Structural Analyses of Designed α-Helix and β-Sheet Peptide Nanofibers Using Solid-State Nuclear Magnetic Resonance and Cryo-Electron Microscopy and Introduction of Structure-Based Metal-Responsive Properties
Abstract
:1. Introduction
2. Results and Discussions
2.1. Secondary Structures of α3 and Their Orientation
2.2. Secondary Structures and Distances between 13C and 15N of α3 Peptide Revealed by 13C Solid-State NMR
2.3. Intermolecular Distance between α3 Molecules
2.4. Structure of α3 Peptide Nanofiber
2.5. Structural Analyses of β-Sheet-Type Peptide Nanofibers
2.6. Introducing Conformational Switching Capability upon Metal Ion Binding
2.7. Structure and Metal Ion Response of HDM1, -2, and -3
2.8. Identification of Ni-Binding Sites in HDM1
2.9. Conformational Switching Capability of HDM1 Fiber by Metal Ion
3. Materials and Methods
3.1. Synthesis of Peptides
3.2. Polarized IR Microscope
3.3. FT-IR Analysis
3.4. Solid-State NMR Measurement
3.5. Circular Dichroism Measurements
3.6. Atomic Force Microscopy
3.7. Cryo-Electron Microscopy and Image Processing
3.8. Chemical Modification of HDM1 and -2 via Diethylpyrocarbonate (DEPC)
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lazarus, B.S.; Chadha, C.; Velasco-Hogan, A.; Barbosa, J.D.V.; Jasiuk, I.; Meyers, M.A. Engineering with keratin: A functional material and a source of bioinspiration. iScience 2021, 24, 102798. [Google Scholar] [CrossRef] [PubMed]
- Holmes, D.F.; Lu, Y.; Starborg, T.; Kadler, K.E. Collagen Fibril Assembly and Function. Curr. Top. Dev. Biol. 2018, 130, 107–142. [Google Scholar] [PubMed]
- Humenik, M.; Scheibel, T.; Smith, A. Spider silk: Understanding the structure-function relationship of a natural fiber. Prog. Mol. Biol. Transl. Sci. 2011, 103, 131–185. [Google Scholar] [PubMed]
- Burgess, N.C.; Sharp, T.H.; Thomas, F.; Wood, C.W.; Thomson, A.R.; Zaccai, N.R.; Brady, R.L.; Serpell, L.C.; Woolfson, D.N. Modular Design of Self-Assembling Peptide-Based Nanotubes. J. Am. Chem. Soc. 2015, 137, 10554–10562. [Google Scholar] [CrossRef]
- Wang, F.; Gnewou, O.; Wang, S.; Osinski, T.; Zuo, X.; Egelman, E.H.; Conticello, V.P. Deterministic chaos in the self-assembly of β sheet nanotubes from an amphipathic oligopeptide. Matter 2021, 4, 3217–3231. [Google Scholar] [CrossRef]
- Wu, Y.; Norberg, P.K.; Reap, E.A.; Congdon, K.L.; Fries, C.N.; Kelly, S.H.; Sampson, J.H.; Conticello, V.P.; Collier, J.H. A Supramolecular Vaccine Platform Based on α-Helical Peptide Nanofibers. ACS Biomater. Sci. Eng. 2017, 3, 3128–3132. [Google Scholar] [CrossRef]
- Najafi, H.; Jafari, M.; Farahavar, G.; Abolmaali, S.S.; Azarpira, N.; Borandeh, S.; Ravanfar, R. Recent advances in design and applications of biomimetic self-assembled peptide hydrogels for hard tissue regeneration. Biodes. Manuf. 2021, 4, 735–756. [Google Scholar] [CrossRef]
- Kojima, S.; Kuriki, Y.; Sato, Y.; Arisaka, F.; Kumagai, I.; Takahashi, S.; Miura, K. Synthesis of alpha-helix-forming peptides by gene engineering methods and their characterization by circular dichroism spectra measurements. Biochim. Biophys. Acta 1996, 1294, 129–137. [Google Scholar] [CrossRef]
- Kojima, S.; Kuriki, Y.; Yoshida, T.; Yazaki, K.; Miura, K. Fibril Formation by an Amphipathic α-Helix-Forming Polypeptide Produced by Gene Engineering. Proc. Jpn. Acad. Ser. B Phys. 1997, 73, 7–11. [Google Scholar] [CrossRef]
- Kojima, S.; Kuriki, Y.; Yazaki, K.; Miura, K. Stabilization of the fibrous structure of an alpha-helix-forming peptide by sequence reversal. Biochem. Biophys. Res. Commun. 2005, 331, 577–582. [Google Scholar] [CrossRef]
- Takei, T.; Okonogi, A.; Tateno, K.; Kimura, A.; Kojima, S.; Yazaki, K.; Miura, K. The effects of the side chains of hydrophobic aliphatic amino acid residues in an amphipathic polypeptide on the formation of alpha helix and its association. J. Biochem. 2006, 139, 271–278. [Google Scholar] [CrossRef]
- Gordon, D.J.; Meredith, S.C. Probing the role of backbone hydrogen bonding in beta-amyloid fibrils with inhibitor peptides containing ester bonds at alternate positions. Biochemistry 2003, 42, 475–485. [Google Scholar] [CrossRef] [PubMed]
- Chatani, E.; Yuzu, K.; Ohhashi, Y.; Goto, Y. Current Understanding of the Structure, Stability and Dynamic Properties of Amyloid Fibrils. Int. J. Mol. Sci. 2021, 22, 4349. [Google Scholar] [CrossRef] [PubMed]
- Jones, A.L.; Hulett, M.D.; Parish, C.R. Histidine-rich glycoprotein: A novel adaptor protein in plasma that modulates the immune, vascular and coagulation systems. Immunol. Cell Biol. 2005, 83, 106–118. [Google Scholar] [CrossRef] [PubMed]
- Susi, H. Infrared spectroscopy—Conformation. Methods Enzymol. 1972, 26, 455–472. [Google Scholar] [PubMed]
- Dong, A.; Caughey, W.S. Infrared methods for study of hemoglobin reactions and structures. Methods. Enzymol. 1994, 232, 139–175. [Google Scholar]
- Shapovalov, M.; Vucetic, S.; Dunbrack, R.L., Jr. A new clustering and nomenclature for beta turns derived from high-resolution protein structures. PLoS Comput. Biol. 2019, 15, e1006844. [Google Scholar] [CrossRef]
- Sakajiri, K.; Saeki, S.; Kawaguchi, S.; Watanabe, J. Conformational Analysis by IR and Birefringence Measurements for Poly(p-phenylpropyl L-aspartate) Exhibiting a Helical Sense Inversion in the Solid State. Polym. J. 2000, 32, 803–806. [Google Scholar] [CrossRef]
- Wishart, D.S. Interpreting protein chemical shift data. Prog. Nucl. Magn. Reson. Spectrosc. 2011, 58, 62–87. [Google Scholar] [CrossRef]
- Saito, H.; Ando, I.; Naito, A. NMR Constrains for Determination of Secondary Structure. In Solid State NMR Spectroscopy for Biopolymers: Principles and Application, 1st ed.; Springer: Dordrecht, The Netherlands, 2006; pp. 127–199. [Google Scholar]
- Kawamura, I.; Norisada, K.; Naito, A. Structure Determination of Membrane Peptides and Proteins by Solid-State NMR. In Experimental Approaches of NMR Spectroscopy: Methodology and Application to Life Science and Materials Science, 1st ed.; Springer: Singapore, 2018; pp. 253–293. [Google Scholar]
- Pal, L.; Dasgupta, B.; Chakrabarti, P. 310-Helix adjoining α-helix and β-strand: Sequence and structural features and their conservation. Biopolymers 2005, 78, 147–162. [Google Scholar] [CrossRef]
- Pal, L.; Chakrabarti, P.; Basu, G. Sequence and Structure Patterns in Proteins from an Analysis of the Shortest Helices: Implications for Helix Nucleation. J. Mol. Biol. 2003, 326, 273–291. [Google Scholar] [CrossRef] [PubMed]
- Kurokawa, M.; Ohtsu, T.; Chatani, E.; Tamura, A. Hyper Thermostability and Liquid-Crystal-Like Properties of Designed α-Helical Peptide Nanofibers. J. Phys. Chem. B 2023, 127, 8331–8343. [Google Scholar] [CrossRef]
- Sadqi, M.; Hernández, F.; Pan, U.; Pérez, M.; Schaeberle, M.D.; Avila, J.; Muñoz, V. Alpha-helix structure in Alzheimer’s disease aggregates of tau-protein. Biochemistry 2002, 41, 7150–7155. [Google Scholar] [CrossRef]
- Bousset, L.; Thomson, N.H.; Radford, S.E.; Melki, R. The yeast prion Ure2p retains its native alpha-helical conformation upon assembly into protein fibrils in vitro. EMBO J. 2002, 21, 2903–2911. [Google Scholar] [CrossRef] [PubMed]
- Kumar, R.P.; Ranaghan, M.J.; Ganjei, A.Y.; Oprian, D.D. Crystal Structure of Recoverin with Calcium Ions Bound to Both Functional EF Hands. Biochemistry 2015, 54, 7222–7228. [Google Scholar] [CrossRef] [PubMed]
- Sasakawa, H.; Yoshinaga, S.; Kojima, S.; Tamura, A. Structure of POIA1, a homologous protein to the propeptide of subtilisin: Implication for protein foldability and the function as an intramolecular chaperone. J. Mol. Biol. 2002, 317, 159–167. [Google Scholar] [CrossRef] [PubMed]
- Woody, W.R. Theory of Circular Dichroism of Proteins. In Circular Dichroism and the Conformational Analysis of Biomolecules; Plenum Press: New York, NY, USA; London, UK, 1996; pp. 25–67. [Google Scholar]
- Tilstra, L.; Mattice, W.L. The β Sheet Coil Transition of Polypeptides, as Determined by Circular Dichroism. In Circular Dichroism and the Conformational Analysis of Biomolecules; Plenum Press: New York, NY, USA; London, UK, 1996; pp. 261–283. [Google Scholar]
- Egelman, E.H.; Xu, C.; DiMaio, F.; Magnotti, E.; Modlin, C.; Yu, X.; Wright, E.; Baker, D.; Conticello, V.P. Structural Plasticity of Helical Nanotubes Based on Coiled-Coil Assemblies. Structure 2015, 23, 280–289. [Google Scholar] [CrossRef]
- Mendoza, V.L.; Vachet, R.W. Protein Surface Mapping Using Diethylpyrocarbonate with Mass Spectrometric Detection. Anal. Chem. 2008, 80, 2895–2904. [Google Scholar] [CrossRef]
- Qin, K.; Yang, Y.; Mastrangelo, P.; Westaway, D. Mapping Cu(II) Binding Sites in Prion Proteins by Diethyl Pyrocarbonate Modification and Matrix-assisted Laser Desorption Ionization-Time of Flight (MALDI-TOF) Mass Spectrometric Footprinting. J. Biol. Chem. 2002, 277, 1981–1990. [Google Scholar] [CrossRef]
- Dong, A.; Huang, P.; Caughey, W.S. Protein secondary structures in water from second-derivative amide I infrared spectra. Biochemistry 1990, 29, 3303–3308. [Google Scholar] [CrossRef]
- Savitzky, A.; Golay, M.J.E. Smoothing and Differentiation of Data by Simplified Least Squares Procedures. Anal. Chem. 1964, 36, 1627–1639. [Google Scholar] [CrossRef]
- Susi, H.; Byler, D.M. Resolution-enhanced Fourier transform infrared spectroscopy of enzymes. Methods Enzymol. 1986, 130, 290–311. [Google Scholar] [PubMed]
- Kauppinen, J.K.; Moffatt, D.J.; Mantsch, H.H.; Cameron, D.G. Fourier transforms in the computation of self-deconvoluted and first-order derivative spectra of overlapped band contours. Anal. Chem. 1981, 53, 1454–1457. [Google Scholar] [CrossRef]
- Winningham, M.J.; Sogah, D.Y. A Modular Approach to Polymer Architecture Control via Catenation of Prefabricated Biomolecular Segments: Polymers Containing Parallel β-Sheets Templated by a Phenoxathiin-Based Reverse Turn Mimic. Macromolecules 1997, 30, 862–876. [Google Scholar] [CrossRef]
- Gullion, T.; Schaefer, J. Elimination of resonance offset effects in rotational-echo, double-resonance NMR. J. Magn. Reson. 1991, 92, 439–442. [Google Scholar] [CrossRef]
- Zheng, S.Q.; Palovcak, E.; Armache, J.P.; Verba, K.A.; Cheng, Y.; Agard, D.A. MotionCor2: Anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat. Methods 2017, 14, 331–332. [Google Scholar] [CrossRef]
- Zhang, K. Gctf: Real-time CTF determination and correction. J. Struct. Biol. 2016, 193, 1–12. [Google Scholar] [CrossRef]
- Zivanov, J.; Nakane, T.; Forsberg, B.O.; Kimanius, D.; Hagen, W.J.; Lindahl, E.; Scheres, S.H. New tools for automated high-resolution cryo-EM structure determination in RELION-3. eLife 2018, 7, e42166. [Google Scholar] [CrossRef]
- Wagner, T.; Merino, F.; Stabrin, M.; Moriya, T.; Antoni, C.; Apelbaum, A.; Hagel, P.; Sitsel, O.; Raisch, T.; Prumbaum, D.; et al. SPHIRE-crYOLO is a fast and accurate fully automated particle picker for cryo-EM. Commun. Biol. 2019, 2, 218. [Google Scholar] [CrossRef]
Name | N-Terminal | Sequence | C-Terminal | Number of Amino Acids |
---|---|---|---|---|
α3 | H3N+ | LETLAKALETLAKALETLAKA | COO− | 21 |
CaRP2 | H3N+ | WDKDGNGTISFNE | CONH2 | 13 |
βKE | H3N+ | KFVIFE | COO− | 7 |
HDM1 | H3N+ | LETLAHALETLAHALETLAKA | COO− | 21 |
HDM2 | H3N+ | LETLAKALHTLAHALETLAKA | COO− | 21 |
HDM3 | H3N+ | LETLAKALEHLAHALETLAKA | COO− | 21 |
Wave Number | Assignment | Area: Parallel | Area: Perpendicular | Dichroic Ratio | Angle (°) |
---|---|---|---|---|---|
1648 cm−1 | random coil | 1.66 | 1.12 | 1.48 | 37.3 |
1654 cm−1 | α-helix | 3.28 | 1.41 | 2.33 | 0 |
1660 cm−1 | 310-helix or type III turn | 2.21 | 1.99 | 1.11 | 50.2 |
Classification and Location | Assigned Structure */13C-5N Distance ** | |
---|---|---|
1L[13C=O], 18L[13C=O], or 19A[13C=O] | Leu or Ala, single label, and terminal region | mixture of α-helices and β-sheet |
4L[13C=O], 8L[13C=O], 11L[13C=O], or 15L[13C=O] | Leu, single label, and middle region | α-helix |
5A[13C=O], 7A[13C=O], 12A[13C=O], or 14A[13C=O] | Ala, single label, and middle region | α-helix |
1L[13C=O] and A5[15N] | double label, N-terminal, and vicinity | 4.6 (±0.1) Å |
Positions of the isotope labels of α3 | double label, C-terminal, and vicinity | 4.5 (±0.1) Å |
1L[13C=O] and A21[15N] | double label, N-terminal, and C-terminal | 4.7 (±0.1) Å intermolecular |
1L[15N] and A21[13C=O] | double label, N-terminal, and C-terminal | 5.1 (±0.1) Å intermolecular |
Peptide | Number of DEPC | Quantity | Assignments |
---|---|---|---|
HDM1 (Figure 10C) | 3 4 | major | His, His, N-terminal His, His, N-terminal,Lys |
HDM1-Ni2+ (Figure 10D) | 0 1 2 3 | major | None * Lys His, His His, His, Lys |
HDM2 (Figure 10E) | 3 4 | major | His, His, Lys His, His, Lys, Lys |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nakagawa, S.; Kurokawa, M.; Kambara, O.; Takei, T.; Daidoji, K.; Naito, A.; Takita, M.; Kawamoto, A.; Hirose, M.; Tamura, A. Structural Analyses of Designed α-Helix and β-Sheet Peptide Nanofibers Using Solid-State Nuclear Magnetic Resonance and Cryo-Electron Microscopy and Introduction of Structure-Based Metal-Responsive Properties. Int. J. Mol. Sci. 2024, 25, 1111. https://doi.org/10.3390/ijms25021111
Nakagawa S, Kurokawa M, Kambara O, Takei T, Daidoji K, Naito A, Takita M, Kawamoto A, Hirose M, Tamura A. Structural Analyses of Designed α-Helix and β-Sheet Peptide Nanofibers Using Solid-State Nuclear Magnetic Resonance and Cryo-Electron Microscopy and Introduction of Structure-Based Metal-Responsive Properties. International Journal of Molecular Sciences. 2024; 25(2):1111. https://doi.org/10.3390/ijms25021111
Chicago/Turabian StyleNakagawa, Shota, Minami Kurokawa, Ohki Kambara, Toshiaki Takei, Kengo Daidoji, Akira Naito, Mao Takita, Akihiro Kawamoto, Mika Hirose, and Atsuo Tamura. 2024. "Structural Analyses of Designed α-Helix and β-Sheet Peptide Nanofibers Using Solid-State Nuclear Magnetic Resonance and Cryo-Electron Microscopy and Introduction of Structure-Based Metal-Responsive Properties" International Journal of Molecular Sciences 25, no. 2: 1111. https://doi.org/10.3390/ijms25021111
APA StyleNakagawa, S., Kurokawa, M., Kambara, O., Takei, T., Daidoji, K., Naito, A., Takita, M., Kawamoto, A., Hirose, M., & Tamura, A. (2024). Structural Analyses of Designed α-Helix and β-Sheet Peptide Nanofibers Using Solid-State Nuclear Magnetic Resonance and Cryo-Electron Microscopy and Introduction of Structure-Based Metal-Responsive Properties. International Journal of Molecular Sciences, 25(2), 1111. https://doi.org/10.3390/ijms25021111