Network Pharmacology Revealing the Therapeutic Potential of Bioactive Components of Triphala and Their Molecular Mechanisms against Obesity
Abstract
:1. Introduction
2. Results
2.1. Screening of Bioactive Components and Target Prediction of Triphala
2.2. Identification of Obesity-Related Genes
2.3. Overlapping and Analysis of Target Network Construction
2.4. Analysis of Protein-Protein Interaction
2.5. The Gene Ontology (GO) Analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) Pathway Enrichment
2.6. Analysis of Compound–Protein Pathway
2.7. In Silico Analysis of Triphala Compounds Interacting with Obesity-Related Genes
3. Discussion
4. Materials and Methods
4.1. Screening of Bioactive Compounds and Target Prediction of Triphala
4.2. Screening Targets of Reported Genes in Obesity
4.3. Construction of Target Network
4.4. Protein-Protein Interaction and Compound-Protein Pathway
4.5. GO and KEGG Pathway
4.6. Molecular Docking
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Panuganti, K.K.; Nguyen, M.; Kshirsagar, R.K. Obesity. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2023. [Google Scholar]
- Lin, X.; Li, H. Obesity: Epidemiology, Pathophysiology, and Therapeutics. Front. Endocrinol. 2021, 12, 706978. [Google Scholar] [CrossRef]
- Al Kibria, G.M. Prevalence and factors affecting underweight, overweight and obesity using Asian and World Health Organization cutoffs among adults in Nepal: Analysis of the Demographic and Health Survey 2016. Obes. Res. Clin. Pract. 2019, 13, 129–136. [Google Scholar] [CrossRef] [PubMed]
- World health Organization Overweight and Obesity Report Fact Sheet. Available online: https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight (accessed on 9 June 2023).
- Ahmed, S.; Ding, X.; Sharma, A. Exploring scientific validation of Triphala Rasayana in ayurveda as a source of rejuvenation for contemporary healthcare: An update. J. Ethnopharmacol. 2021, 273, 113829. [Google Scholar] [CrossRef]
- Karimi, A.; Majlesi, M.; Rafieian-Kopaei, M. Herbal versus synthetic drugs; beliefs and facts. J. Nephropharmacol. 2015, 4, 27–30. [Google Scholar]
- Phimarn, W.; Sungthong, B.; Itabe, H. Effects of Triphala on Lipid and Glucose Profiles and Anthropometric Parameters: A Systematic Review. J. Evid. Based Integr. Med. 2021, 26, 2515690X211011038. [Google Scholar] [CrossRef]
- Vijay Kumar, A.N.; Thawani, V.; Hingorani, L. Effect of herbal combination of triphala and Garcinia cambogia extracts on liver function test and kidney function test in high fat diet induced obesity in rats. Int. J. Basic Clin. Pharmacol. 2019, 8, 2713–2720. [Google Scholar]
- Gurjar, S.; Pal, A.; Kapur, S. Triphala and its constituents ameliorate visceral adiposity from a high-fat diet in mice with diet-induced obesity. Altern. Ther. Health Med. 2012, 18, 38–45. [Google Scholar] [PubMed]
- Banjare, J.; Raina, P.; Mansara, P.; Ghanekar, R.K.; Bhalerao, S. Triphala, Regulates Adipogenesis through Modulation of Expression of Adipogenic Genes in 3T3-L1 Cell Line. Pharmacogn. Mag. 2018, 13, S834–S839. [Google Scholar] [PubMed]
- Kamali, S.H.; Khalaj, A.R.; Hasani-Ranjbar, S.; Esfehani, M.M.; Kamalinejad, M.; Soheil, O.; Kamali, S.A. Efficacy of ‘Itrifal Saghir’, a combination of three medicinal plants in the treatment of obesity; A randomized controlled trial. Daru 2012, 20, 33. [Google Scholar] [CrossRef]
- Phetkate, P.; Kummalue, T.; Rinthong, P.-O.; Kietinun, S.; Sriyakul, K. Study of the safety of oral Triphala aqueous extract on healthy volunteers. J. Integr. Med. 2020, 18, 35–40. [Google Scholar] [CrossRef]
- Sarosh, I.; Shaukat, R.; Mustafa, A.; Musaed Almutairi, S.; Ahmed Rasheed, R.; Kangal, A.; Aarab, M.; Mahreen, H.; Iftikhar, F.; Sajid, S. Determination of chemical composition investigation of potential of triphala powder in hypercholesterolemia in men in controlled randomized trial Pak. J. Pharm. Sci. 2023, 36, 707–711. [Google Scholar]
- Luo, T.T.; Lu, Y.; Yan, S.K.; Xiao, X.; Rong, X.L.; Guo, J. Network Pharmacology in Research of Chinese Medicine Formula: Methodology, Application and Prospective. Chin. J. Integr. Med. 2020, 26, 72–80. [Google Scholar] [CrossRef] [PubMed]
- Kanehisa, M.; Goto, S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000, 28, 27–30. [Google Scholar] [CrossRef] [PubMed]
- Wen, X.; Zhang, B.; Wu, B.; Xiao, H.; Li, Z.; Li, R.; Xu, X.; Li, T. Signaling pathways in obesity: Mechanisms and therapeutic interventions. Signal Transduct. Target. Ther. 2022, 7, 1–31. [Google Scholar]
- Jiang, T.; Shi, X.; Yan, Z.; Wang, X.; Gun, S. Isoimperatorin enhances 3T3-L1 preadipocyte differentiation by regulating PPARγ and C/EBPα through the Akt signaling pathway. Exp. Ther. Med. 2019, 18, 2160–2166. [Google Scholar] [CrossRef] [PubMed]
- Savova, M.S.; Mihaylova, L.V.; Tews, D.; Wabitsch, M.; Georgiev, M.I. Targeting PI3K/AKT signaling pathway in obesity. Biomed. Pharmacother. 2023, 159, 114244. [Google Scholar] [CrossRef] [PubMed]
- Wan, M.; Easton, R.M.; Gleason, C.E.; Monks, B.R.; Ueki, K.; Kahn, C.R.; Birnbaum, M.J. Loss of Akt1 in Mice Increases Energy Expenditure and Protects against Diet-Induced Obesity. Mol. Cell. Biol. 2012, 32, 96–106. [Google Scholar] [CrossRef]
- Song, N.J.; Chang, S.H.; Kim, S.; Panic, V.; Jang, B.H.; Yun, U.J.; Choi, J.H.; Li, Z.; Park, K.M.; Yoon, J.H.; et al. PI3Ka-Akt1-mediated Prdm4 induction in adipose tissue increases energy expenditure, inhibits weight gain, and improves insulin resistance in diet-induced obese mice. Cell Death Dis. 2018, 9, 876. [Google Scholar] [CrossRef]
- Wu, H.; Li, X.; Shen, C. Peroxisome Proliferator-Activated Receptor γ in White and Brown Adipocyte Regulation and Differentiation. Physiol. Res. 2020, 69, 759–773. [Google Scholar] [CrossRef]
- Jiao, W.; Mi, S.; Sang, Y.; Jin, Q.; Chitrakar, B.; Wang, X.; Wang, S. Integrated network pharmacology and cellular assay for the investigation of an anti-obesity effect of 6-shogaol. Food Chem. 2022, 374, 131755. [Google Scholar] [CrossRef]
- Pouwels, K.B.; van Grootheest, K. The rosiglitazone decision process at FDA and EMA. What should we learn? Int. J. Risk Saf. Med. 2012, 24, 73–80. [Google Scholar] [CrossRef]
- EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA). Scientific Opinion on the modification of the authorisation of a health claim related to plant sterol esters and lowering blood LDL-cholesterol; high blood LDL-cholesterol is a risk factor in the development of (coronary) heart disease pursuant to Article 14 of Regulation (EC) No 1924/2006, following a request in accordance with Article 19 of Regulation (EC) No 1924/2006. EFSA J. 2014, 12, 3577. [Google Scholar]
- Hsin, K.Y.; Ghosh, S.; Kitano, H. Combining Machine Learning Systems and Multiple Docking Simulation Packages to Improve Docking Prediction Reliability for Network Pharmacology. PLoS ONE 2013, 8, e83922. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Zhang, L.; Jin, C.; Xiong, Y.; Cheng, Y.Y.; Chen, K. Pomegranate flower extract bidirectionally regulates the proliferation, differentiation and apoptosis of 3T3-L1 cells through regulation of PPARγ expression mediated by PI3K-AKT signaling pathway. Biomed. Pharmacother. 2020, 131, 110769. [Google Scholar] [CrossRef] [PubMed]
- Tian, M.; Gao, H.; Jiao, H.; Tian, H.; Han, L.; Lin, X.; Cheng, G.; Sun, F.; Feng, B. Mechanisms of the Jian Pi Tiao Gan Yin in the treatment of simple obesity revealed by network pharmacology. Ann. Transl. Med. 2022, 10, 335. [Google Scholar] [CrossRef]
- Aranaz, P.; Navarro-Herrera, D.; Zabala, M.; Miguéliz, I.; Romo-Hualde, A.; López-Yoldi, M.; Martínez, J.A.; Vizmanos, J.L.; Milagro, F.I.; González-Navarro, C.J. Phenolic Compounds Inhibit 3T3-L1 Adipogenesis Depending on the Stage of Differentiation and Their Binding Affinity to PPARγ. Molecules 2019, 24, 1045. [Google Scholar] [CrossRef]
- Al Zarzour, R.H.; Ahmad, M.; Asmawi, M.Z.; Kaur, G.; Saeed, M.A.A.; Al-Mansoub, M.A.; Saghir, S.A.M.; Usman, N.S.; Al-Dulaimi, D.W.; Yam, M.F. Phyllanthus Niruri Standardized Extract Alleviates the Progression of Non-Alcoholic Fatty Liver Disease and Decreases Atherosclerotic Risk in Sprague-Dawley Rats. Nutrients 2017, 9, 766. [Google Scholar] [CrossRef]
- Jagtap, S.; Khare, P.; Mangal, P.; Bishnoi, M.; Kondepudi, K.K.; Bhutani, K. Protective effects of phyllanthin, a lignan from Phyllanthus amarus, against progression of high fat diet induced metabolic disturbances in mice. RSC Adv. 2016, 6, 58343–58353. [Google Scholar] [CrossRef]
- Kábelová, A.; Malínská, H.; Marková, I.; Oliyarnyk, O.; Chylíková, B.; Šeda, O. Ellagic Acid Affects Metabolic and Transcriptomic Profiles and Attenuates Features of Metabolic Syndrome in Adult Male Rats. Nutrients 2021, 13, 804. [Google Scholar] [CrossRef]
- Zhan, G.; Miao, R.; Zhang, F.; Hao, Y.; Zhang, Y.; Zhang, Y.; Khurm, M.; Zhang, X.; Guo, Z. Peraksine derivatives with potential anti-inflammatory activities from the stems of Rauvolfia vomitoria. Fitoterapia 2020, 146, 104704. [Google Scholar] [CrossRef] [PubMed]
- Trøseid, M.; Nestvold, T.K.; Rudi, K.; Thoresen, H.; Nielsen, E.W.; Lappegård, K.T. Plasma Lipopolysaccharide Is Closely Associated with Glycemic Control and Abdominal Obesity. Diabetes Care 2013, 36, 3627–3632. [Google Scholar] [CrossRef] [PubMed]
- Giacoman-Martínez, A.; Alarcón-Aguilar, F.J.; Zamilpa, A.; Hidalgo-Figueroa, S.; Navarrete-Vázquez, G.; García-Macedo, R.; Román-Ramos, R.; Almanza-Pérez, J.C. Triterpenoids from Hibiscus sabdariffa L. with PPARδ/γ Dual Agonist Action: In Vivo, In Vitro and In Silico Studies. Planta Med. 2019, 85, 412–423. [Google Scholar] [CrossRef]
- Dias, S.; Paredes, S.; Ribeiro, L. Drugs Involved in Dyslipidemia and Obesity Treatment: Focus on Adipose Tissue. Int. J. Endocrinol. 2018, 2018, 2637418. [Google Scholar] [CrossRef]
- Ru, J.; Li, P.; Wang, J.; Zhou, W.; Li, B.; Huang, C.; Li, P.; Guo, Z.; Tao, W.; Yang, Y.; et al. TCMSP: A database of systems pharmacology for drug discovery from herbal medicines. J. Cheminformatics 2014, 6, 13. [Google Scholar] [CrossRef]
- Yue, S.J.; Xin, L.T.; Fan, Y.C.; Li, S.J.; Tang, Y.P.; Duan, J.A.; Guan, H.S.; Wang, C.Y. Herb pair Danggui-Honghua: Mechanisms underlying blood stasis syndrome by system pharmacology approach. Sci. Rep. 2017, 7, 40318. [Google Scholar] [CrossRef]
- Kim, S.; Chen, J.; Cheng, T.; Gindulyte, A.; He, J.; He, S.; Li, Q.; Shoemaker, B.A.; Thiessen, P.A.; Yu, B.; et al. PubChem 2023 update. Nucleic Acids Res. 2023, 51, D1373–D1380. [Google Scholar] [CrossRef]
- Irwin, J.J.; Shoichet, B.K. ZINC—A Free Database of Commercially Available Compounds for Virtual Screening. J. Chem. Inf. Model. 2005, 45, 177–182. [Google Scholar] [CrossRef]
- Gfeller, D.; Grosdidier, A.; Wirth, M.; Daina, A.; Michielin, O.; Zoete, V. SwissTargetPrediction: A web server for target prediction of bioactive small molecules. Nucleic Acids Res. 2014, 42, W32–W38. [Google Scholar] [CrossRef]
- Szklarczyk, D.; Santos, A.; von Mering, C.; Jensen, L.J.; Bork, P.; Kuhn, M. STITCH 5: Augmenting protein-chemical interaction networks with tissue and affinity data. Nucleic Acids Res. 2016, 44, D380–D384. [Google Scholar] [CrossRef] [PubMed]
- UniProt Consortium. UniProt: The Universal Protein Knowledgebase in 2023. Nucleic Acids Res. 2023, 51, D523–D531. [Google Scholar] [CrossRef] [PubMed]
- Sayers, E.W.; Bolton, E.E.; Brister, J.R.; Canese, K.; Chan, J.; Comeau, D.C.; Connor, R.; Funk, K.; Kelly, C.; Kim, S.; et al. Database resources of the national center for biotechnology information. Nucleic Acids Res. 2022, 50, D20–D26. [Google Scholar] [CrossRef] [PubMed]
- Stelzer, G.; Rosen, N.; Plaschkes, I.; Zimmerman, S.; Twik, M.; Fishilevich, S.; Stein, T.I.; Nudel, R.; Lieder, I.; Mazor, Y.; et al. The GeneCards Suite: From Gene Data Mining to Disease Genome Sequence Analyses. Curr. Protoc. Bioinform. 2016, 54, 1.30.1–1.30.33. [Google Scholar] [CrossRef] [PubMed]
- Davis, A.P.; Wiegers, T.C.; Johnson, R.J.; Sciaky, D.; Wiegers, J.; Mattingly, C.J. Comparative Toxicogenomics Database (CTD): Update 2023. Nucleic Acids Res. 2023, 51, D1257–D1262. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Zhang, Y.; Zhao, D.; Yu, X.; Shen, X.; Zhou, Y.; Wang, S.; Qiu, Y.; Chen, Y.; Zhu, F. TTD: Therapeutic Target Database describing target druggability information. Nucleic Acids Res. 2023. [Google Scholar] [CrossRef] [PubMed]
- Hulsen, T.; de Vlieg, J.; Alkema, W. BioVenn—A web application for the comparison and visualization of biological lists using area-proportional Venn diagrams. BMC Genom. 2008, 9, 488. [Google Scholar] [CrossRef] [PubMed]
- Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: A Software Environment for Integrated Models of Biomolecular Interaction Networks. Genome Res. 2003, 13, 2498–2504. [Google Scholar] [CrossRef]
- Doncheva, N.T.; Assenov, Y.; Domingues, F.S.; Albrecht, M. Topological analysis and interactive visualization of biological networks and protein structures. Nat. Protoc. 2012, 7, 670–685. [Google Scholar] [CrossRef] [PubMed]
- Szklarczyk, D.; Kirsch, R.; Koutrouli, M.; Nastou, K.; Mehryary, F.; Hachilif, R.; Gable, A.L.; Fang, T.; Doncheva, N.T.; Pyysalo, S.; et al. The STRING database in 2023: Protein-protein association networks and functional enrichment analyses for any sequenced genome of interest. Nucleic Acids Res. 2023, 51, D638–D646. [Google Scholar] [CrossRef]
- Sherman, B.T.; Hao, M.; Qiu, J.; Jiao, X.; Baseler, M.W.; Lane, H.C.; Imamichi, T.; Chang, W. DAVID: A web server for functional enrichment analysis and functional annotation of gene lists (2021 update). Nucleic Acids Res. 2022, 50, W216–W221. [Google Scholar] [CrossRef] [PubMed]
- Frisch, M.; Trucks, G.; Schlegel, H.; Scuseria, G.; Robb, M.; Cheeseman, J.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.; et al. Gaussian 09W, revision A. 02. in 2009.
- Zardecki, C.; Dutta, S.; Goodsell, D.S.; Lowe, R.; Voigt, M.; Burley, S.K. PDB-101: Educational resources supporting molecular explorations through biology and medicine. Protein Sci. 2022, 31, 129–140. [Google Scholar] [CrossRef]
- Jurrus, E.; Engel, D.; Star, K.; Monson, K.; Brandi, J.; Felberg, L.E.; Brookes, D.H.; Wilson, L.; Chen, J.; Liles, K.; et al. Improvements to the APBS biomolecular solvation software suite. Protein Sci. 2018, 27, 112–128. [Google Scholar] [CrossRef]
- Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. AutoDock4 and AutoDockTools4: Automated Docking with Selective Receptor Flexibility. J. Comput. Chem. 2009, 30, 2785–2791. [Google Scholar] [CrossRef] [PubMed]
- Biovia, D.S. Discovery Studio Visualizer. v21. 1.0. 20298; Dassault Systèmes: San Diego, CA, USA, 2021. [Google Scholar]
- Schrödinger, LLC. The PyMOL Molecular Graphics System, Version 2.5; Schrödinger, LLC.: New York, NY, USA, 2021. [Google Scholar]
No. | Compound | Mol ID | OB (%) | DL | Herb |
---|---|---|---|---|---|
1 | Luteolin | MOL000006 | 36.16 | 0.25 | PE 1 |
2 | Quercetin | MOL000098 | 46.43 | 0.28 | PE 1 |
3 | Beta-sitosterol | MOL000358 | 36.91 | 0.75 | PE 1, TB 3 |
4 | Kaempferol | MOL000422 | 41.88 | 0.24 | PE 1 |
5 | (+)-Catechin | MOL000492 | 54.83 | 0.24 | PE 1 |
6 | Digallate | MOL000569 | 61.85 | 0.26 | PE 1 |
7 | Ellagic acid | MOL001002 | 43.06 | 0.43 | PE 1, TB 3, TC 2 |
8 | Sennidin C | MOL002276 | 50.69 | 0.61 | TC 2 |
9 | Leucodelphinidin | MOL005983 | 43.45 | 0.31 | PE 1 |
10 | 7-Dehydrosigmasterol | MOL006376 | 37.42 | 0.75 | TC 2 |
11 | Mucic acid 1,4-lactone 2-0-gallate | MOL006793 | 49.56 | 0.31 | PE 1 |
12 | Mucic acid 1,4-lactone 5-0-gallate | MOL006796 | 52.26 | 0.27 | PE 1 |
13 | (2S,3R,3aS,4R,4′S,5′R,6S,7aR)-3,4,4′-trihydroxy-3,5′-bis(hydroxymethyl)spiro [3a,4,5,6,7,7a-hexahydrobenzofuran-2,2′-tetrahydropyran]-6-carboxylic acid | MOL006799 | 48.46 | 0.31 | PE 1 |
14 | Phyllanthin | MOL006812 | 33.31 | 0.42 | PE 1 |
15 | (-)-Epigallocatechin-3-gallate | MOL006821 | 55.09 | 0.77 | PE 1 |
16 | α-amyrin | MOL006824 | 39.51 | 0.76 | PE 1 |
17 | Chebulic acid | MOL006826 | 72 | 0.32 | PE 1, TC 2 |
18 | Ellipticine | MOL009135 | 30.82 | 0.28 | TC 2 |
19 | Peraksine | MOL009136 | 82.58 | 0.78 | TC 2 |
20 | (R)-(6-methoxy-4-quinolyl)-[(2R,4R,5S)-5-vinylquinuclidin-2-yl]methanol | MOL009137 | 55.88 | 0.4 | TC 2 |
21 | Cheilanthifoline | MOL009149 | 46.5 | 0.72 | TC 2 |
GO Type | Term | Count | % | p-Value |
---|---|---|---|---|
GO BP | Positive regulation of transcription from RNA polymerase II promoter | 18 | 17.48 | 1.64 × 10-4 |
Response to drug | 16 | 15.53 | 4.34 × 10-11 | |
G-protein coupled receptor signaling pathway, coupled to cyclic nucleotide second messenger | 15 | 14.56 | 2.80 × 10-19 | |
Response to xenobiotic stimulus | 15 | 14.56 | 2.87 × 10-11 | |
G-protein coupled receptor signaling pathway | 15 | 14.56 | 4.67 × 10-4 | |
GO CC | Plasma membrane | 61 | 59.22 | 2.17 × 10-13 |
Integral component of membrane | 46 | 44.66 | 1.14 × 10-4 | |
Cytoplasm | 39 | 37.86 | 1.21 × 10-2 | |
Integral component of plasma membrane | 38 | 36.89 | 2.32 × 10-17 | |
Nucleoplasm | 30 | 29.13 | 1.42 × 10-2 | |
GO MF | Protein binding | 85 | 82.52 | 3.17 × 10-4 |
Identical protein binding | 22 | 21.36 | 2.62 × 10-4 | |
ATP binding | 18 | 17.48 | 3.77 × 10-3 | |
G-protein coupled receptor activity | 17 | 16.50 | 4.14 × 10-6 | |
Protein homodimerization activity | 16 | 15.53 | 6.06 × 10-6 |
AKT1 | Lowest Binding Energy | Conventional Hydrogen Bond Interaction Residues | Bond Distance | PPARG | Lowest Binding Energy | Conventional Hydrogen Bond Interaction Residues | Bond Distance |
---|---|---|---|---|---|---|---|
Beta-sitosterol | −8.19 | SER204 | 1.98 | ||||
7-Dehydrosigmasterol | −8.09 | THR210 | 3.34 | 7-Dehydrosigmasterol | −7.99 | GLU291 | 2.72 |
α-amyrin | −7.72 | TYR271 | 2.24 | ||||
Peraksine | −6.81 | ASP291 | 3.32 | Peraksine | −6.46 | SER289 | 1.90 |
ILE289 | 3.48 | ||||||
THR210 | 1.78 | ||||||
Luteolin | −6.14 | GLN78 | 1.93 | Luteolin | −5.36 | ARG288 | 2.59 |
THR210 | 2.15 | GLN286 | 2.02 | ||||
THR210 | 2.39 | GLN286 | 2.16 | ||||
THR210 | 3.16 | ||||||
TRP79 | 2.52 | ||||||
VAL270 | 1.82 | ||||||
Quercetin | −6.09 | ILE289 | 1.84 | Quercetin | −5.47 | GLU291 | 1.98 |
ILE289 | 1.95 | ILE281 | 2.18 | ||||
LYS267 | 2.16 | ILE281 | 2.24 | ||||
SER204 | 2.08 | LEU340 | 1.98 | ||||
SER204 | 2.51 | ||||||
Kaempferol | −5.97 | ILE289 | 1.98 | Kaempferol | −4.99 | ARG288 | 1.88 |
LYS267 | 1.94 | ARG288 | 2.32 | ||||
SER204 | 2.13 | LEU340 | 2.00 | ||||
SER204 | 2.34 | TYR327 | 1.83 | ||||
Ellagic acid | −5.96 | ILE289 | 2.19 | Ellagic acid | −5.21 | CYS285 | 2.72 |
SER204 | 2.12 | ILE281 | 2.16 | ||||
THR210 | 2.34 | LEU340 | 2.00 | ||||
LEU340 | 2.04 | ||||||
Phyllanthin | −4.6 | ARG288 | 1.99 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Inpan, R.; Sakuludomkan, C.; Na Takuathung, M.; Koonrungsesomboon, N. Network Pharmacology Revealing the Therapeutic Potential of Bioactive Components of Triphala and Their Molecular Mechanisms against Obesity. Int. J. Mol. Sci. 2024, 25, 10755. https://doi.org/10.3390/ijms251910755
Inpan R, Sakuludomkan C, Na Takuathung M, Koonrungsesomboon N. Network Pharmacology Revealing the Therapeutic Potential of Bioactive Components of Triphala and Their Molecular Mechanisms against Obesity. International Journal of Molecular Sciences. 2024; 25(19):10755. https://doi.org/10.3390/ijms251910755
Chicago/Turabian StyleInpan, Ratchanon, Chotiwit Sakuludomkan, Mingkwan Na Takuathung, and Nut Koonrungsesomboon. 2024. "Network Pharmacology Revealing the Therapeutic Potential of Bioactive Components of Triphala and Their Molecular Mechanisms against Obesity" International Journal of Molecular Sciences 25, no. 19: 10755. https://doi.org/10.3390/ijms251910755
APA StyleInpan, R., Sakuludomkan, C., Na Takuathung, M., & Koonrungsesomboon, N. (2024). Network Pharmacology Revealing the Therapeutic Potential of Bioactive Components of Triphala and Their Molecular Mechanisms against Obesity. International Journal of Molecular Sciences, 25(19), 10755. https://doi.org/10.3390/ijms251910755