Transcription Factors in the Pathogenesis of Lupus Nephritis and Their Targeted Therapy
Abstract
:1. Introduction
2. TFs in the Pathogenesis of LN
2.1. STAT1 and IRF Are the Basis of the IFN-Signature
2.2. NF-κB Is the Key Player in LN Development and Progression
2.3. CEBPB Enhanced Inflammasome Activity in the Pathogenesis of LN
2.4. Fli-1 Regulates Inflammatory Cytokine Expression and Immune Cell Infiltration into the Kidney
2.5. Sp1 Upregulates Key Protein Expression in LN
2.6. Other TFs Implicated in SLE Nephritis Pathophysiology
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Moulton, V.R.; Suarez-Fueyo, A.; Meidan, E.; Li, H.; Mizui, M.; Tsokos, G.C. Pathogenesis of Human Systemic Lupus Erythematosus: A Cellular Perspective. Trends Mol. Med. 2017, 23, 615–635. [Google Scholar] [CrossRef] [PubMed]
- Davidson, A. What is damaging the kidney in lupus nephritis? Nat. Rev. Rheumatol. 2016, 12, 143–153. [Google Scholar] [CrossRef]
- Anders, H.J.; Saxena, R.; Zhao, M.H.; Parodis, I.; Salmon, J.E.; Mohan, C. Lupus nephritis. Nat. Rev. Dis. Primers 2020, 6, 7. [Google Scholar] [CrossRef] [PubMed]
- Davidson, J.E.; Fu, Q.; Ji, B.; Rao, S.; Roth, D.; Magder, L.S.; Petri, M. Renal Remission Status and Longterm Renal Survival in Patients with Lupus Nephritis: A Retrospective Cohort Analysis. J. Rheumatol. 2018, 45, 671–677. [Google Scholar] [CrossRef]
- Ichinose, K.; Kitamura, M.; Sato, S.; Eguchi, M.; Okamoto, M.; Endo, Y.; Tsuji, S.; Takatani, A.; Shimizu, T.; Umeda, M.; et al. Complete renal response at 12 months after induction therapy is associated with renal relapse-free rate in lupus nephritis: A single-center, retrospective cohort study. Lupus 2019, 28, 501–509. [Google Scholar] [CrossRef]
- Wang, G.; Wang, F.; Huang, Q.; Li, Y.; Liu, Y.; Wang, Y. Understanding Transcription Factor Regulation by Integrating Gene Expression and DNase I Hypersensitive Sites. Biomed. Res. Int. 2015, 2015, 757530. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Yin, J.; Zhou, W.; Bai, J.; Xie, Y.; Xu, K.; Zheng, X.; Xiao, J.; Zhou, L.; Qi, X.; et al. Complex impact of DNA methylation on transcriptional dysregulation across 22 human cancer types. Nucleic Acids Res. 2020, 48, 2287–2302. [Google Scholar] [CrossRef]
- Feng, S.; Rastogi, C.; Loker, R.; Glassford, W.J.; Tomas Rube, H.; Bussemaker, H.J.; Mann, R.S. Transcription factor paralogs orchestrate alternative gene regulatory networks by context-dependent cooperation with multiple cofactors. Nat. Commun. 2022, 13, 3808. [Google Scholar] [CrossRef]
- Lopez-Dominguez, R.; Toro-Dominguez, D.; Martorell-Marugan, J.; Garcia-Moreno, A.; Holland, C.H.; Saez-Rodriguez, J.; Goldman, D.; Petri, M.A.; Alarcon-Riquelme, M.E.; Carmona-Saez, P. Transcription Factor Activity Inference in Systemic Lupus Erythematosus. Life 2021, 11, 299. [Google Scholar] [CrossRef]
- Ding, X.; Ren, Y.; He, X. IFN-I Mediates Lupus Nephritis From the Beginning to Renal Fibrosis. Front. Immunol. 2021, 12, 676082. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, H.; Szeto, C.; Han, S.; Yang, L.; Reeves, W.H. Animal Models of Interferon Signature Positive Lupus. Front. Immunol. 2015, 6, 291. [Google Scholar] [CrossRef]
- Theofilopoulos, A.N.; Koundouris, S.; Kono, D.H.; Lawson, B.R. The role of IFN-gamma in systemic lupus erythematosus: A challenge to the Th1/Th2 paradigm in autoimmunity. Arthritis Res. 2001, 3, 136–141. [Google Scholar] [CrossRef] [PubMed]
- Fairhurst, A.M.; Xie, C.; Fu, Y.; Wang, A.; Boudreaux, C.; Zhou, X.J.; Cibotti, R.; Coyle, A.; Connolly, J.E.; Wakeland, E.K.; et al. Type I interferons produced by resident renal cells may promote end-organ disease in autoantibody-mediated glomerulonephritis. J. Immunol. 2009, 183, 6831–6838. [Google Scholar] [CrossRef]
- Ronnblom, L.; Leonard, D. Interferon pathway in SLE: One key to unlocking the mystery of the disease. Lupus Sci. Med. 2019, 6, e000270. [Google Scholar] [CrossRef]
- Shi, D.; Li, Y.; Shi, X.; Yao, M.; Wu, D.; Zheng, Y.; Lin, Q.; Yang, Y. Transcriptional expression of CXCL10 and STAT1 in lupus nephritis and the intervention effect of triptolide. Clin. Rheumatol. 2023, 42, 539–548. [Google Scholar] [CrossRef]
- Chodisetti, S.B.; Fike, A.J.; Domeier, P.P.; Schell, S.L.; Mockus, T.E.; Choi, N.M.; Corradetti, C.; Hou, B.; Atkins, H.M.; Caricchio, R.; et al. Serine Phosphorylation of the STAT1 Transactivation Domain Promotes Autoreactive B Cell and Systemic Autoimmunity Development. J. Immunol. 2020, 204, 2641–2650. [Google Scholar] [CrossRef] [PubMed]
- Dong, J.; Wang, Q.X.; Zhou, C.Y.; Ma, X.F.; Zhang, Y.C. Activation of the STAT1 signalling pathway in lupus nephritis in MRL/lpr mice. Lupus 2007, 16, 101–109. [Google Scholar] [CrossRef]
- Gomez-Guerrero, C.; Lopez-Franco, O.; Sanjuan, G.; Hernandez-Vargas, P.; Suzuki, Y.; Ortiz-Munoz, G.; Blanco, J.; Egido, J. Suppressors of cytokine signaling regulate Fc receptor signaling and cell activation during immune renal injury. J. Immunol. 2004, 172, 6969–6977. [Google Scholar] [CrossRef]
- Shao, W.H.; Gamero, A.M.; Zhen, Y.; Lobue, M.J.; Priest, S.O.; Albandar, H.J.; Cohen, P.L. Stat1 Regulates Lupus-like Chronic Graft-versus-Host Disease Severity via Interactions with Stat3. J. Immunol. 2015, 195, 4136–4143. [Google Scholar] [CrossRef]
- Chiao, J.W.; Melikian, M.; Han, L.; Xue, C.; Tsao, A.; Wang, L.; Mencher, S.K.; Fallon, J.; Solangi, K.; Bertho, G.; et al. Interaction of a small molecule Natura-alpha and STAT3-SH2 domain to block Y705 phosphorylation and inhibit lupus nephritis. Biochem. Pharmacol. 2016, 99, 123–131. [Google Scholar] [CrossRef] [PubMed]
- Arakawa, T.; Masaki, T.; Hirai, T.; Doi, S.; Kuratsune, M.; Arihiro, K.; Kohno, N.; Yorioka, N. Activation of signal transducer and activator of transcription 3 correlates with cell proliferation and renal injury in human glomerulonephritis. Nephrol. Dial. Transplant. 2008, 23, 3418–3426. [Google Scholar] [CrossRef] [PubMed]
- Munroe, M.E.; James, J.A. Genetics of Lupus Nephritis: Clinical Implications. Semin. Nephrol. 2015, 35, 396–409. [Google Scholar] [CrossRef]
- Nghiem, T.D.; Do, G.T.; Luong, L.H.; Nguyen, Q.L.; Dang, H.V.; Viet, A.N.; Nguyen, T.T.; Tran, V.K.; Ta, T.V.; Tran, T.H. Association of the STAT4, CDKN1A, and IRF5 variants with risk of lupus nephritis and renal biopsy classification in patients in Vietnam. Mol. Genet. Genom. Med. 2021, 9, e1648. [Google Scholar] [CrossRef]
- Reilly, C.M.; Olgun, S.; Goodwin, D.; Gogal, R.M., Jr.; Santo, A.; Romesburg, J.W.; Ahmed, S.A.; Gilkeson, G.S. Interferon regulatory factor-1 gene deletion decreases glomerulonephritis in MRL/lpr mice. Eur. J. Immunol. 2006, 36, 1296–1308. [Google Scholar] [CrossRef] [PubMed]
- Han, X.; Wang, Y.; Zhang, X.; Qin, Y.; Qu, B.; Wu, L.; Ma, J.; Zhou, Z.; Qian, J.; Dai, M.; et al. MicroRNA-130b Ameliorates Murine Lupus Nephritis Through Targeting the Type I Interferon Pathway on Renal Mesangial Cells. Arthritis Rheumatol. 2016, 68, 2232–2243. [Google Scholar] [CrossRef]
- Guiteras, J.; Ripoll, E.; Bolanos, N.; De Ramon, L.; Fontova, P.; Lloberas, N.; Cruzado, J.M.; Aran, J.M.; Avino, A.; Eritja, R.; et al. The gene silencing of IRF5 and BLYSS effectively modulates the outcome of experimental lupus nephritis. Mol. Ther. Nucleic Acids 2021, 24, 807–821. [Google Scholar] [CrossRef]
- Lech, M.; Weidenbusch, M.; Kulkarni, O.P.; Ryu, M.; Darisipudi, M.N.; Susanti, H.E.; Mittruecker, H.W.; Mak, T.W.; Anders, H.J. IRF4 deficiency abrogates lupus nephritis despite enhancing systemic cytokine production. J. Am. Soc. Nephrol. 2011, 22, 1443–1452. [Google Scholar] [CrossRef]
- Liu, T.; Zhang, L.; Joo, D.; Sun, S.C. NF-kappaB signaling in inflammation. Signal Transduct. Target. Ther. 2017, 2, 17023. [Google Scholar] [CrossRef]
- Zhang, H.; Sun, S.C. NF-kappaB in inflammation and renal diseases. Cell Biosci. 2015, 5, 63. [Google Scholar] [CrossRef]
- Zheng, L.; Sinniah, R.; Hsu, S.I. In situ glomerular expression of activated NF-kappaB in human lupus nephritis and other non-proliferative proteinuric glomerulopathy. Virchows Arch. 2006, 448, 172–183. [Google Scholar] [CrossRef] [PubMed]
- Caster, D.J.; Powell, D.W. Precision Targeting of NF-kappaB Signaling in Lupus Nephritis. Lupus 2020, 6, 160. [Google Scholar]
- Brightbill, H.D.; Suto, E.; Blaquiere, N.; Ramamoorthi, N.; Sujatha-Bhaskar, S.; Gogol, E.B.; Castanedo, G.M.; Jackson, B.T.; Kwon, Y.C.; Haller, S.; et al. NF-kappaB inducing kinase is a therapeutic target for systemic lupus erythematosus. Nat. Commun. 2018, 9, 179. [Google Scholar] [CrossRef] [PubMed]
- Zheng, L.; Sinniah, R.; Hsu, S.I. Pathogenic role of NF-kappaB activation in tubulointerstitial inflammatory lesions in human lupus nephritis. J. Histochem. Cytochem. 2008, 56, 517–529. [Google Scholar] [CrossRef] [PubMed]
- Qu, H.; Bian, W.; Xu, Y. A novel NF-kappaB inhibitor, DHMEQ, ameliorates pristane-induced lupus in mice. Exp. Ther. Med. 2014, 8, 100–104. [Google Scholar] [CrossRef]
- Miyagawa, F.; Tagaya, Y.; Ozato, K.; Asada, H. Essential Requirement for IFN Regulatory Factor 7 in Autoantibody Production but Not Development of Nephritis in Murine Lupus. J. Immunol. 2016, 197, 2167–2176. [Google Scholar] [CrossRef]
- Zahnow, C.A. CCAAT/enhancer-binding protein beta: Its role in breast cancer and associations with receptor tyrosine kinases. Expert Rev. Mol. Med. 2009, 11, e12. [Google Scholar] [CrossRef]
- Poli, V. The role of C/EBP isoforms in the control of inflammatory and native immunity functions. J. Biol. Chem. 1998, 273, 29279–29282. [Google Scholar] [CrossRef] [PubMed]
- Qian, T.; Chen, Y.; Shi, X.; Li, J.; Hao, F.; Zhang, D. C/EBP beta mRNA expression is upregulated and positively correlated with the expression of TNIP1/TNFAIP3 in peripheral blood mononuclear cells from patients with systemic lupus erythematosus. Exp. Ther. Med. 2016, 12, 2348–2354. [Google Scholar] [CrossRef]
- Qi, H.; Zheng, Z.; Liu, Q. Activation of BZW1 by CEBPB in macrophages promotes eIF2alpha phosphorylation-mediated metabolic reprogramming and endoplasmic reticulum stress in MRL/lpr lupus-prone mice. Cell. Mol. Biol. Lett. 2023, 28, 79. [Google Scholar] [CrossRef]
- Zou, H.; Chen, M.; Wang, X.; Yu, J.; Li, X.; Xie, Y.; Liu, J.; Liu, M.; Xu, L.; Zhang, Q.; et al. C/EBPbeta isoform-specific regulation of podocyte pyroptosis in lupus nephritis-induced renal injury. J. Pathol. 2023, 261, 269–285. [Google Scholar] [CrossRef]
- Pasula, S.; Gopalakrishnan, J.; Fu, Y.; Tessneer, K.L.; Wiley, M.M.; Pelikan, R.C.; Kelly, J.A.; Gaffney, P.M. Systemic lupus erythematosus variants modulate the function of an enhancer upstream of TNFAIP3. Front. Genet. 2022, 13, 1011965. [Google Scholar] [CrossRef]
- Wang, X.; Cheng, W.; Chen, X.; Gong, Y.; Wang, G.; Zhang, X.; Qi, Y. Inhibition of CEBPB Attenuates Lupus Nephritis via Regulating Pim-1 Signaling. Mediat. Inflamm. 2022, 2022, 2298865. [Google Scholar] [CrossRef]
- He, Y.S.; Yang, X.K.; Hu, Y.Q.; Xiang, K.; Pan, H.F. Emerging role of Fli1 in autoimmune diseases. Int. Immunopharmacol. 2021, 90, 107127. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.D.; Zhang, M.; Zhao, Y.; Liu, Y. Fli-1, a Functional Factor Performed in Autoimmune Lupus. Inflammation 2016, 39, 493–498. [Google Scholar] [CrossRef] [PubMed]
- Hart, A.; Melet, F.; Grossfeld, P.; Chien, K.; Jones, C.; Tunnacliffe, A.; Favier, R.; Bernstein, A. Fli-1 is required for murine vascular and megakaryocytic development and is hemizygously deleted in patients with thrombocytopenia. Immunity 2000, 13, 167–177. [Google Scholar] [CrossRef]
- Zhang, L.; Eddy, A.; Teng, Y.T.; Fritzler, M.; Kluppel, M.; Melet, F.; Bernstein, A. An immunological renal disease in transgenic mice that overexpress Fli-1, a member of the ets family of transcription factor genes. Mol. Cell. Biol. 1995, 15, 6961–6970. [Google Scholar] [CrossRef]
- Mathenia, J.; Reyes-Cortes, E.; Williams, S.; Molano, I.; Ruiz, P.; Watson, D.K.; Gilkeson, G.S.; Zhang, X.K. Impact of Fli-1 transcription factor on autoantibody and lupus nephritis in NZM2410 mice. Clin. Exp. Immunol. 2010, 162, 362–371. [Google Scholar] [CrossRef]
- Molano, I.; Mathenia, J.; Ruiz, P.; Gilkeson, G.S.; Zhang, X.K. Decreased expression of Fli-1 in bone marrow-derived haematopoietic cells significantly affects disease development in Murphy Roths Large/lymphoproliferation (MRL/lpr) mice. Clin. Exp. Immunol. 2010, 160, 275–282. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, E.; Karam, E.; Williams, S.; Watson, D.K.; Gilkeson, G.; Zhang, X.K. Fli-1 transcription factor affects glomerulonephritis development by regulating expression of monocyte chemoattractant protein-1 in endothelial cells in the kidney. Clin. Immunol. 2012, 145, 201–208. [Google Scholar] [CrossRef]
- Sato, S.; Zhang, X.K.; Temmoku, J.; Fujita, Y.; Matsuoka, N.; Yashiro-Furuya, M.; Asano, T.; Kobayashi, H.; Watanabe, H.; Migita, K. Ets Family Transcription Factor Fli-1 Promotes Leukocyte Recruitment and Production of IL-17A in the MRL/Lpr Mouse Model of Lupus Nephritis. Cells 2020, 9, 714. [Google Scholar] [CrossRef]
- Sato, S.; Zhang, X.K.; Matsuoka, N.; Sumichika, Y.; Saito, K.; Yoshida, S.; Matsumoto, H.; Temmoku, J.; Fujita, Y.; Asano, T.; et al. Transcription factor Fli-1 impacts the expression of CXCL13 and regulates immune cell infiltration into the kidney in MRL/lpr mouse. Lupus Sci. Med. 2023, 10, e000870. [Google Scholar] [CrossRef]
- Sato, S.; Zhang, X.K. The Friend leukaemia virus integration 1 (Fli-1) transcription factor affects lupus nephritis development by regulating inflammatory cell infiltration into the kidney. Clin. Exp. Immunol. 2014, 177, 102–109. [Google Scholar] [CrossRef] [PubMed]
- Sundararaj, K.P.; Thiyagarajan, T.; Molano, I.; Basher, F.; Powers, T.W.; Drake, R.R.; Nowling, T.K. FLI1 Levels Impact CXCR3 Expression and Renal Infiltration of T Cells and Renal Glycosphingolipid Metabolism in the MRL/lpr Lupus Mouse Strain. J. Immunol. 2015, 195, 5551–5560. [Google Scholar] [CrossRef]
- Wang, X.; Oates, J.C.; Helke, K.L.; Gilkeson, G.S.; Zhang, X.K. Camptothecin and Topotecan, Inhibitors of Transcription Factor Fli-1 and Topoisomerase, Markedly Ameliorate Lupus Nephritis in (NZB x NZW)F1 Mice and Reduce the Production of Inflammatory Mediators in Human Renal Cells. Arthritis Rheumatol. 2021, 73, 1478–1488. [Google Scholar] [CrossRef] [PubMed]
- Frese-Schaper, M.; Keil, A.; Steiner, S.K.; Gugger, M.; Korner, M.; Kocher, G.J.; Schiffer, L.; Anders, H.J.; Huynh-Do, U.; Schmid, R.A.; et al. Low-dose irinotecan improves advanced lupus nephritis in mice potentially by changing DNA relaxation and anti-double-stranded DNA binding. Arthritis Rheumatol. 2014, 66, 2259–2269. [Google Scholar] [CrossRef]
- Frese-Schaper, M.; Zbaeren, J.; Gugger, M.; Monestier, M.; Frese, S. Reversal of established lupus nephritis and prolonged survival of New Zealand black x New Zealand white mice treated with the topoisomerase I inhibitor irinotecan. J. Immunol. 2010, 184, 2175–2182. [Google Scholar] [CrossRef] [PubMed]
- Sciascia, S.; Cozzi, M.; Barinotti, A.; Radin, M.; Cecchi, I.; Fenoglio, R.; Mancardi, D.; Wilson Jones, G.; Rossi, D.; Roccatello, D. Renal Fibrosis in Lupus Nephritis. Int. J. Mol. Sci. 2022, 23, 14317. [Google Scholar] [CrossRef]
- Taniguchi, T.; Asano, Y.; Akamata, K.; Noda, S.; Takahashi, T.; Ichimura, Y.; Toyama, T.; Trojanowska, M.; Sato, S. Fibrosis, vascular activation, and immune abnormalities resembling systemic sclerosis in bleomycin-treated Fli-1-haploinsufficient mice. Arthritis Rheumatol. 2015, 67, 517–526. [Google Scholar] [CrossRef]
- O’Connor, L.; Gilmour, J.; Bonifer, C. The Role of the Ubiquitously Expressed Transcription Factor Sp1 in Tissue-specific Transcriptional Regulation and in Disease. Yale J. Biol. Med. 2016, 89, 513–525. [Google Scholar]
- Kassimatis, T.I.; Nomikos, A.; Giannopoulou, I.; Lymperopoulos, A.; Moutzouris, D.A.; Varakis, I.; Nakopoulou, L. Transcription factor Sp1 expression is upregulated in human glomerulonephritis: Correlation with pSmad2/3 and p300 expression and renal injury. Ren. Fail. 2010, 32, 243–253. [Google Scholar] [CrossRef]
- Tian, J.; Xiao, Z.; Wei, J.; Shan, Y.; Zeng, D.; Tao, Y.; Fang, X.; Tang, C.; Chen, X.; Li, Y. NCTD Prevents Renal Interstitial Fibrosis via Targeting Sp1/lncRNA Gm26669 Axis. Int. J. Biol. Sci. 2021, 17, 3118–3132. [Google Scholar] [CrossRef]
- Chae, Y.M.; Park, K.K.; Lee, I.K.; Kim, J.K.; Kim, C.H.; Chang, Y.C. Ring-Sp1 decoy oligonucleotide effectively suppresses extracellular matrix gene expression and fibrosis of rat kidney induced by unilateral ureteral obstruction. Gene Ther. 2006, 13, 430–439. [Google Scholar] [CrossRef]
- Mehta, N.; Zhang, D.; Li, R.; Wang, T.; Gava, A.; Parthasarathy, P.; Gao, B.; Krepinsky, J.C. Caveolin-1 regulation of Sp1 controls production of the antifibrotic protein follistatin in kidney mesangial cells. Cell Commun. Signal. 2019, 17, 37. [Google Scholar] [CrossRef] [PubMed]
- Sole, C.; Moline, T.; Vidal, M.; Ordi-Ros, J.; Cortes-Hernandez, J. An Exosomal Urinary miRNA Signature for Early Diagnosis of Renal Fibrosis in Lupus Nephritis. Cells 2019, 8, 773. [Google Scholar] [CrossRef]
- Zhen, Y.; Lee, I.J.; Finkelman, F.D.; Shao, W.H. Targeted inhibition of Axl receptor tyrosine kinase ameliorates anti-GBM-induced lupus-like nephritis. J. Autoimmun. 2018, 93, 37–44. [Google Scholar] [CrossRef] [PubMed]
- Adams, D.E.; Zhen, Y.; Qi, X.; Shao, W.H. Axl Expression in Renal Mesangial Cells Is Regulated by Sp1, Ap1, MZF1, and Ep300, and the IL-6/miR-34a Pathway. Cells 2022, 11, 1869. [Google Scholar] [CrossRef]
- Zhen, Y.; McGaha, T.L.; Finkelman, F.D.; Shao, W.H. The Akt-mTORC1 pathway mediates Axl receptor tyrosine kinase-induced mesangial cell proliferation. J. Leukoc. Biol. 2022, 111, 563–571. [Google Scholar] [CrossRef]
- Zhen, Y.; Ren, Y.; Medvedovic, M.; Adams, D.E.; Wang, D.; Shao, W.H. Axl regulated survival/proliferation network and its therapeutic intervention in mouse models of glomerulonephritis. Arthritis Res. Ther. 2022, 24, 284. [Google Scholar] [CrossRef] [PubMed]
- Tornin, J.; Martinez-Cruzado, L.; Santos, L.; Rodriguez, A.; Nunez, L.E.; Oro, P.; Hermosilla, M.A.; Allonca, E.; Fernandez-Garcia, M.T.; Astudillo, A.; et al. Inhibition of SP1 by the mithramycin analog EC-8042 efficiently targets tumor initiating cells in sarcoma. Oncotarget 2016, 7, 30935–30950. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Shen, Y.H.; Wang, X.; Wang, J.; Gan, Y.; Chen, N.; Wang, J.; LeMaire, S.A.; Coselli, J.S.; Wang, X.L. Human prolyl-4-hydroxylase alpha(I) transcription is mediated by upstream stimulatory factors. J. Biol. Chem. 2006, 281, 10849–10855. [Google Scholar] [CrossRef]
- Xie, Y.; Li, X.; Deng, W.; Nan, N.; Zou, H.; Gong, L.; Chen, M.; Yu, J.; Chen, P.; Cui, D.; et al. Knockdown of USF2 inhibits pyroptosis of podocytes and attenuates kidney injury in lupus nephritis. J. Mol. Histol. 2023, 54, 313–327. [Google Scholar] [CrossRef] [PubMed]
- Sato, A.Y.; Antonioli, E.; Tambellini, R.; Campos, A.H. ID1 inhibits USF2 and blocks TGF-beta-induced apoptosis in mesangial cells. Am. J. Physiol. Renal. Physiol. 2011, 301, F1260–F1269. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Lin, W.; Chen, J. Kruppel-like Factor 15: A Potential Therapeutic Target For Kidney Disease. Int. J. Biol. Sci. 2019, 15, 1955–1961. [Google Scholar] [CrossRef]
- Tao, S.; Tan, X.; Chai, W.; Peng, X.; Zheng, W.; Fu, R.; Deng, M. Knockdown of KLF5 ameliorates renal fibrosis in MRL/lpr mice via inhibition of MX1 transcription. Immun. Inflamm. Dis. 2023, 11, e937. [Google Scholar] [CrossRef]
- Lu, Y.; Zhang, L.; Liao, X.; Sangwung, P.; Prosdocimo, D.A.; Zhou, G.; Votruba, A.R.; Brian, L.; Han, Y.J.; Gao, H.; et al. Kruppel-like factor 15 is critical for vascular inflammation. J. Clin. Investg. 2013, 123, 4232–4241. [Google Scholar] [CrossRef]
- Liang, N.; Zhong, Y.; Zhou, J.; Liu, B.; Lu, R.; Guan, Y.; Wang, Q.; Liang, C.; He, Y.; Zhou, Y.; et al. Immunosuppressive effects of hydroxychloroquine and artemisinin combination therapy via the nuclear factor-kappaB signaling pathway in lupus nephritis mice. Exp. Ther. Med. 2018, 15, 2436–2442. [Google Scholar] [CrossRef] [PubMed]
- Bagavant, H.; Kalantarinia, K.; Scindia, Y.; Deshmukh, U. Novel therapeutic approaches to lupus glomerulonephritis: Translating animal models to clinical practice. Am. J. Kidney Dis. 2011, 57, 498–507. [Google Scholar] [CrossRef]
- Xiao, L.; Xiao, W.; Lin, S. Potential biomarkers for active renal involvement in systemic lupus erythematosus patients. Front. Med. 2022, 9, 995103. [Google Scholar] [CrossRef]
- Tomita, N.; Kim, J.Y.; Gibbons, G.H.; Zhang, L.; Kaneda, Y.; Stahl, R.A.; Ogborn, M.; Venderville, B.; Morishita, R.; Baran, D.; et al. Gene therapy with an E2F transcription factor decoy inhibits cell cycle progression in rat anti-Thy 1 glomerulonephritis. Int. J. Mol. Med. 2004, 13, 629–636. [Google Scholar] [CrossRef]
- Jiang, T.; Tian, F.; Zheng, H.; Whitman, S.A.; Lin, Y.; Zhang, Z.; Zhang, N.; Zhang, D.D. Nrf2 suppresses lupus nephritis through inhibition of oxidative injury and the NF-kappaB-mediated inflammatory response. Kidney Int. 2014, 85, 333–343. [Google Scholar] [CrossRef] [PubMed]
- Stroud, J.C.; Lopez-Rodriguez, C.; Rao, A.; Chen, L. Structure of a TonEBP-DNA complex reveals DNA encircled by a transcription factor. Nat. Struct. Biol. 2002, 9, 90–94. [Google Scholar] [CrossRef]
- Lee, N.; Kim, D.; Kim, W.U. Role of NFAT5 in the Immune System and Pathogenesis of Autoimmune Diseases. Front. Immunol. 2019, 10, 270. [Google Scholar] [CrossRef] [PubMed]
- Yoo, E.J.; Oh, K.H.; Piao, H.; Kang, H.J.; Jeong, G.W.; Park, H.; Lee, C.J.; Ryu, H.; Yang, S.H.; Kim, M.G.; et al. Macrophage transcription factor TonEBP promotes systemic lupus erythematosus and kidney injury via damage-induced signaling pathways. Kidney Int. 2023, 104, 163–180. [Google Scholar] [CrossRef] [PubMed]
- Deng, W.; Ren, Y.; Feng, X.; Yao, G.; Chen, W.; Sun, Y.; Wang, H.; Gao, X.; Sun, L. Hypoxia inducible factor-1 alpha promotes mesangial cell proliferation in lupus nephritis. Am. J. Nephrol. 2014, 40, 507–515. [Google Scholar] [CrossRef]
- Chen, P.M.; Wilson, P.C.; Shyer, J.A.; Veselits, M.; Steach, H.R.; Cui, C.; Moeckel, G.; Clark, M.R.; Craft, J. Kidney tissue hypoxia dictates T cell-mediated injury in murine lupus nephritis. Sci. Transl. Med. 2020, 12, eaay1620. [Google Scholar] [CrossRef] [PubMed]
TFs | General Function | Pathogenesis in LN | Renal Cell Specificity | Inhibition in LN | Mouse Models |
---|---|---|---|---|---|
NF-κB | inflammation and inflammatory cytokines | pro-inflammatory cytokines (IL-6, TNF-α) immune cell infiltration | Glomerular endothelial, mesangial cells, tubular and interstitial cells | DHMEQ SN50 peptide | Balb/C Pristane lupus |
STAT1/2/3 | inflammation and inflammatory cytokines | monocytes and neutrophils infiltration | − | BMS-986165 Natura-α | MRL/lpr; NZB/W F1; B6 anti-GBM; B6 cGVHD-lupus |
IRF3/4/5 | Innate and adaptive immune responses | Macrophage/lymphocytes infiltration; anti-dsDNA | − | siRNA | MRL/lpr; NZB/W F1; B6/lpr |
CEBPB | Macrophage/granulocyte differentiation | NLRP3 inflammasome AIM2 inflammasome Pyroptosis | Podocytes | siRNA/shRNA | MRL/lpr |
Fli-1 | Proliferation, differentiation, apoptosis | Chemokine/cytokines (IL-1, IL-6, CXCL13 et al); immune cell infiltration; IL-17A expression | Fibroblasts, endothelial cells | Camptothecin | NZM2410; MRL/lpr |
Sp1 | Cell cycle, differentiation, apoptosis | Renal fibrosis | Mesangial cells | Mithramycin EC-8042 | MRL/lpr |
USF2 | Mitochondrial homeostasis, | Apoptosis, Pyroptosis | Mesangial cells Podocytes | siRNA | MRL/lpr |
KLF | Metabolism | Glomerular infiltration Tubulointerstitial inflammation Renal fibrosis | − | shRNA | MRL/lpr |
E2F | Cell cycle progression | Cell cycle Apoptosis | Mesangial cells | E2F decoy | Thy1.1 glomerular nephritis |
Nrf2 | Antioxidant response | Negative regulator of NF-κB and TGF-β1 | − | − | Pristane lupus |
NFAT5 | Response to osmotic stress | Generation of Th17 cells and pro-inflammatory macrophages | − | − | Pristane lupus |
HIF-1α | Metabolic reprogram | Renal cortical hypoxia | − | PX-478 | MRL/lpr B6.sle1.Yaa |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shao, K.M.; Shao, W.-H. Transcription Factors in the Pathogenesis of Lupus Nephritis and Their Targeted Therapy. Int. J. Mol. Sci. 2024, 25, 1084. https://doi.org/10.3390/ijms25021084
Shao KM, Shao W-H. Transcription Factors in the Pathogenesis of Lupus Nephritis and Their Targeted Therapy. International Journal of Molecular Sciences. 2024; 25(2):1084. https://doi.org/10.3390/ijms25021084
Chicago/Turabian StyleShao, Kasey M., and Wen-Hai Shao. 2024. "Transcription Factors in the Pathogenesis of Lupus Nephritis and Their Targeted Therapy" International Journal of Molecular Sciences 25, no. 2: 1084. https://doi.org/10.3390/ijms25021084
APA StyleShao, K. M., & Shao, W. -H. (2024). Transcription Factors in the Pathogenesis of Lupus Nephritis and Their Targeted Therapy. International Journal of Molecular Sciences, 25(2), 1084. https://doi.org/10.3390/ijms25021084