Structure and Organization
2.2. Protein-Coding Genes
2.3. Relative Synonymous Codon Usage and Substitutions Pattern
2.4. Ribosomal RNA and Transfer RNA Genes
2.5. Characteristics of Control Region
2.6. Major Phylogenetic Relationship of Spariformes
2.7. Lineage Diversification of Lethrinidae in Atlantic
2.8. Conservation Implication of Lethrinids
3. Materials and Methods
3.1. Sampling and Species Identification
3.2. DNA Extraction and Sequencing
3.3. Mitogenome Assembly
3.4. Validation of Control Region
3.5. Characterization and Comparative Analyses
3.6. Mitogenomic Phylogenetic Analyses
3.7. Divergence Time Estimation and TimeTree
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Anderson, S.; de Bruijn, M.H.; Coulson, A.R.; Eperon, I.C.; Sanger, F.; Young, I.G. Complete sequence of bovine mitochondrial DNA. Conserved features of the mammalian mitochondrial genome. J. Mol. Biol. 1982, 156, 683–717. [Google Scholar] [CrossRef] [PubMed]
- Satoh, T.P.; Miya, M.; Mabuchi, K.; Nishida, M. Structure and variation of the mitochondrial genome of fishes. BMC Genom. 2016, 17, 719. [Google Scholar] [CrossRef] [PubMed]
- Iwasaki, W.; Fukunaga, T.; Isagozawa, R.; Yamada, K.; Maeda, Y.; Satoh, T.P.; Sado, T.; Mabuchi, K.; Takeshima, H.; Miya, M.; et al. MitoFish and MitoAnnotator: A mitochondrial genome database of fish with an accurate and automatic annotation pipeline. Mol. Biol. Evol. 2013, 30, 2531–2540. [Google Scholar] [CrossRef] [PubMed]
- Johnson, G.D. The Limits and Relationships of the Lutjanidae and Associated Families; University of California Press: Berkeley, CA, USA, 1981; Volume 24, pp. 1–114. [Google Scholar]
- Carpenter, K.E.; Allen, G.R. FAO Species Catalogue. Emperor Fishes and Large-Eye Breams of the World (Family Lethrinidae). An Annotated and Illustrated Catalogue of Lethrinid Species Known to Date; FAO: Rome, Italy, 1989; Volume 9. [Google Scholar]
- Carpenter, K.E. Morphometric pattern and feeding mode in emperor fishes (Lethrinidae, Perciformes). In Advances in Morphometrics; Marcus, L.F., Corti, M., Loy, A., Naylor, G.J.P., Slice, D.E., Eds.; Plenum Press: New York, NY, USA, 1996; pp. 479–487. [Google Scholar]
- Lo Galbo, A.M.; Carpenter, K.E.; Reed, D.L. Evolution of trophic types in emperor fishes (Lethrinus, Lethrinidae, Percoidei) based on cytochrome B gene sequence variation. J. Mol. Evol. 2002, 54, 754–762. [Google Scholar] [CrossRef] [PubMed]
- Fricke, R.; Eschmeyer, W.N.; Van der Laan, R. Eschmeyer’s Catalog of Fishes: Genera, Species, References. Available online: http://researcharchive.calacademy.org/research/ichthyology/catalog/fishcatmain.asp (accessed on 20 May 2024).
- Cuéllar-Pinzón, J.; Presa, P.; Hawkins, S.J.; Pita, A. Genetic markers in marine fisheries: Types, tasks and trends. Fish. Res. 2016, 173, 194–205. [Google Scholar] [CrossRef]
- Borsa, P.; Hsiao, D.R.; Carpenter, K.E.; Chen, W.J. Cranial morphometrics and mitochondrial DNA sequences distinguish cryptic species of the longface emperor (Lethrinus olivaceus), an emblematic fish of Indo-West Pacific coral reefs. Comptes Rendus Biol. 2013, 336, 505–514. [Google Scholar] [CrossRef]
- Healey, A.J.E.; McKeown, N.J.; Taylor, A.L.; Provan, J.; Sauer, W.; Gouws, G.; Shaw, P.W. Cryptic species and parallel genetic structuring in Lethrinid fish: Implications for conservation and management in the southwest Indian Ocean. Ecol. Evol. 2018, 8, 2182–2195. [Google Scholar] [CrossRef]
- Mzingirwa, F.A.; Stomeo, F.; Kaunda-Arara, B.; Nyunja, J.; Mujibi, F.D.N. Genetic connectivity of the Sky Emperor, Lethrinus mahsena populations across a gradient of exploitation rates in coastal Kenya. Front. Genet. 2019, 10, 1003. [Google Scholar] [CrossRef]
- Afrisal, M.; Iwatsuki, Y.; Burhanuddin, A.I. Morphological and genetic evaluation of the thumbprint emperor, Lethrinus harak (Forsskål, 1775) in the Pacific and Indian Oceans. F1000Res 2020, 9, 915. [Google Scholar] [CrossRef]
- Herwerden, L.V.; Benzie, J.; Peplow, L.; Davies, C. Microsatellite markers for coral trout (Plectropomus laevis) and red throat emperor (Lethrinus miniatus) and their utility in other species of reef fish. Mol. Ecol. 2000, 9, 1929–1931. [Google Scholar] [CrossRef]
- Miya, M.; Kawaguchi, A.; Nishida, M. Mitogenomic exploration of higher teleostean phylogenies: A case study for moderate-scale evolutionary genomics with 38 newly determined complete mitochondrial DNA sequences. Mol. Biol. Evol. 2001, 18, 1993–2009. [Google Scholar] [CrossRef] [PubMed]
- Yamanoue, Y.; Miya, M.; Matsuura, K.; Yagishita, N.; Mabuchi, K.; Sakai, H.; Katoh, M.; Nishida, M. Phylogenetic position of tetraodontiform fishes within the higher teleosts: Bayesian inferences based on 44 whole mitochondrial genome sequences. Mol. Phylogenet. Evol. 2007, 45, 89–101. [Google Scholar] [CrossRef] [PubMed]
- Al-Yousuf, M.H.; El-Shahawi, M.S.; Al-Ghais, S.M. Trace metals in liver, skin, and muscle of Lethrinus lentjan fish species in relation to body length and sex. Sci. Total Environ. 2000, 256, 87–94. [Google Scholar] [CrossRef] [PubMed]
- Pillans, R.D.; Bearham, D.; Boomer, A.; Downie, R.A.; Patterson, T.A.; Thomson, D.P.; Babcock, R.C. Multi-year observations reveal variability in residence of a tropical demersal fish, Lethrinus nebulosus: Implications for spatial management. PLoS ONE 2014, 9, e105507. [Google Scholar] [CrossRef]
- Varea, R.; Paris, A.; Ferreira, M.; Piovano, S. Multibiomarker responses to polycyclic aromatic hydrocarbons and microplastics in thumbprint emperor Lethrinus harak from a South Pacific locally managed marine area. Sci. Rep. 2021, 11, 17991. [Google Scholar] [CrossRef]
- Grandcourt, E.M.; Al Abdessalaam, T.Z.; Francis, F.; Al Shamsi, A.T. Reproductive biology and implications for management of the spangled emperor Lethrinus nebulosus in the southern Arabian Gulf. J. Fish Biol. 2010, 77, 2229–2247. [Google Scholar] [CrossRef]
- Younis, E.M.; Abdel-Warith, A.A.; Al-Asgah, N.A.; Gabr, M.H.; Shamlol, F.S. Demographic structure and stock status of Lethrinus lentjan in Saudi coastal waters of the Red Sea. Saudi J. Biol. Sci. 2020, 27, 2293–2298. [Google Scholar] [CrossRef]
- Taillebois, L.; Crook, D.A.; Saunders, T.; Williams, S.M.; Ovenden, J.R. The complete mitochondrial genome of the grass emperor, Lethrinus laticaudis (Perciformes: Lethrinidae). Mitochondrial DNA B Resour. 2016, 1, 277–279. [Google Scholar] [CrossRef]
- Guo, M.; Gao, Y.; Huang, H. The complete mitochondrial genome of striped large-eye bream, Gnathodentex aureolineatus (Teleostei, Lethrinidae). Mitochondrial DNA B Resour. 2023, 8, 76–80. [Google Scholar] [CrossRef]
- Kundu, S.; De Alwis, P.S.; Kim, A.R.; Lee, S.R.; Kang, H.-E.; Go, Y.; Gietbong, F.Z.; Wibowo, A.; Kim, H.-W. Mitogenomic characterization of Cameroonian endemic Coptodon camerunensis (Cichliformes: Cichlidae) and matrilineal phylogeny of Old-World cichlids. Genes 2023, 14, 1591. [Google Scholar] [CrossRef]
- Kundu, S.; Kim, H.-W.; Lee, J.; Chung, S.; Lee, S.R.; Gietbong, F.Z.; Wibowo, A.; Kang, K. Mitogenomic architecture and phylogenetic relationship of European barracuda, Sphyraena sphyraena (Teleostei: Sphyraenidae) from the Atlantic Ocean. Fishes 2023, 8, 573. [Google Scholar] [CrossRef]
- Ojala, D.; Montoya, J.; Attardi, G. tRNA punctuation model of RNA processing in human mitochondria. Nature 1981, 290, 470–474. [Google Scholar] [CrossRef] [PubMed]
- Molina-Quirós, J.L.; Hernández-Muñoz, S.; Baeza, J.A. The complete mitochondrial genome of the roosterfish Nematistius pectoralis Gill 1862: Purifying selection in protein coding genes, organization of the control region, and insights into family-level phylogenomic relationships in the recently erected order Carangiformes. Gene 2022, 845, 146847. [Google Scholar] [PubMed]
- Kundu, S.; Palimirmo, F.S.; Kang, H.-E.; Kim, A.R.; Lee, S.R.; Gietbong, F.Z.; Song, S.H.; Kim, H.-W. Insights into the mitochondrial genetic makeup and Miocene colonization of primitive flatfishes (Pleuronectiformes: Psettodidae) in the East Atlantic and Indo-West Pacific Ocean. Biology 2023, 12, 1317. [Google Scholar] [CrossRef]
- Kosiol, C.; Vinar, T.; da Fonseca, R.R.; Hubisz, M.J.; Bustamante, C.D.; Nielsen, R.; Siepel, A. Patterns of positive selection in six mammalian genomes. PLoS Genet. 2008, 4, e1000144. [Google Scholar] [CrossRef]
- Foote, A.D.; Morin, P.A.; Durban, J.W.; Pitman, R.L.; Wade, P.; Willerslev, E.; Gilbert, M.T.; da Fonseca, R.R. Positive selection on the killer whale mitogenome. Biol. Lett. 2011, 7, 116–118. [Google Scholar] [CrossRef]
- Yang, Z.H.; Nielsen, R. Estimating synonymous and nonsynonymous substitution rates under realistic evolutionary models. Mol. Biol. Evol. 2000, 17, 32–43. [Google Scholar] [CrossRef]
- Kundu, S.; Kang, H.-E.; Kim, A.R.; Lee, S.R.; Kim, E.-B.; Amin, M.H.F.; Andriyono, S.; Kim, H.-W.; Kang, K. Mitogenomic characterization and phylogenetic placement of African hind, Cephalopholis taeniops: Shedding light on the evolution of groupers (Serranidae: Epinephelinae). Int. J. Mol. Sci. 2024, 25, 1822. [Google Scholar] [CrossRef]
- Zhu, K.C.; Liang, Y.Y.; Wu, N.; Guo, H.Y.; Zhang, N.; Jiang, S.G.; Zhang, D.C. Sequencing and characterization of the complete mitochondrial genome of Japanese Swellshark (Cephalloscyllium umbratile). Sci. Rep. 2017, 7, 15299. [Google Scholar] [CrossRef]
- Crick, F.H.C. Codon-anticodon pairing: The wobble hypothesis. J. Mol. Biol. 1966, 19, 548–555. [Google Scholar] [CrossRef]
- Varani, G.; McClain, W.H. The G-U wobble base pair: A fundamental building block of RNA structure crucial to RNA function in diverse biological systems. EMBO Rep. 2000, 1, 18–23. [Google Scholar] [CrossRef] [PubMed]
- Cantatore, P.; Gadaleta, M.N.; Roberti, M.; Saccone, C.; Wilson, A.C. Duplication and remoulding of tRNA genes during the evolutionary rearrangement of mitochondrial genomes. Nature 1987, 329, 853–855. [Google Scholar] [CrossRef] [PubMed]
- Ponce, M.; Infante, C.; Jiménez-Cantizano, R.M.; Pérez, L.; Manchado, M. Complete mitochondrial genome of the blackspot seabream, Pagellus bogaraveo (Perciformes: Sparidae), with high levels of length heteroplasmy in the WANCY region. Gene 2008, 409, 44–52. [Google Scholar] [CrossRef] [PubMed]
- Lee, W.J.; Conroy, J.; Howell, W.H.; Kocher, T.D. Structure and evolution of teleost mitochondrial control regions. J. Mol. Evol. 1995, 41, 54–66. [Google Scholar] [CrossRef]
- San Mauro, D.; Gower, D.J.; Zardoya, R.; Wilkinson, M. A hotspot of gene order rearrangement by tandem duplication and random loss in the vertebrate mitochondrial genome. Mol. Biol. Evol. 2006, 23, 227–234. [Google Scholar] [CrossRef]
- Fabian, V.; Houk, P.; Lemer, S. Phylogeny of Micronesian emperor fishes and evolution of trophic types. Mol. Phylogenet. Evol. 2021, 162, 107207. [Google Scholar] [CrossRef]
- Chen, W.-J.; Borsa, P. Diversity, phylogeny, and historical biogeography of largeeye seabreams (Teleostei: Lethrinidae). Mol. Phylogenet. Evol. 2020, 151, 106902. [Google Scholar] [CrossRef]
- Tine, M.; Kuhl, H.; Gagnaire, P.A.; Louro, B.; Desmarais, E.; Martins, R.S.; Hecht, J.; Knaust, F.; Belkhir, K.; Klages, S.; et al. European Sea bass genome and its variation provide insights into adaptation to euryhalinity and speciation. Nat. Commun. 2014, 5, 5770. [Google Scholar] [CrossRef]
- Rabosky, D.L.; Chang, J.; Title, P.O.; Cowman, P.F.; Sallan, L.; Friedman, M.; Kaschner, K.; Garilao, C.; Near, T.J.; Coll, M.; et al. An inverse latitudinal gradient in speciation rate for marine fishes. Nature 2018, 559, 392–395. [Google Scholar] [CrossRef]
- Thi, O.T.; Ha, Q.V.D.; Thuy, B.D. Phylogenetic relationships of emperors (Lethrinidae) and snappers (Lutjanidae) in Vietnam based on mitochondrial DNA sequences. In Proceedings of the International Conference on Biological, Environment and Food Engineering (BEFE-2015), 15–16 May 2015, Singapore.
- Waterhouse, L.; Heppell, S.A.; Pattengill-Semmens, C.V.; McCoy, C.; Bush, P.; Johnson, B.C.; Semmens, B.X. Recovery of critically endangered Nassau grouper (Epinephelus striatus) in the Cayman Islands following targeted conservation actions. Proc. Natl. Acad. Sci. USA 2020, 117, 1587–1595. [Google Scholar] [CrossRef]
- Natsidis, P.; Tsakogiannis, A.; Pavlidis, P.; Tsigenopoulos, C.S.; Manousaki, T. Phylogenomics investigation of sparids (Teleostei: Spariformes) using high-quality proteomes highlights the importance of taxon sampling. Commun. Biol. 2019, 2, 400. [Google Scholar] [CrossRef] [PubMed]
- Alfaro, M.E.; Santini, F.; Brock, C.D. Do reefs drive diversification in marine teleosts? Evidence from the pufferfish and their allies (Order Tetraodontiformes). Evolution 2007, 61, 2104–2126. [Google Scholar] [CrossRef] [PubMed]
- Alfaro, M.E.; Santini, F.; Brock, C.; Alamillo, H.; Dornburg, A.; Rabosky, D.L.; Carnelave, G.; Hamon, L.J. Nine exceptional radiations plus high turnover explain species diversity in jawed vertebrates. Proc. Natl. Acad. Sci. USA 2009, 106, 13410–13414. [Google Scholar] [CrossRef] [PubMed]
- Ao, H.; Rohling, E.J.; Zhang, R.; Roberts, A.P.; Holbourn, A.E.; Ladant, J.B.; Dupont-Nivet, G.; Kuhnt, W.; Zhang, P.; Wu, F.; et al. Global warming-induced Asian hydrological climate transition across the Miocene–Pliocene boundary. Nat. Commun. 2021, 12, 6935. [Google Scholar] [CrossRef]
- Shevenell, A.E.; Kennett, J.P.; Lea, D.W. Middle Miocene Southern Ocean cooling and Antarctic cryosphere expansion. Science 2004, 305, 1766–1770. [Google Scholar] [CrossRef]
- Methner, K.; Campani, M.; Fiebig, J.; Löffler, N.; Kempf, O.; Mulch, A. Middle Miocene long-term continental temperature change in and out of pace with marine climate records. Sci. Rep. 2020, 10, 7989. [Google Scholar] [CrossRef]
- Herbert, T.D.; Lawrence, K.T.; Tzanova, A.; Peterson, L.C.; Caballero-Gill, R.; Kelly, C.S. Late Miocene global cooling and the rise of modern ecosystems. Nat. Geosci. 2016, 9, 843–847. [Google Scholar] [CrossRef]
- Avaria-Llautureo, J.; Venditti, C.; Rivadeneira, M.M.; Inostroza-Michael, O.; Rivera, R.J.; Hernández, C.E.; Canales-Aguirre, C.B. Historical warming consistently decreased size, dispersal and speciation rate of fish. Nat. Clim. Chang. 2021, 11, 787–793. [Google Scholar] [CrossRef]
- O’Brien, T.D.; Lorenzoni, L.; Isensee, K.; Valdés, L. What are Marine Ecological Time Series telling us about the ocean? In A Status Report; IOC-UNESCO Technical Series, No. 129; IOC-UNESCO: Paris, France, 2017; 297p. [Google Scholar]
- Momigliano, P.; Jokinen, H.; Fraimout, A.; Florin, A.B.; Norkko, A.; Merilä, J. Extraordinarily rapid speciation in a marine fish. Proc. Natl. Acad. Sci. USA 2017, 114, 6074–6079. [Google Scholar] [CrossRef]
- Cheung, W.W.L.; Frölicher, T.L.; Lam, V.W.Y.; Oyinlola, M.A.; Reygondeau, G.; Sumaila, U.R.; Tai, T.C.; The, L.C.L.; Wabnitz, C.C.C. Marine high temperature extremes amplify the impacts of climate change on fish and fisheries. Sci. Adv. 2021, 7, eabh0895. [Google Scholar] [CrossRef]
- Brander, K.M. Global fish production and climate change. Proc. Natl. Acad. Sci. USA 2007, 104, 19709–19714. [Google Scholar] [CrossRef] [PubMed]
- Barbarossa, V.; Bosmans, J.; Wanders, N.; King, H.; Bierkens, M.F.P.; Huijbregts, M.A.J.; Schipper, A.M. Threats of global warming to the world’s freshwater fishes. Nat. Commun. 2021, 12, 1701. [Google Scholar] [CrossRef] [PubMed]
- Jones, G.P.; McCormick, M.I.; Srinivasan, M.; Eagle, J.V. Coral decline threatens fish biodiversity in marine reserves. Proc. Natl. Acad. Sci. USA 2004, 101, 8251–8253. [Google Scholar] [CrossRef]
- Graham, N.A.; Chabanet, P.; Evans, R.D.; Jennings, S.; Letourneur, Y.; MacNeil, M.A.; McClanahan, T.R.; Ohman, M.C.; Polunin, N.V.; Wilson, S.K. Extinction vulnerability of coral reef fishes. Ecol. Lett. 2011, 14, 341–348. [Google Scholar] [CrossRef] [PubMed]
- MacNeil, M.A.; Graham, N.A.; Cinner, J.E.; Wilson, S.K.; Williams, I.D.; Maina, J.; Newman, S.; Friedlander, A.M.; Jupiter, S.; Polunin, N.V.; et al. Recovery potential of the world’s coral reef fishes. Nature 2015, 520, 341–344. [Google Scholar] [CrossRef] [PubMed]
- Mellin, C.; Mouillot, D.; Kulbicki, M.; McClanahan, T.R.; Vigliola, L.; Bradshaw, C.J.; Brainard, R.E.; Chabanet, P.; Edgar, G.J.; Fordham, D.A.; et al. Humans and seasonal climate variability threaten large-bodied coral reef fish with small ranges. Nat. Commun. 2016, 7, 10491. [Google Scholar] [CrossRef]
- Filous, A.; Daxboeck, C.; Beguet, T.; Cook, C. The life history of longnose emperors (Lethrinus olivaceus) and a data-limited assessment of their stock to support fisheries management at Rangiroa Atoll, French Polynesia. J. Fish Biol. 2022, 100, 632–644. [Google Scholar] [CrossRef]
- Hutchings, J.A. Collapse and recovery of marine fishes. Nature 2000, 406, 882–885. [Google Scholar] [CrossRef]
- Costello, M.J.; Coll, M.; Danovaro, R.; Halpin, P.; Ojaveer, H.; Miloslavich, P. A Census of Marine Biodiversity Knowledge, Resources, and Future Challenges. PLoS ONE 2010, 5, e12110. [Google Scholar] [CrossRef]
- Currey, L.M.; Williams, A.J.; Mapstone, B.D.; Davies, C.R.; Carlos, G.; Welch, D.J.; Simpfendorfer, C.A.; Ballagh, A.C.; Penny, A.L.; Grandcourt, E.M.; et al. Comparative biology of tropical Lethrinus species (Lethrinidae): Challenges for multi-species management. J. Fish Biol. 2013, 82, 764–788. [Google Scholar] [CrossRef]
- Sato, T. A synopsis of the sparoid fish genus Lethrinus, with the description of a new species. Bull. Univ. Mus. Univ. Tokyo 1978, 15, 1–70. [Google Scholar]
- Carpenter, K.E.; De Angelis, N. (Eds.) The Living Marine Resources of the Eastern Central Atlantic. Vol. 4: Bony Fishes Part 2 (Perciformes to Tetradontiformes) and Sea Turtles; FAO Species Identification Guide for Fishery Purposes; FAO: Rome, Italy, 2016; pp. 2343–3124. [Google Scholar]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef] [PubMed]
- Bernt, M.; Donath, A.; Jühling, F.; Externbrink, F.; Florentz, C.; Fritzsch, G.; Pütz, J.; Middendorf, M.; Stadler, P.F. MITOS: Improved de novo Metazoan Mitochondrial Genome Annotation. Mol. Phylogenet. Evol. 2013, 69, 313–319. [Google Scholar] [CrossRef] [PubMed]
- Blankenberg, D.; Von Kuster, G.; Bouvier, E.; Baker, D.; Afgan, E.; Stoler, N.; Galaxy Team; Taylor, J.; Nekrutenko, A. Dissemination of scientific software with Galaxy ToolShed. Genome Biol. 2014, 15, 403. [Google Scholar] [CrossRef]
- Perna, N.T.; Kocher, T.D. Patterns of nucleotide composition at fourfold degenerate sites of animal mitochondrial genomes. J. Mol. Evol. 1995, 41, 353–359. [Google Scholar] [CrossRef]
- Rozas, J.; Ferrer-Mata, A.; Sánchez-DelBarrio, J.C.; Guirao-Rico, S.; Librado, P.; Ramos-Onsins, S.E.; Sánchez-Gracia, A. DnaSP 6: DNA sequence polymorphism analysis of large data sets. Mol. Biol. Evol. 2017, 34, 3299–3302. [Google Scholar] [CrossRef]
- Laslett, D.; Canbäck, B. ARWEN, a program to detect tRNA genes in metazoan mitochondrial nucleotide sequences. Bioinformatics 2008, 24, 172–175. [Google Scholar] [CrossRef]
- Chan, P.P.; Lin, B.Y.; Mak, A.J.; Lowe, T.M. tRNAscan-SE 2.0: Improved detection and functional classification of transfer RNA genes. Nucleic Acids Res. 2021, 49, 9077–9096. [Google Scholar] [CrossRef]
- Thompson, J.D.; Gibson, T.J.; Plewniak, F.; Jeanmougin, F.; Higgins, D.G. The CLUSTAL_X windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 1997, 25, 4876–4882. [Google Scholar] [CrossRef]
- Vences, M.; Miralles, A.; Brouillet, S.; Ducasse, J.; Fedosov, A.; Kharchev, V.; Kostadinov, I.; Kumari, S.; Patmanidis, S.; Scherz, M.D.; et al. iTaxoTools 0.1: Kickstarting a specimen-based software toolkit for taxonomists. Megataxa 2021, 6, 77–92. [Google Scholar] [CrossRef]
- Darriba, D.; Taboada, G.L.; Doallo, R.; Posada, D. JModelTest 2: More models, new heuristics and parallel computing. Nat. Methods 2012, 9, 772. [Google Scholar] [CrossRef] [PubMed]
- Miller, M.A.; Schwartz, T.; Pickett, B.E.; He, S.; Klem, E.B.; Scheuermann, R.H.; Passarotti, M.; Kaufman, S.; O’Leary, M.A. A RESTful API for Access to Phylogenetic Tools via the CIPRES Science Gateway. Evol. Bioinform. 2015, 11, 43–48. [Google Scholar] [CrossRef] [PubMed]
- Lanfear, R.; Frandsen, P.B.; Wright, A.M.; Senfeld, T.; Calcott, B. PartitionFinder 2: New Methods for Selecting Partitioned Models of Evolution for Molecular and Morphological Phylogenetic Analyses. Mol. Biol. Evol. 2016, 34, 772–773. [Google Scholar] [CrossRef] [PubMed]
- Trifinopoulos, J.; Nguyen, L.-T.; von Haeseler, A.; Minh, B.Q. W-IQ-TREE: A fast online phylogenetic tool for maximum likelihood analysis. Nucleic Acids Res. 2016, 44, W232–W235. [Google Scholar] [CrossRef]
- Guindon, S.; Dufayard, J.F.; Lefort, V.; Anisimova, M.; Hordijk, W.; Gascuel, O. New Algorithms and Methods to Estimate Maximum-Likelihood Phylogenies: Assessing the Performance of PhyML 3.0. Syst. Biol. 2010, 59, 307–321. [Google Scholar] [CrossRef]
- Ronquist, F.; Huelsenbeck, J.P. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 2003, 19, 1572–1574. [Google Scholar] [CrossRef]
- Letunic, I.; Bork, P. Interactive Tree of Life (iTOL): An online tool for phylogenetic tree display and annotation. Bioinformatics 2007, 23, 127–128. [Google Scholar] [CrossRef]
- Mello, B. Estimating TimeTrees with MEGA and the TimeTree Resource. Mol. Biol. Evol. 2018, 35, 2334–2342. [Google Scholar] [CrossRef]
- Tamura, K.; Tao, Q.; Kumar, S.; Russo, C. Theoretical foundation of the reltime method for estimating divergence times from variable evolutionary rates. Mol. Biol. Evol. 2018, 35, 1770–1782. [Google Scholar] [CrossRef]
- Tamura, K.; Battistuzzi, F.U.; Billing-Ross, P.; Murillo, O.; Filipski, A.; Kumar, S. Estimating divergence times in large molecular phylogenies. Proc. Natl. Acad. Sci. USA 2012, 109, 19333–19338. [Google Scholar] [CrossRef]
- Mello, B.; Tao, Q.; Tamura, K.; Kumar, S. Fast and Accurate Estimates of Divergence Times from Big Data. Mol. Biol. Evol. 2017, 34, 45–50. [Google Scholar] [CrossRef]
- Kumar, S.; Stecher, G.; Suleski, M.; Hedges, S.B. Timetree: A resource for timelines, timetrees, and divergence times. Mol. Biol. Evol. 2017, 34, 1812–1819. [Google Scholar] [CrossRef]
Genes | Start | Stop | Size (bp) | IN | Start Codon | Stop Codon | Anti-Codon |
---|---|---|---|---|---|---|---|
tRNA-Phe (F) | 1 | 68 | 68 | 0 | TTC | ||
12S rRNA | 69 | 1024 | 956 | 0 | |||
tRNA-Val (V) | 1025 | 1098 | 74 | 0 | GTA | ||
16S rRNA | 1099 | 2899 | 1801 | 0 | |||
tRNA-Leu (L2) | 2900 | 2973 | 74 | 0 | TTA | ||
ND1 | 2974 | 3945 | 972 | 4 | ATG | TAG | |
tRNA-Ile (I) | 3950 | 4019 | 70 | −1 | ATC | ||
tRNA-Gln (Q) | 4019 | 4089 | 71 | −1 | CAA | ||
tRNA-Met (M) | 4089 | 4158 | 70 | 0 | ATG | ||
ND2 | 4159 | 5204 | 1046 | 0 | ATG | TA− | |
tRNA-Trp (W) | 5205 | 5277 | 73 | 0 | TGA | ||
tRNA-Ala (A) | 5278 | 5346 | 69 | 1 | GCA | ||
tRNA-Asn (N) | 5348 | 5420 | 73 | 37 | AAC | ||
tRNA-Cys (C) | 5458 | 5526 | 69 | 0 | TGC | ||
tRNA-Tyr (Y) | 5527 | 5596 | 70 | 1 | TAC | ||
COI | 5598 | 7148 | 1551 | 1 | GTG | TAA | |
tRNA-Ser (S2) | 7150 | 7220 | 71 | 3 | TCA | ||
tRNA-Asp (D) | 7224 | 7295 | 72 | 7 | GAC | ||
COII | 7303 | 7993 | 691 | 0 | ATG | T− − | |
tRNA-Lys (K) | 7994 | 8068 | 75 | 1 | AAA | ||
ATP8 | 8070 | 8237 | 168 | 13 | ATG | TAA | |
ATP6 | 8251 | 8933 | 683 | 0 | ATG | TA− | |
COIII | 8934 | 9718 | 785 | 0 | ATG | TA− | |
tRNA-Gly (G) | 9719 | 9790 | 72 | 0 | GGA | ||
ND3 | 9791 | 10,139 | 349 | 0 | ATG | T− − | |
tRNA-Arg (R) | 10,140 | 10,208 | 69 | 0 | CGA | ||
ND4L | 10,209 | 10,505 | 297 | −7 | ATG | TAA | |
ND4 | 10,499 | 11,879 | 1381 | 0 | ATG | T− − | |
tRNA-His (H) | 11,880 | 11,948 | 69 | 0 | CAC | ||
tRNA-Ser (S1) | 11,949 | 12,018 | 70 | 4 | AGC | ||
tRNA-Leu (L1) | 12,023 | 12,095 | 73 | 0 | CTA | ||
ND5 | 12,096 | 13,934 | 1839 | −4 | ATG | TAA | |
ND6 | 13,931 | 14,452 | 522 | 0 | ATG | TAG | |
tRNA-Glu (E) | 14,453 | 14,521 | 69 | 4 | GAA | ||
CYTB | 14,526 | 15,666 | 1141 | 0 | ATG | T− − | |
tRNA-Thr (T) | 15,667 | 15,738 | 72 | −1 | ACA | ||
tRNA-Pro (P) | 15,738 | 15,806 | 69 | 0 | CCA | ||
Control region | 15,807 | 16,789 | 983 |
Species Name | Size (bp) | A% | T% | G% | C% | A + T% | AT-Skew | GC-Skew |
---|---|---|---|---|---|---|---|---|
Complete mitogenome | ||||||||
L. atlanticus | 16,789 | 27.20 | 25.90 | 17.02 | 29.88 | 53.10 | 0.024 | −0.274 |
L. laticaudis | 16,758 | 26.98 | 25.63 | 17.10 | 30.30 | 52.61 | 0.026 | −0.279 |
L. obsoletus | 16,779 | 26.77 | 25.24 | 17.26 | 30.73 | 52.01 | 0.029 | −0.281 |
Protein-coding genes (PCGs) | ||||||||
L. atlanticus | 11,425 | 24.7 | 27.8 | 16.4 | 31.1 | 52.5 | −0.058 | −0.308 |
L. laticaudis | 11,423 | 24.5 | 27.4 | 16.6 | 31.6 | 51.9 | −0.061 | −0.311 |
L. obsoletus | 11,425 | 24 | 26.9 | 16.9 | 32.2 | 51 | −0.056 | −0.313 |
Ribosomal RNAs (rRNAs) | ||||||||
L. atlanticus | 2757 | 30.9 | 21.3 | 21 | 26.8 | 52.3 | 0.184 | −0.122 |
L. laticaudis | 2761 | 30.9 | 21.6 | 21.1 | 26.4 | 52.5 | 0.179 | −0.111 |
L. obsoletus | 2664 | 31.4 | 21.7 | 20.7 | 26.2 | 53 | 0.183 | −0.118 |
Transfer RNAs (tRNAs) | ||||||||
L. atlanticus | 1562 | 27.3 | 26.9 | 24.3 | 21.5 | 54.2 | 0.008 | 0.063 |
L. laticaudis | 1552 | 27.3 | 27.6 | 24 | 21.1 | 54.9 | −0.007 | 0.063 |
L. obsoletus | 1563 | 27.3 | 26.7 | 24.2 | 21.8 | 54 | 0.012 | 0.051 |
Control Region (CR) | ||||||||
L. atlanticus | 983 | 31.2 | 30.6 | 14.9 | 23.3 | 61.9 | 0.010 | −0.221 |
L. laticaudis | 944 | 30.8 | 30.8 | 15.7 | 22.7 | 61.7 | 0.000 | −0.182 |
L. obsoletus | 970 | 29.7 | 30.2 | 16.9 | 23.2 | 59.9 | −0.009 | −0.157 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kundu, S.; Kang, H.-E.; Go, Y.; Bang, G.; Jang, Y.; Htoo, H.; Aini, S.; Kim, H.-W. Mitogenomic Architecture of Atlantic Emperor Lethrinus atlanticus (Actinopterygii: Spariformes): Insights into the Lineage Diversification in Atlantic Ocean. Int. J. Mol. Sci. 2024, 25, 10700. https://doi.org/10.3390/ijms251910700
Kundu S, Kang H-E, Go Y, Bang G, Jang Y, Htoo H, Aini S, Kim H-W. Mitogenomic Architecture of Atlantic Emperor Lethrinus atlanticus (Actinopterygii: Spariformes): Insights into the Lineage Diversification in Atlantic Ocean. International Journal of Molecular Sciences. 2024; 25(19):10700. https://doi.org/10.3390/ijms251910700
Chicago/Turabian StyleKundu, Shantanu, Hye-Eun Kang, Yunji Go, Gyurim Bang, Yengju Jang, Hsu Htoo, Sarifah Aini, and Hyun-Woo Kim. 2024. "Mitogenomic Architecture of Atlantic Emperor Lethrinus atlanticus (Actinopterygii: Spariformes): Insights into the Lineage Diversification in Atlantic Ocean" International Journal of Molecular Sciences 25, no. 19: 10700. https://doi.org/10.3390/ijms251910700
APA StyleKundu, S., Kang, H. -E., Go, Y., Bang, G., Jang, Y., Htoo, H., Aini, S., & Kim, H. -W. (2024). Mitogenomic Architecture of Atlantic Emperor Lethrinus atlanticus (Actinopterygii: Spariformes): Insights into the Lineage Diversification in Atlantic Ocean. International Journal of Molecular Sciences, 25(19), 10700. https://doi.org/10.3390/ijms251910700