Advances in Gouty Arthritis Management: Integration of Established Therapies, Emerging Treatments, and Lifestyle Interventions
Abstract
:1. Introduction
2. Uric Acid-Lowering Therapies
2.1. Dietary Strategies
2.1.1. Reducing Purine-Rich Foods
2.1.2. Limiting Alcohol Consumption
2.1.3. Increasing Consumption of Low-Purine and Low-Fat Dairy Products
2.1.4. Incorporating Polyphenol-Rich Foods
2.1.5. Enhancing Hydration
2.1.6. Consuming Foods Rich in Vitamin C
2.1.7. Limiting Fructose and Sugar-Sweetened Beverages
2.2. Medicinal Treatments (Topical and Systemic)
2.2.1. Allopurinol (Systemic)
2.2.2. Febuxostat (Systemic)
2.2.3. Probenecid (Systemic)
2.2.4. Lesinurad (Systemic)
2.2.5. Tibetan Medicine Qingpeng Ointment (Local)
2.2.6. Tongfengkang
2.3. Pharmaceutical Plant Additives
2.3.1. Citrullus colocynthis
2.3.2. Cangzhu
3. Anti-Inflammatory Therapies Targeting the Secondary Inflammatory Cascade
3.1. Conventional Therapies
3.2. Novel Therapies
3.2.1. Canakinumab
3.2.2. Ozone Therapy
3.2.3. Warm Ginger Compress Therapy
3.2.4. Physical Activity
4. Lifestyle Modifications for Gout Management
4.1. Weight Management
4.2. Regular Physical Activity
4.3. Smoking Cessation
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Parisa, N.; Kamaluddin, M.T.; Saleh, M.I.; Sinaga, E. The inflammation process of gout arthritis and its treatment. J. Adv. Pharm. Technol. Res. 2023, 14, 166–170. [Google Scholar] [CrossRef] [PubMed]
- Ragab, G.; Elshahaly, M.; Bardin, T. Gout: An old disease in new perspective—A review. J. Adv. Res. 2017, 8, 495–511. [Google Scholar] [CrossRef] [PubMed]
- Roman, Y.M. The Role of Uric Acid in Human Health: Insights from the Uricase Gene. J. Pers. Med. 2023, 13, 1409. [Google Scholar] [CrossRef] [PubMed]
- Kushiyama, A.; Nakatsu, Y.; Matsunaga, Y.; Yamamotoya, T.; Mori, K.; Ueda, K.; Inoue, Y.; Sakoda, H.; Fujishiro, M.; Ono, H.; et al. Role of Uric Acid Metabolism-Related Inflammation in the Pathogenesis of Metabolic Syndrome Components Such as Atherosclerosis and Nonalcoholic Steatohepatitis. Mediat. Inflamm. 2016, 2016, 8603164. [Google Scholar] [CrossRef]
- Prasad Sah, O.S.; Qing, Y.X. Associations between Hyperuricemia and Chronic Kidney Disease: A Review. Nephro-Urol. Mon. 2015, 7, e27233. [Google Scholar] [CrossRef]
- Rodriguez-Navarro, C.; Elert, K.; Ibañez-Velasco, A.; Monasterio-Guillot, L.; Andres, M.; Sivera, F.; Pascual, E.; Ruiz-Agudo, E. Unraveling the pathological biomineralization of monosodium urate crystals in gout patients. Commun. Biol. 2024, 7, 828. [Google Scholar] [CrossRef]
- Pillinger, M.H.; Mandell, B.F. Therapeutic approaches in the treatment of gout. Semin. Arthritis Rheum. 2020, 50, S24–S30. [Google Scholar] [CrossRef]
- Igel, T.F.; Krasnokutsky, S.; Pillinger, M.H. Recent advances in understanding and managing gout. F1000Research 2017, 6, 247. [Google Scholar] [CrossRef]
- Afinogenova, Y.; Danve, A.; Neogi, T. Update on gout management: What is old and what is new. Curr. Opin. Rheumatol. 2022, 34, 118–124. [Google Scholar] [CrossRef]
- Danve, A.; Neogi, T. Rising Global Burden of Gout: Time to Act. Arthritis Rheumatol. 2020, 72, 1786–1788. [Google Scholar] [CrossRef]
- Dalbeth, N.; Stamp, L.K.; Merriman, T.R. The genetics of gout: Towards personalised medicine? BMC Med. 2017, 15, 108. [Google Scholar] [CrossRef] [PubMed]
- Engel, B.; Just, J.; Bleckwenn, M.; Weckbecker, K. Treatment Options for Gout. Dtsch. Arztebl. Int. 2017, 114, 215–222. [Google Scholar] [CrossRef] [PubMed]
- Vargas-Santos, A.B.; Neogi, T. Management of Gout and Hyperuricemia in CKD. Am. J. Kidney Dis. 2017, 70, 422–439. [Google Scholar] [CrossRef] [PubMed]
- Dean, L.; Kane, M. Allopurinol Therapy and HLA-B*58:01 Genotype. In Medical Genetics Summaries [Internet]; Pratt, V.M., Scott, S.A., Pirmohamed, M., Esquivel, B., Kattman, B.L., Malheiro, A.J., Eds.; National Center for Biotechnology Information (US): Bethesda, MD, USA, 2012. [Google Scholar]
- Lin, T.C.; Hung, L.Y.; Chen, Y.C.; Lo, W.C.; Lin, C.H.; Tam, K.W.; Wu, M.Y. Effects of febuxostat on renal function in patients with chronic kidney disease: A systematic review and meta-analysis. Medicine 2019, 98, e16311. [Google Scholar] [CrossRef]
- Choi, H.K.; Neogi, T.; Stamp, L.K.; Terkeltaub, R.; Dalbeth, N. Reassessing the Cardiovascular Safety of Febuxostat: Implications of the Febuxostat versus Allopurinol Streamlined Trial. Arthritis Rheumatol. 2021, 73, 721–724. [Google Scholar] [CrossRef]
- Ruoff, G.; Edwards, N.L. Overview of Serum Uric Acid Treatment Targets in Gout: Why Less Than 6 mg/dL? Postgrad. Med. 2016, 128, 706–715. [Google Scholar] [CrossRef]
- Yang, D.H.; Chen, H.C.; Wei, J.C. Early urate-lowering therapy in gouty arthritis with acute flares: A double-blind placebo controlled clinical trial. Eur. J. Med. Res. 2023, 28, 10. [Google Scholar] [CrossRef]
- Sanchez-Niño, M.D.; Zheng-Lin, B.; Valiño-Rivas, L.; Sanz, A.B.; Ramos, A.M.; Luño, J.; Goicoechea, M.; Ortiz, A. Lesinurad: What the nephrologist should know. Clin. Kidney J. 2017, 10, 679–687. [Google Scholar] [CrossRef]
- Baumgartner, S.; Yeh, L.T.; Shen, Z.; Kerr, B.; Manhard, K.; Quart, B. The Effect of Lesinurad in Combination with Allopurinol on Serum Uric Acid Levels in Patients with Gout. J. Clin. Pharmacol. 2018, 58, 1164–1170. [Google Scholar] [CrossRef]
- Schlesinger, N.; De Meulemeester, M.; Pikhlak, A.; Yücel, A.E.; Richard, D.; Murphy, V.; Arulmani, U.; Sallstig, P.; So, A. Canakinumab relieves symptoms of acute flares and improves health-related quality of life in patients with difficult-to-treat Gouty Arthritis by suppressing inflammation: Results of a randomized, dose-ranging study. Arthritis Res. Ther. 2011, 13, R53. [Google Scholar] [CrossRef]
- Zhao, J.; Wei, K.; Jiang, P.; Chang, C.; Xu, L.; Xu, L.; Shi, Y.; Guo, S.; Xue, Y.; He, D. Inflammatory Response to Regulated Cell Death in Gout and Its Functional Implications. Front Immunol. 2022, 1, 888306. [Google Scholar] [CrossRef] [PubMed]
- Eliseev, M.S. What we know about gout today. Therapy 2024, 10, 63–73. [Google Scholar] [CrossRef]
- Shang, Y.X.; Wei, S.F.; Yang, K.P.; Liu, Y.; Wei, S.; Dong, X.; Wang, X.C.; Xie, Z.M.; Fang, R.L.; Liang, L.N.; et al. Efficacy of Qingpeng ointment (a Tibetan medicine) for acute gouty arthritis: A multi-center, randomized, double-blind, placebo-controlled trial. BMC Complement. Med. Ther. 2024, 24, 21. [Google Scholar] [CrossRef] [PubMed]
- Galozzi, P.; Bindoli, S.; Doria, A.; Oliviero, F.; Sfriso, P. Autoinflammatory Features in Gouty Arthritis. J. Clin. Med. 2021, 10, 1880. [Google Scholar] [CrossRef]
- Shang, Y.X.; Dong, X.; Xie, Z.M.; Li, X.P.; Wang, X.C.; Huang, J.Y.; Wei, S.F.; Liu, Y.; Liu, J.P. Efficacy and safety of Tibetan medicine Qingpeng ointment for acute gouty arthritis: Protocol for a multi-center, randomized, double-blind, placebo-controlled trial. Trials 2022, 23, 387. [Google Scholar] [CrossRef]
- Shen, J.; Xu, S.; Chu, Z.; Zhu, M.; Luo, Y.; Pan, B.; Liu, Y.; Wang, H. Anti-Inflammatory and Analgesic Effects of Chinese Medicine TongFengKang in the Treatment of Gouty Arthritis. Inter. J. Pharmacol. 2023, 19, 604–615. [Google Scholar] [CrossRef]
- Zhou, M.; Ze, K.; Wang, Y.; Li, X.; Hua, L.; Lu, Y.; Chen, X.; Ding, X.; Chen, S.; Ru, Y.; et al. Huzhang Tongfeng Granule Improves Monosodium Urate-Induced Inflammation of Gouty Arthritis Rat Model by Downregulation of Cyr61 and Related Cytokines. Evid. Based Complement. Alternat. Med. 2020, 2020, 9238797. [Google Scholar] [CrossRef]
- Chen, L.; Luo, Z.; Wang, M.; Cheng, J.; Li, F.; Lu, H.; He, Q.; You, Y.; Zhou, X.; Kwan, H.Y.; et al. The Efficacy and Mechanism of Chinese Herbal Medicines in Lowering Serum Uric Acid Levels: A Systematic Review. Front Pharmacol. 2021, 11, 578318. [Google Scholar] [CrossRef]
- Wang, H.; Chu, Z.; Ni, T.; Chen, D.; Dai, X.; Jiang, W.; Sunagawa, M.; Liu, Y. Effect and mechanism of aqueous extract of Chinese herbal prescription (TFK) in treating gout arthritis. J. Ethnopharmacol. 2024, 321, 117527. [Google Scholar] [CrossRef]
- Susanti, S.; Andriani, D.; Bistara, D.N. The application of warm water compresses with ginger and lemongrass on pain intensity in patients with gout arthritis. Nurse Holist. Care 2021, 1, 63–72. [Google Scholar] [CrossRef]
- Sulistyana, C.S.; Nurseskasatmata, S.E.; Fauzi, A. Warm Ginger Compress and Static Stretching for the Change of Pain in Gout Arthritis. JNK 2023, 10, 302–308. [Google Scholar] [CrossRef]
- Musta’in, M.; Yuniarti, T.; Rahmasari, I.; Cristin, R.E.Y.; Saryadi, S. The Effect of Warm Ginger Compress on Reducing Gout Arthritis Pain in the Elderly. Inter. J. Med. Health 2023, 32, 39–46. [Google Scholar] [CrossRef]
- Raziani, Y.; Hama, A.R.; Nazari, A.; Raziani, S. Citrullus colocynthis, an effective treatment for gouty arthritis. Inter. J. Afr. Nurs. Sci. 2023, 18, 100576. [Google Scholar] [CrossRef]
- Li, Q.Y.; Munawar, M.; Saeed, M.; Shen, J.Q.; Khan, M.S.; Noreen, S.; Alagawany, M.; Naveed, M.; Madni, A.; Li, C.X. Citrullus colocynthis (L.) Schrad (Bitter Apple Fruit): Promising Traditional Uses, Pharmacological Effects, Aspects, and Potential Applications. Front Pharmacol. 2022, 12, 791049. [Google Scholar] [CrossRef] [PubMed]
- Pashmforosh, M.; Rajabi Vardanjani, H.; Rajabi Vardanjani, H.; Pashmforosh, M.; Khodayar, M.J. Topical Anti-Inflammatory and Analgesic Activities of Citrullus colocynthis Extract Cream in Rats. Medicina 2018, 54, 51. [Google Scholar] [CrossRef]
- Karunakaran, S.; Hari, R. Comparative Antioxidant and Anti-gout Activities of Citrullus colocynthis loaded Fruit Silver nanoparticles with its Ethanolic extract. Avicenna J. Med. Biotechnol. 2022, 14, 303–309. [Google Scholar] [CrossRef]
- Barghamdi, B.; Ghorat, F.; Asadollahi, K.; Sayehmiri, K.; Peyghambari, R.; Abangah, G. Therapeutic effects of Citrullus colocynthis fruit in patients with type II diabetes: A clinical trial study. J. Pharm. Bioallied Sci. 2016, 8, 130–134. [Google Scholar]
- Abdulridha, M.K.; Al-Marzoqi, A.H.; Ghasemian, A. The Anticancer Efficiency of Citrullus colocynthis toward the Colorectal Cancer Therapy. J Gastrointest. Cancer 2020, 51, 439–444. [Google Scholar] [CrossRef]
- Abdullah, D.M.; Kabil, S.L. Ozone Therapy Alleviates Monosodium Urate Induced Acute Gouty Arthritis in Rats through Inhibition of NLRP3 Inflammasome. Curr. Drug Ther. 2021, 16, 345–353. [Google Scholar] [CrossRef]
- Fan, W.; Liu, C.; Chen, D.; Xu, C.; Qi, X.; Zhang, A.; Zhu, X.; Liu, Y.; Wang, L.; Hao, L.; et al. Ozone alleviates MSU-induced acute gout pain via upregulating AMPK/GAS6/MerTK/SOCS3 signaling pathway. J. Transl. Med. 2023, 21, 890. [Google Scholar] [CrossRef]
- de Sire, A.; Marotta, N.; Ferrillo, M.; Agostini, F.; Sconza, C.; Lippi, L.; Respizzi, S.; Giudice, A.; Invernizzi, M.; Ammendolia, A. Oxygen-Ozone Therapy for Reducing Pro-Inflammatory Cytokines Serum Levels in Musculoskeletal and Temporomandibular Disorders: A Comprehensive Review. Int. J. Mol. Sci. 2022, 23, 2528. [Google Scholar] [CrossRef] [PubMed]
- Clavo, B.; Rodríguez-Esparragón, F.; Rodríguez-Abreu, D.; Martínez-Sánchez, G.; Llontop, P.; Aguiar-Bujanda, D.; Fernández-Pérez, L.; Santana-Rodríguez, N. Modulation of Oxidative Stress by Ozone Therapy in the Prevention and Treatment of Chemotherapy-Induced Toxicity: Review and Prospects. Antioxidants 2019, 8, 588. [Google Scholar] [CrossRef] [PubMed]
- Shah, S.; Shinde, S.B. Impact of Physical Activity on Gouty Arthritis: A Systematic Review. D Y Patil J. Health Sci. 2021, 9, 140–145. [Google Scholar] [CrossRef]
- Jablonski, K.; Young, N.A.; Henry, C.; Caution, K.; Kalyanasundaram, A.; Okafor, I.; Harb, P.; Schwarz, E.; Consiglio, P.; Cirimotich, C.M.; et al. Physical activity prevents acute inflammation in a gout model by downregulation of TLR2 on circulating neutrophils as well as inhibition of serum CXCL1 and is associated with decreased pain and inflammation in gout patients. PLoS ONE 2020, 15, e0237520. [Google Scholar] [CrossRef] [PubMed]
- Lesnak, J.B.; Berardi, G.; Sluka, K.A. Influence of routine exercise on the peripheral immune system to prevent and alleviate pain. Neurobiol. Pain 2023, 13, 100126. [Google Scholar] [CrossRef]
- Gong, M.; Wen, S.; Nguyen, T.; Wang, C.; Jin, J.; Zhou, L. Converging Relationships of Obesity and Hyperuricemia with Special Reference to Metabolic Disorders and Plausible Therapeutic Implications. Diabetes Metab. Syndr. Obes. 2020, 13, 943–962. [Google Scholar] [CrossRef]
- Mei, Y.; Dong, B.; Geng, Z.; Xu, L. Excess Uric Acid Induces Gouty Nephropathy through Crystal Formation: A Review of Recent Insights. Front. Endocrinol. 2022, 13, 911968. [Google Scholar] [CrossRef]
- Yokose, C.; McCormick, N.; Choi, H.K. The role of diet in hyperuricemia and gout. Curr. Opin. Rheumatol. 2021, 33, 135–144. [Google Scholar] [CrossRef]
- Choi, H.K.; Curhan, G. Beer, liquor, and wine consumption and serum uric acid level: The Third National Health and Nutrition Examination Survey. Arthritis Rheum. 2004, 51, 1023–1029. [Google Scholar] [CrossRef]
- Danve, A.; Sehra, S.T.; Neogi, T. Role of diet in hyperuricemia and gout. Best Pract. Res. Clin. Rheumatol. 2021, 35, 101723. [Google Scholar] [CrossRef]
- Rudrapal, M.; Khairnar, S.J.; Khan, J.; Dukhyil, A.B.; Ansari, M.A.; Alomary, M.N.; Alshabrmi, F.M.; Palai, S.; Deb, P.K.; Devi, R. Dietary Polyphenols and Their Role in Oxidative Stress-Induced Human Diseases: Insights into Protective Effects, Antioxidant Potentials and Mechanism(s) of Action. Front Pharmacol. 2022, 13, 806470. [Google Scholar] [CrossRef] [PubMed]
- Sirše, M. Effect of Dietary Polyphenols on Osteoarthritis-Molecular Mechanisms. Life 2022, 12, 436. [Google Scholar] [CrossRef] [PubMed]
- Zou, F.; Li, X.; Yang, R.; Zhang, R.; Zhao, X. Effects and underlying mechanisms of food polyphenols in treating gouty arthritis: A review on nutritional intake and joint health. J. Food Biochem. 2022, 46, e14072. [Google Scholar] [CrossRef] [PubMed]
- Haidari, F., Jr.; Mohammad Shahi, M.; Keshavarz, S.A.; Rashidi, M.R. Inhibitory Effects of Tart Cherry (Prunus cerasus) Juice on Xanthine Oxidoreductase Activity and its Hypouricemic and Antioxidant Effects on Rats. Malays. J. Nutr. 2009, 15, 53–64. [Google Scholar] [PubMed]
- Chen, P.E.; Liu, C.Y.; Chien, W.H.; Chien, C.W.; Tung, T.H. Effectiveness of Cherries in Reducing Uric Acid and Gout: A Systematic Review. Evid. Based Complement. Alternat. Med. 2019, 2019, 9896757. [Google Scholar] [CrossRef]
- Rana, A.; Samtiya, M.; Dhewa, T.; Mishra, V.; Aluko, R.E. Health benefits of polyphenols: A concise review. J. Food Biochem. 2022, 46, e14264. [Google Scholar] [CrossRef]
- Helget, L.N.; Mikuls, T.R. Environmental Triggers of Hyperuricemia and Gout. Rheum. Dis. Clin. N. Am. 2022, 48, 891–906. [Google Scholar] [CrossRef]
- Juraschek, S.P.; Gaziano, J.M.; Glynn, R.J.; Gomelskaya, N.; Bubes, V.Y.; Buring, J.E.; Shmerling, R.H.; Sesso, H.D. Effects of vitamin C supplementation on gout risk: Results from the Physicians’ Health Study II trial. Am. J. Clin. Nutr. 2022, 116, 812–819. [Google Scholar] [CrossRef]
- Jamnik, J.; Rehman, S.; Blanco Mejia, S.; de Souza, R.J.; Khan, T.A.; Leiter, L.A.; Wolever, T.M.; Kendall, C.W.; Jenkins, D.J.; Sievenpiper, J.L. Fructose intake and risk of gout and hyperuricemia: A systematic review and meta-analysis of prospective cohort studies. BMJ Open 2016, 6, e013191. [Google Scholar] [CrossRef]
- Li, C.; Wang, C.; Guo, Y.; Wen, R.; Yan, L.; Zhang, F.; Gong, Q.; Yu, H. Research on the effect and underlying molecular mechanism of Cangzhu in the treatment of gouty arthritis. Eur. J. Pharmacol. 2022, 927, 175044. [Google Scholar] [CrossRef]
- Wang, S.; Liu, W.; Wei, B.; Wang, A.; Wang, Y.; Wang, W.; Gao, J.; Jin, Y.; Lu, H.; Ka, Y.; et al. Traditional Herbal Medicine: Therapeutic Potential in Acute Gouty Arthritis. J. Ethnopharmacol. 2024, 330, 118182. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Tian, Y. Research Progress in the Prevention and Treatment of Hyperuricemia with Gout by Traditional Chinese Medicine. MEDS Chin. Med. 2023, 5, 79–86. [Google Scholar]
- Liang, H.; Deng, P.; Ma, Y.F.; Wu, Y.; Ma, Z.H.; Zhang, W.; Wu, J.D.; Qi, Y.Z.; Pan, X.Y.; Huang, F.S.; et al. Advances in Experimental and Clinical Research of the Gouty Arthritis Treatment with Traditional Chinese Medicine. Evid. Based Complement. Alternat. Med. 2021, 2021, 8698232. [Google Scholar] [CrossRef] [PubMed]
- Choi, H.; Neogi, T.; Stamp, L.; Dalbeth, N.; Terkeltaub, R. New Perspectives in Rheumatology: Implications of the Cardiovascular Safety of Febuxostat and Allopurinol in Patients with Gout and Cardiovascular Morbidities Trial and the Associated Food and Drug Administration Public Safety Alert. Arthritis Rheumatol. 2018, 70, 1702–1709. [Google Scholar] [CrossRef] [PubMed]
- Chikina, M.N.; Eliseev, M.S.; Zhelyabina, O.V. Comparison of the efficacy and safety of various anti-inflammatory drugs in urate-lowering therapy initiation in patients with gout (preliminary data). Sovrem. Revmatol. (Mod. Rheumatol. J.) 2021, 15, 50–56. (In Russian) [Google Scholar] [CrossRef]
- Schlesinger, N.; Pillinger, M.H.; Simon, L.S.; Lipsky, P.E. Interleukin-1β inhibitors for the management of acute gout flares: A systematic literature review. Arthritis Res. Ther. 2023, 25, 128. [Google Scholar] [CrossRef]
- Toprover, M.; Shah, B.; Oh, C.; Igel, T.F.; Romero, A.G.; Pike, V.C.; Curovic, F.; Bang, D.; Lazaro, D.; Krasnokutsky, S.; et al. Initiating guideline-concordant gout treatment improves arterial endothelial function and reduces intercritical inflammation: A prospective observational study. Arthritis Res. Ther. 2020, 22, 169. [Google Scholar] [CrossRef]
- Machado, A.U.; Contri, R.V. Effectiveness and Safety of Ozone Therapy for Dermatological Disorders: A Literature Review of Clinical Trials. Indian J. Dermatol. 2022, 67, 479. [Google Scholar] [CrossRef]
- Gwinnutt, J.M.; Wieczorek, M.; Balanescu, A.; Bischoff-Ferrari, H.A.; Boonen, A.; Cavalli, G.; de Souza, S.; de Thurah, A.; Dorner, T.E.; Moe, R.H.; et al. 2021 EULAR recommendations regarding lifestyle behaviours and work participation to prevent progression of rheumatic and musculoskeletal diseases. Ann Rheum Dis. 2023, 82, 48–56. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, S.; Yuan, M.; Xu, Y.; Xu, H. Gout and Diet: A Comprehensive Review of Mechanisms and Management. Nutrients 2022, 14, 3525. [Google Scholar] [CrossRef]
- Kannuthurai, V.; Gaffo, A. Management of Patients with Gout and Kidney Disease: A Review of Available Therapies and Common Missteps. Kidney360 2023, 4, e1332–e1340. [Google Scholar] [CrossRef] [PubMed]
- Hou, Y.; Ma, R.; Gao, S.; Kaudimba, K.K.; Yan, H.; Liu, T.; Wang, R. The Effect of Low and Moderate Exercise on Hyperuricemia: Protocol for a Randomized Controlled Study. Front. Endocrinol. 2021, 12, 716802. [Google Scholar] [CrossRef]
- Gee Teng, G.; Pan, A.; Yuan, J.M.; Koh, W.P. Cigarette Smoking and the Risk of Incident Gout in a Prospective Cohort Study. Arthritis Care Res. 2016, 68, 1135–1142. [Google Scholar] [CrossRef] [PubMed]
- Aung, T.; Myung, G.; FitzGerald, J.D. Treatment approaches and adherence to urate-lowering therapy for patients with gout. Patient Prefer. Adherence 2017, 11, 795–800. [Google Scholar] [CrossRef] [PubMed]
- Sagai, M.; Bocci, V. Mechanisms of Action Involved in Ozone Therapy: Is healing induced via a mild oxidative stress? Med. Gas Res. 2011, 1, 29. [Google Scholar] [CrossRef] [PubMed]
- Serra, M.E.G.; Baeza-Noci, J.; Mendes Abdala, C.V.; Luvisotto, M.M.; Bertol, C.D.; Anzolin, A.P. The role of ozone treatment as integrative medicine. An evidence and gap map. Front. Public Health 2023, 10, 1112296. [Google Scholar] [CrossRef]
- Perez-Ruiz, F.; Desideri, G. Improving adherence to gout therapy: An expert review. Ther. Clin. Risk Manag. 2018, 14, 793–802. [Google Scholar] [CrossRef]
- Thummak, S.; Uppor, W.; Wannarit, L.O. Patient compliance: A concept analysis. Belitung Nurs. J. 2023, 9, 421–427. [Google Scholar] [CrossRef]
- de Jong, L.M.; Jiskoot, W.; Swen, J.J.; Manson, M.L. Distinct Effects of Inflammation on Cytochrome P450 Regulation and Drug Metabolism: Lessons from Experimental Models and a Potential Role for Pharmacogenetics. Genes 2020, 11, 1509. [Google Scholar] [CrossRef]
Treatment Strategy | Type | Mechanism of Action | Study Type | Dose/Duration | Percentage Reduction in Uric Acid Levels | Toxic Doses/Side Effects | Advantages | Disadvantages | References |
---|---|---|---|---|---|---|---|---|---|
Urate-Lowering Therapies | Allopurinol | Inhibits xanthine oxidase, reducing uric acid production | Clinical Trial | 100–800 mg/day, long-term use | 35–50% | Risk of hypersensitivity reactions, especially in patients with HLA-B*5801 | Effective in reducing serum urate levels; well-studied | Requires dose adjustments for renal impairment; potential for severe side effects | [13,14] |
Febuxostat | Selective inhibition of xanthine oxidase, lowers uric acid levels | Clinical Trial | 40–120 mg/day, long-term use | 40–60% | Potential increased cardiovascular risk | More effective in patients intolerant to allopurinol | Costlier than allopurinol; cardiovascular concerns | [15,16] | |
Probenecid | Increases renal excretion of uric acid | Clinical Trial | 500–2000 mg/day, long-term use | 20–30% | Risk of kidney stones; contraindicated in patients with renal impairment | Increases uric acid excretion | Requires good renal function; risk of kidney stones | [17,18] | |
Lesinurad | Blocks URAT1 transporter to enhance urate excretion | Clinical Trial | 200 mg/day, in combination with xanthine oxidase inhibitors | 25–35% (when combined with xanthine oxidase inhibitors) | Risk of renal adverse events, such as acute kidney injury | Effective in combination with xanthine oxidase inhibitors | Should not be used as monotherapy; requires combination with other agents | [19,20] | |
Anti-Inflammatory Therapies | Canakinumab | Inhibits IL-1β to reduce inflammation and prevent flares | Randomized Controlled Trial | 150 mg subcutaneous injection, every 8 weeks | Not applicable | Mild to moderate infections; high cost | Effective for patients intolerant to conventional treatments | High cost may limit use; requires further studies for long-term safety | [21,22,23] |
Complementary Therapies | Qingpeng Ointment | Reduces inflammation by inhibiting TNF-α, IL-1β, IL-6 | Clinical Trial | Topical application, 2–4 weeks | Not applicable | Rare skin irritation, allergic reactions | Natural and well-tolerated | Limited data from large-scale studies | [24,25,26] |
Tongfengkang (Herbal Formula) | Modulates inflammatory pathways and enhances urate excretion | In vitro, in vivo, Clinical Trial | Varies by formulation | Approx. 20% | Generally well-tolerated; mild gastrointestinal discomfort at high doses | Reduces inflammation and urate levels | Evidence primarily from small-scale studies; variability in formulations | [27,28,29,30] | |
Warm Ginger Compress Therapy | Inhibits proinflammatory cytokines (TNF-α, IL-1β, COX-2) | Observational Studies | Applied 2–3 times daily, 7–14 days | Not applicable | Minimal side effects; rare skin irritation | Easy to use; safe for long-term use | Limited to observational studies; requires more clinical validation | [31,32,33] | |
Phytotherapy | Citrullus colocynthis | Inhibits proinflammatory cytokines and promotes uric acid excretion | In vitro, in vivo Studies | 300 mg/kg/day, 14–28 days | 15–25% | Gastrointestinal upset at high doses | Natural alternative with potential fewer side effects | Requires standardization in preparation and dosing; limited to small-scale trials | [34,35,36,37,38,39] |
Alternative Therapies | Ozone Therapy | Modulates immune response and reduces oxidative stress | Animal Models, Small-scale Human Studies | 30–50 μg/mL, 3 times/week | Not applicable | Potential for oxidative damage at high doses | Promising in reducing acute gout symptoms | Limited clinical evidence; mostly supported by animal studies | [40,41,42,43] |
Lifestyle Modifications | Physical Activity | Reduces serum uric acid levels; stimulates anti-inflammatory pathways | Observational Studies | At least 150 min of moderate exercise per week | Approx. 10–20% | Generally safe; may not be suitable for all patients with joint issues | Improves overall health; decreases flare frequency | Requires tailored exercise programs; compliance may vary | [44,45,46,47] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yao, T.-K.; Lee, R.-P.; Wu, W.-T.; Chen, I.-H.; Yu, T.-C.; Yeh, K.-T. Advances in Gouty Arthritis Management: Integration of Established Therapies, Emerging Treatments, and Lifestyle Interventions. Int. J. Mol. Sci. 2024, 25, 10853. https://doi.org/10.3390/ijms251910853
Yao T-K, Lee R-P, Wu W-T, Chen I-H, Yu T-C, Yeh K-T. Advances in Gouty Arthritis Management: Integration of Established Therapies, Emerging Treatments, and Lifestyle Interventions. International Journal of Molecular Sciences. 2024; 25(19):10853. https://doi.org/10.3390/ijms251910853
Chicago/Turabian StyleYao, Ting-Kuo, Ru-Ping Lee, Wen-Tien Wu, Ing-Ho Chen, Tzai-Chiu Yu, and Kuang-Ting Yeh. 2024. "Advances in Gouty Arthritis Management: Integration of Established Therapies, Emerging Treatments, and Lifestyle Interventions" International Journal of Molecular Sciences 25, no. 19: 10853. https://doi.org/10.3390/ijms251910853
APA StyleYao, T. -K., Lee, R. -P., Wu, W. -T., Chen, I. -H., Yu, T. -C., & Yeh, K. -T. (2024). Advances in Gouty Arthritis Management: Integration of Established Therapies, Emerging Treatments, and Lifestyle Interventions. International Journal of Molecular Sciences, 25(19), 10853. https://doi.org/10.3390/ijms251910853