Rising Lysophosphatidylcholine Levels Post-Hepatitis C Clearance
Abstract
:1. Introduction
2. Results
2.1. Serum LPC Species in Relation to Age, Gender, Body Mass Index, Liver Steatosis and Diabetes
2.2. LPC Species in Relation to Liver Fibrosis
2.3. LPC Species in Relation to the Model of End-Stage Liver Disease (MELD) Score and Laboratory Measures of Liver and Kidney Function
2.4. LPC Species in Relation to Laboratory Measures of Inflammation and Platelet Count
2.5. LPC Species in Relation to Viral Load, Viral Genotype and Viral Cure
2.6. LPC Species in Relation to the MELD Score and Laboratory Measures Post-DAA Therapy
2.7. LPC Species for the Discrimination of Patients with and without Liver Cirrhosis
3. Discussion
4. Materials and Methods
4.1. Study Cohort
4.2. The Measurement of LPC Species
4.3. The Analysis of Laboratory Parameters and the Calculation of the MELD Score
4.4. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Casiraghi, M.A.; De Paschale, M.; Romano, L.; Biffi, R.; Assi, A.; Binelli, G.; Zanetti, A.R. Long-term outcome (35 years) of hepatitis C after acquisition of infection through mini transfusions of blood given at birth. Hepatology 2004, 39, 90–96. [Google Scholar] [CrossRef]
- Grassi, G.; Di Caprio, G.; Fimia, G.M.; Ippolito, G.; Tripodi, M.; Alonzi, T. Hepatitis C virus relies on lipoproteins for its life cycle. World J. Gastroenterol. 2016, 22, 1953–1965. [Google Scholar] [CrossRef]
- Sidorkiewicz, M. Hepatitis C Virus Uses Host Lipids to Its Own Advantage. Metabolites 2021, 11, 273. [Google Scholar] [CrossRef]
- Pawlotsky, J.M.; Negro, F.; Aghemo, A.; Berenguer, M.; Dalgard, O.; Dusheiko, G.; Marra, F.; Puoti, M.; Wedemeyer, H.; European Association for the Study of the Liver. EASL recommendations on treatment of hepatitis C: Final update of the series. J. Hepatol. 2020, 73, 1170–1218. [Google Scholar] [CrossRef]
- Endo, D.; Satoh, K.; Shimada, N.; Hokari, A.; Aizawa, Y. Impact of interferon-free antivirus therapy on lipid profiles in patients with chronic hepatitis C genotype 1b. World J. Gastroenterol. 2017, 23, 2355–2364. [Google Scholar] [CrossRef]
- Hashimoto, S.; Yatsuhashi, H.; Abiru, S.; Yamasaki, K.; Komori, A.; Nagaoka, S.; Saeki, A.; Uchida, S.; Bekki, S.; Kugiyama, Y.; et al. Rapid Increase in Serum Low-Density Lipoprotein Cholesterol Concentration during Hepatitis C Interferon-Free Treatment. PLoS ONE 2016, 11, e0163644. [Google Scholar] [CrossRef]
- Peschel, G.; Grimm, J.; Gulow, K.; Muller, M.; Buechler, C.; Weigand, K. Chemerin Is a Valuable Biomarker in Patients with HCV Infection and Correlates with Liver Injury. Diagnostics 2020, 10, 974. [Google Scholar] [CrossRef]
- Villani, R.; Di Cosimo, F.; Romano, A.D.; Sangineto, M.; Serviddio, G. Serum lipid profile in HCV patients treated with direct-acting antivirals: A systematic review and meta-analysis. Sci. Rep. 2021, 11, 13944. [Google Scholar] [CrossRef]
- Wiesner, P.; Leidl, K.; Boettcher, A.; Schmitz, G.; Liebisch, G. Lipid profiling of FPLC-separated lipoprotein fractions by electrospray ionization tandem mass spectrometry. J. Lipid Res. 2009, 50, 574–585. [Google Scholar] [CrossRef]
- Law, S.H.; Chan, M.L.; Marathe, G.K.; Parveen, F.; Chen, C.H.; Ke, L.Y. An Updated Review of Lysophosphatidylcholine Metabolism in Human Diseases. Int. J. Mol. Sci. 2019, 20, 1149. [Google Scholar] [CrossRef]
- Beilstein, F.; Lemasson, M.; Pene, V.; Rainteau, D.; Demignot, S.; Rosenberg, A.R. Lysophosphatidylcholine acyltransferase 1 is downregulated by hepatitis C virus: Impact on production of lipo-viro-particles. Gut 2017, 66, 2160–2169. [Google Scholar] [CrossRef]
- Farquhar, M.J.; Humphreys, I.S.; Rudge, S.A.; Wilson, G.K.; Bhattacharya, B.; Ciaccia, M.; Hu, K.; Zhang, Q.; Mailly, L.; Reynolds, G.M.; et al. Autotaxin-lysophosphatidic acid receptor signalling regulates hepatitis C virus replication. J. Hepatol. 2017, 66, 919–929. [Google Scholar] [CrossRef] [PubMed]
- Tokumura, A.; Majima, E.; Kariya, Y.; Tominaga, K.; Kogure, K.; Yasuda, K.; Fukuzawa, K. Identification of human plasma lysophospholipase D, a lysophosphatidic acid-producing enzyme, as autotaxin, a multifunctional phosphodiesterase. J. Biol. Chem. 2002, 277, 39436–39442. [Google Scholar] [CrossRef] [PubMed]
- Kostadinova, L.; Shive, C.L.; Anthony, D.D. Elevated Autotaxin and LPA Levels During Chronic Viral Hepatitis and Hepatocellular Carcinoma Associate with Systemic Immune Activation. Cancers 2019, 11, 1867. [Google Scholar] [CrossRef]
- Kostadinova, L.; Shive, C.L.; Judge, C.; Zebrowski, E.; Compan, A.; Rife, K.; Hirsch, A.; Falck-Ytter, Y.; Schlatzer, D.M.; Li, X.; et al. During Hepatitis C Virus (HCV) Infection and HCV-HIV Coinfection, an Elevated Plasma Level of Autotaxin Is Associated with Lysophosphatidic Acid and Markers of Immune Activation That Normalize during Interferon-Free HCV Therapy. J. Infect. Dis. 2016, 214, 1438–1448. [Google Scholar] [CrossRef] [PubMed]
- Takemura, K.; Takizawa, E.; Tamori, A.; Nakamae, M.; Kubota, H.; Uchida-Kobayashi, S.; Enomoto, M.; Kawada, N.; Hino, M. Association of serum autotaxin levels with liver fibrosis in patients pretreatment and posttreatment with chronic hepatitis C. J. Gastroenterol. Hepatol. 2021, 36, 217–224. [Google Scholar] [CrossRef]
- Yamazaki, T.; Joshita, S.; Umemura, T.; Usami, Y.; Sugiura, A.; Fujimori, N.; Kimura, T.; Matsumoto, A.; Igarashi, K.; Ota, M.; et al. Changes in serum levels of autotaxin with direct-acting antiviral therapy in patients with chronic hepatitis C. PLoS ONE 2018, 13, e0195632. [Google Scholar] [CrossRef]
- Ghadir, M.R.; Riahin, A.A.; Havaspour, A.; Nooranipour, M.; Habibinejad, A.A. The relationship between lipid profile and severity of liver damage in cirrhotic patients. Hepat. Mon. 2010, 10, 285–288. [Google Scholar]
- Valkov, I.; Ivanova, R.; Alexiev, A.; Antonov, K.; Mateva, L. Association of Serum Lipids with Hepatic Steatosis, Stage of Liver Fibrosis and Viral Load in Chronic Hepatitis C. J. Clin. Diagn. Res. 2017, 11, OC15–OC20. [Google Scholar] [CrossRef]
- Vere, C.C.; Streba, C.T.; Streba, L.; Rogoveanu, I. Lipid serum profile in patients with viral liver cirrhosis. Med. Princ. Pract. 2012, 21, 566–568. [Google Scholar] [CrossRef]
- Castro-Narro, G.; Moctezuma-Velazquez, C.; Male-Velazquez, R.; Trejo-Estrada, R.; Bosques, F.J.; Moreno-Alcantar, R.; Rodriguez-Hernandez, H.; Bautista-Santos, A.; Cortez-Hernandez, C.; Cerda-Reyes, E.; et al. Position statement on the use of albumin in liver cirrhosis. Ann. Hepatol. 2022, 27, 100708. [Google Scholar] [CrossRef]
- Horing, M.; Peschel, G.; Grimm, J.; Krautbauer, S.; Muller, M.; Weigand, K.; Liebisch, G.; Buechler, C. Serum Ceramide Species Are Associated with Liver Cirrhosis and Viral Genotype in Patients with Hepatitis C Infection. Int. J. Mol. Sci. 2022, 23, 9806. [Google Scholar] [CrossRef] [PubMed]
- Salguero, S.; Rojo, D.; Berenguer, J.; Gonzalez-Garcia, J.; Fernandez-Rodriguez, A.; Brochado-Kith, O.; Diez, C.; Hontanon, V.; Virseda-Berdices, A.; Martinez, J.; et al. Plasma metabolomic fingerprint of advanced cirrhosis stages among HIV/HCV-coinfected and HCV-monoinfected patients. Liver Int. 2020, 40, 2215–2227. [Google Scholar] [CrossRef]
- Zhou, L.; Ding, L.; Yin, P.; Lu, X.; Wang, X.; Niu, J.; Gao, P.; Xu, G. Serum metabolic profiling study of hepatocellular carcinoma infected with hepatitis B or hepatitis C virus by using liquid chromatography-mass spectrometry. J. Proteome Res. 2012, 11, 5433–5442. [Google Scholar] [CrossRef] [PubMed]
- Nakano, T.; Raines, E.W.; Abraham, J.A.; Klagsbrun, M.; Ross, R. Lysophosphatidylcholine upregulates the level of heparin-binding epidermal growth factor-like growth factor mRNA in human monocytes. Proc. Natl. Acad. Sci. USA 1994, 91, 1069–1073. [Google Scholar] [CrossRef]
- Heimerl, S.; Fischer, M.; Baessler, A.; Liebisch, G.; Sigruener, A.; Wallner, S.; Schmitz, G. Alterations of plasma lysophosphatidylcholine species in obesity and weight loss. PLoS ONE 2014, 9, e111348. [Google Scholar] [CrossRef] [PubMed]
- Buechler, C.; Aslanidis, C. Role of lipids in pathophysiology, diagnosis and therapy of hepatocellular carcinoma. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 2020, 1865, 158658. [Google Scholar] [CrossRef]
- Vallet-Pichard, A.; Mallet, V.; Nalpas, B.; Verkarre, V.; Nalpas, A.; Dhalluin-Venier, V.; Fontaine, H.; Pol, S. FIB-4: An inexpensive and accurate marker of fibrosis in HCV infection. Comparison with liver biopsy and fibrotest. Hepatology 2007, 46, 32–36. [Google Scholar] [CrossRef]
- Mandrekar, J.N. Receiver operating characteristic curve in diagnostic test assessment. J. Thorac. Oncol. 2010, 5, 1315–1316. [Google Scholar] [CrossRef]
- Paul, B.; Lewinska, M.; Andersen, J.B. Lipid alterations in chronic liver disease and liver cancer. JHEP Rep. 2022, 4, 100479. [Google Scholar] [CrossRef]
- Keikha, M.; Eslami, M.; Yousefi, B.; Ali-Hassanzadeh, M.; Kamali, A.; Yousefi, M.; Karbalaei, M. HCV genotypes and their determinative role in hepatitis C treatment. Virusdisease 2020, 31, 235–240. [Google Scholar] [CrossRef] [PubMed]
- Sheridan, D.A.; Shawa, I.T.; Thomas, E.L.; Felmlee, D.J.; Bridge, S.H.; Neely, D.; Cobbold, J.F.; Holmes, E.; Bassendine, M.F.; Taylor-Robinson, S.D. Infection with the hepatitis C virus causes viral genotype-specific differences in cholesterol metabolism and hepatic steatosis. Sci. Rep. 2022, 12, 5562. [Google Scholar] [CrossRef]
- Isaac, A.; Elmarashly, B.; El Saeed, K.; Mohamed, R.S.; Ibrahim, S.A.; Safwat, E. The effect of hepatitis C virologic clearance on cardiovascular disease biomarker lipoprotein-associated phospholipase A2 and its relation to serum lipids. Egypt. Liver J. 2021, 11, 42. [Google Scholar] [CrossRef]
- Jonas, A. Lecithin cholesterol acyltransferase. Biochim. Biophys. Acta 2000, 1529, 245–256. [Google Scholar] [CrossRef] [PubMed]
- Wiegand, J.; Berg, T. The etiology, diagnosis and prevention of liver cirrhosis: Part 1 of a series on liver cirrhosis. Dtsch. Arztebl. Int. 2013, 110, 85–91. [Google Scholar] [CrossRef] [PubMed]
- Buechler, C.; Haberl, E.M.; Rein-Fischboeck, L.; Aslanidis, C. Adipokines in Liver Cirrhosis. Int. J. Mol. Sci. 2017, 18, 1392. [Google Scholar] [CrossRef]
- Koyama, Y.; Brenner, D.A. Liver inflammation and fibrosis. J. Clin. Investig. 2017, 127, 55–64. [Google Scholar] [CrossRef]
- Alves-Bezerra, M.; Cohen, D.E. Triglyceride Metabolism in the Liver. Compr. Physiol. 2017, 8, 1–8. [Google Scholar] [CrossRef]
- Zhou, L.; Wang, Q.; Yin, P.; Xing, W.; Wu, Z.; Chen, S.; Lu, X.; Zhang, Y.; Lin, X.; Xu, G. Serum metabolomics reveals the deregulation of fatty acids metabolism in hepatocellular carcinoma and chronic liver diseases. Anal. Bioanal. Chem. 2012, 403, 203–213. [Google Scholar] [CrossRef]
- McGlinchey, A.J.; Govaere, O.; Geng, D.; Ratziu, V.; Allison, M.; Bousier, J.; Petta, S.; de Oliviera, C.; Bugianesi, E.; Schattenberg, J.M.; et al. Metabolic signatures across the full spectrum of non-alcoholic fatty liver disease. JHEP Rep. 2022, 4, 100477. [Google Scholar] [CrossRef]
- Suvitaival, T.; Bondia-Pons, I.; Yetukuri, L.; Poho, P.; Nolan, J.J.; Hyotylainen, T.; Kuusisto, J.; Oresic, M. Lipidome as a predictive tool in progression to type 2 diabetes in Finnish men. Metabolism 2018, 78, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Hu, Y.; An, Y.; Wang, Q.; Liu, J.; Wang, G. The Changes of Lipidomic Profiles Reveal Therapeutic Effects of Exenatide in Patients With Type 2 Diabetes. Front. Endocrinol. 2022, 13, 677202. [Google Scholar] [CrossRef]
- Barber, M.N.; Risis, S.; Yang, C.; Meikle, P.J.; Staples, M.; Febbraio, M.A.; Bruce, C.R. Plasma lysophosphatidylcholine levels are reduced in obesity and type 2 diabetes. PLoS ONE 2012, 7, e41456. [Google Scholar] [CrossRef]
- Cantero, I.; Abete, I.; Del Bas, J.M.; Caimari, A.; Arola, L.; Zulet, M.A.; Martinez, J.A. Changes in lysophospholipids and liver status after weight loss: The RESMENA study. Nutr. Metab. 2018, 15, 51. [Google Scholar] [CrossRef] [PubMed]
- Rau, M.; Buggisch, P.; Mauss, S.; Boeker, K.H.W.; Klinker, H.; Muller, T.; Stoehr, A.; Schattenberg, J.M.; Geier, A. Prognostic impact of steatosis in the clinical course of chronic HCV infection-Results from the German Hepatitis C-Registry. PLoS ONE 2022, 17, e0264741. [Google Scholar] [CrossRef]
- Peschel, G.; Grimm, J.; Buechler, C.; Gunckel, M.; Pollinger, K.; Aschenbrenner, E.; Kammerer, S.; Jung, E.M.; Haimerl, M.; Werner, J.; et al. Liver stiffness assessed by shear-wave elastography declines in parallel with immunoregulatory proteins in patients with chronic HCV infection during DAA therapy. Clin. Hemorheol. Microcirc. 2021, 79, 541–555. [Google Scholar] [CrossRef]
- Schmedes, M.; Balderas, C.; Aadland, E.K.; Jacques, H.; Lavigne, C.; Graff, I.E.; Eng, O.; Holthe, A.; Mellgren, G.; Young, J.F.; et al. The Effect of Lean-Seafood and Non-Seafood Diets on Fasting and Postprandial Serum Metabolites and Lipid Species: Results from a Randomized Crossover Intervention Study in Healthy Adults. Nutrients 2018, 10, 598. [Google Scholar] [CrossRef]
- Kiser, J.J.; Burton, J.R.; Anderson, P.L.; Everson, G.T. Review and management of drug interactions with boceprevir and telaprevir. Hepatology 2012, 55, 1620–1628. [Google Scholar] [CrossRef]
- Yen, Y.H.; Kuo, F.Y.; Chen, C.H.; Hu, T.H.; Lu, S.N.; Wang, J.H.; Hung, C.H. Ultrasound is highly specific in diagnosing compensated cirrhosis in chronic hepatitis C patients in real world clinical practice. Medicine 2019, 98, e16270. [Google Scholar] [CrossRef]
- McPherson, S.; Hardy, T.; Dufour, J.F.; Petta, S.; Romero-Gomez, M.; Allison, M.; Oliveira, C.P.; Francque, S.; Van Gaal, L.; Schattenberg, J.M.; et al. Age as a Confounding Factor for the Accurate Non-Invasive Diagnosis of Advanced NAFLD Fibrosis. Am. J. Gastroenterol. 2017, 112, 740–751. [Google Scholar] [CrossRef]
- Liebisch, G.; Schmitz, G. Quantification of lysophosphatidylcholine species by high-throughput electrospray ionization tandem mass spectrometry (ESI-MS/MS). Methods Mol. Biol. 2009, 580, 29–37. [Google Scholar] [CrossRef] [PubMed]
- Bligh, E.G.; Dyer, W.J. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 1959, 37, 911–917. [Google Scholar] [CrossRef] [PubMed]
- Liebisch, G.; Lieser, B.; Rathenberg, J.; Drobnik, W.; Schmitz, G. High-throughput quantification of phosphatidylcholine and sphingomyelin by electrospray ionization tandem mass spectrometry coupled with isotope correction algorithm. Biochim. Biophys. Acta 2004, 1686, 108–117. [Google Scholar] [CrossRef]
- Levey, A.S.; Stevens, L.A.; Schmid, C.H.; Zhang, Y.L.; Castro, A.F., 3rd; Feldman, H.I.; Kusek, J.W.; Eggers, P.; Van Lente, F.; Greene, T.; et al. A new equation to estimate glomerular filtration rate. Ann. Intern. Med. 2009, 150, 604–612. [Google Scholar] [CrossRef] [PubMed]
- Burkhart, R.A.; Pawlik, T.M. Staging and Prognostic Models for Hepatocellular Carcinoma and Intrahepatic Cholangiocarcinoma. Cancer Control 2017, 24, 1073274817729235. [Google Scholar] [CrossRef]
Laboratory Parameter | Baseline (178 Patients) | 12 Weeks Therapy (176 Patients) | p-Value |
---|---|---|---|
Age years | 54 (24–82) | 54 (24–82) | ns |
Female/Male | 74/104 | 74/102 | ns |
BMI kg/m2 | 25.6 (17.6–41.6) | 25.6 (17.6–41.6) | ns |
MELD Score | 7 (6–21) | 7 (6–21) | ns |
Ferritin ng/mL | 128.6 (5.6–2309) | 94.2 (2.9–1161) | 0.003 |
ALT U/L | 61 (2–305) | 26 (6–388) | <0.001 |
AST U/L | 47 (7–1230) | 22 (6–836) | <0.001 |
Bilirubin mg/dL | 1.0 (1.0–4.3) | 1.0 (1.0–7.5) | ns |
INR | 1.05 (1.00–2.44) | 1.04 (1.00–2.22) | ns |
Creatinine mg/dL | 0.78 (0.14–14.00) | 0.76 (0.14–14.7) | ns |
Platelets n/nL | 195 (38–402) | 206 (37–407) | ns |
Leukocytes n/L | 6.5 (2.2–72.4) | 6.8 (2.4–62.9) | ns |
CRP mg/L | 2.9 (1.0–55.0) | 2.9 (2.9–20.3) | ns |
Albumin g/L | 38 (2–50) | 39 (16–93) | ns |
HDL mg/dL | 52 (19–111) | 50 (13–96) | ns |
LDL mg/dL | 95 (23–296) | 119 (33–251) | <0.001 |
LPC nmol/mL | MELD Score | INR | Albumin g/L | ALT U/L | AST U/L | Creatinine mg/dL | Bilirubin mg/dL |
---|---|---|---|---|---|---|---|
15:0 | −0.263 * | −0.262 * | 0.147 | 0.217 | −0.322 ** | 0.048 | −0.046 |
16:0 | −0.284 * | −0.305 ** | 0.211 | −0.156 | −0.266 * | 0.110 | −0.041 |
16:1 | −0.161 | −0.124 | 0.079 | −0.198 | −0.187 | −0.028 | −0.048 |
18:0 | −0.282 * | −0.302 ** | 0.215 | −0.117 | −0.199 | 0.068 | −0.017 |
18:1 | −0.203 | −0.216 | 0.197 | −0.226 | −0.304 ** | 0.017 | −0.010 |
18:2 | −0.245 * | −0.275 * | 0.269 | −0.243 | −0.336 ** | 0.035 | −0.081 |
18:3 | −0.212 | −0.193 | 0.091 | −0.229 | −0.292 ** | 0.072 | −0.133 |
20:3 | −0.241 | −0.263 * | 0.072 | −0.248 * | −0.352 *** | 0.096 | −0.064 |
20:4 | −0.246 * | −0.276 * | 0.131 | −0.251 * | −0.400 *** | 0.188 | −0.017 |
20:5 | −0.279 * | −0.251 * | 0.054 | −0.281 * | −0.415 *** | 0.114 | −0.014 |
22:5 | −0.127 | −0.085 | 0.057 | −0.181 | −0.310 ** | 0.128 | −0.003 |
22:6 | −0.186 | −0.193 | 0.137 | −0.140 | −0.237 | 0.068 | 0.086 |
LPC nmol/mL | MELD Score | INR | Albumin g/L | ALT U/L | AST U/L | Creatinine mg/dL | Bilirubin mg/dL |
---|---|---|---|---|---|---|---|
15:0 | −0.187 | −0.288 | 0.655 *** | −0.003 | −0.392 | 0.079 | −0.121 |
16:0 | −0.346 | −0.375 | 0.688 *** | −0.141 | −0.446 | −0.066 | −0.297 |
16:1 | −0.044 | 0.001 | 0.293 | −0.244 | −0.311 | −0.086 | 0.076 |
18:0 | −0.455 * | −0.490 * | 0.731 *** | −0.024 | −0.341 | −0.051 | −0.419 |
18:1 | −0.072 | −0.003 | 0.260 | −0.307 | −0.357 | −0.210 | −0.020 |
18:2 | −0.224 | −0.069 | 0.380 | −0.111 | −0.299 | −0.156 | −0.217 |
18:3 | −0.044 | 0.122 | 0.194 | −0.194 | −0.306 | −0.218 | −0.100 |
20:3 | −0.307 | −0.278 | 0.459 * | −0.082 | −0.388 | −0.162 | −0.276 |
20:4 | −0.353 | −0.314 | 0.628 *** | −0.150 | −0.440 | −0.072 | −0.293 |
20:5 | −0.195 | −0.226 | 0.349 | −0.169 | −0.425 | −0.081 | −0.126 |
22:5 | −0.247 | −0.201 | 0.328 | −0.134 | −0.210 | −0.288 | −0.043 |
22:6 | −0.549 ** | −0.556 ** | 0.717 *** | 0.004 | −0.331 | −0.020 | −0.415 |
LPC nmol/mL | MELD Score | INR | Albumin g/L | ALT U/L | AST U/L | Creatinine mg/dL | Bilirubin mg/dL |
---|---|---|---|---|---|---|---|
15:0 | −0.094 | −0.064 | 0.269 * | −0.046 | −0.125 | 0.024 | −0.109 |
16:0 | −0.026 | −0.065 | 0.328 ** | 0.002 | −0.066 | 0.089 | −0.069 |
16:1 | −0.087 | −0.047 | 0.267 * | −0.084 | 0.003 | −0.041 | −0.044 |
18:0 | −0.031 | −0.062 | 0.285 * | 0.004 | −0.116 | 0.085 | −0.057 |
18:1 | −0.011 | −0.029 | 0.304 ** | −0.106 | −0.062 | 0.025 | −0.004 |
18:2 | −0.090 | −0.133 | 0.183 | −0.101 | −0.145 | 0.020 | −0.044 |
18:3 | −0.115 | −0.117 | 0.176 | −0.103 | −0.140 | −0.114 | −0.040 |
20:3 | −0.119 | −0.161 | 0.266 * | −0.045 | −0.167 | −0.030 | 0.026 |
20:4 | −0.038 | −0.147 | 0.233 | 0.012 | −0.142 | 0.126 | 0.070 |
20:5 | −0.110 | −0.191 | 0.122 | −0.009 | −0.158 | −0.023 | 0.100 |
22:5 | 0.047 | −0.030 | 0.288 * | −0.123 | −0.150 | −0.029 | 0.125 |
22:6 | 0.028 | −0.029 | 0.175 | 0.099 | −0.033 | 0.023 | 0.147 |
LPC nmol/mL | MELD Score | INR | Albumin g/L | ALT U/L | AST U/L | Creatinine mg/dL | Bilirubin mg/dL |
---|---|---|---|---|---|---|---|
15:0 | −0.340 | −0.387 | 0.557 ** | −0.278 | −0.479 * | 0.037 | −0.182 |
16:0 | −0.551 ** | −0.524 ** | 0.651 *** | −0.143 | −0.404 | −0.163 | −0.367 |
16:1 | −0.151 | −0.118 | 0.216 | −0.096 | −0.247 | −0.194 | 0.029 |
18:0 | −0.614 *** | −0.499 * | 0.607 *** | −0.083 | −0.353 | −0.200 | −0.466 * |
18:1 | −0.160 | −0.157 | 0.058 | −0.099 | −0.150 | −0.258 | 0.008 |
18:2 | −0.336 | −0.226 | 0.249 | 0.034 | −0.345 | −0.020 | −0.257 |
18:3 | −0.253 | −0.172 | 0.123 | 0.048 | −0.276 | −0.147 | −0.145 |
20:3 | −0.413 | −0.237 | 0.388 | 0.065 | −0.282 | −0.372 | −0.339 |
20:4 | −0.601 *** | −0.398 | 0.586 ** | 0.007 | −0.364 | −0.419 | −0.464 * |
20:5 | −0.350 | −0.258 | 0.314 | 0.088 | −0.071 | −0.365 | −0.234 |
22:5 | −0.348 | −0.233 | 0.393 | 0.081 | −0.225 | −0.350 | −0.264 |
22:6 | −0.594 ** | −0.527 ** | 0.540 ** | 0.044 | −0.218 | −0.263 | −0.415 |
LPC nmol/mL | % LPC | |||
---|---|---|---|---|
Before Therapy | After Therapy | Before Therapy | After Therapy | |
15:0 | 0.263 ± 0.614 | 0.276 ± 0.640 | 0.485 ± 0.721 | 0.534 ± 0.711 |
16:0 | 0.197 ± 0.545 | 0.186 ± 0.545 | 0.300 ± 0.630 | 0.408 ± 0.673 |
16:1 | 0.377 ± 0.672 | 0.383 ± 0.683 | 0.652 ± 0.678 | 0.682 ± 0.611 |
18:0 | 0.235 ± 0.584 | 0.206 ± 0.570 | 0.432 ± 0.710 | 0.409 ± 0.692 |
18:1 | 0.390 ± 0.684 | 0.338 ± 0.640 | 0.773 ± 0.597 | 0.720 ± 0.623 |
18:2 | 0.342 ± 0.681 | 0.306 ± 0.636 | 0.569 ± 0.723 | 0.528 ± 0.706 |
18:3 | 0.386 ± 0.636 | 0.323 ± 0.678 | 0.588 ± 0.670 | 0.505 ± 0.691 |
20:3 | 0.230 ± 0.557 | 0.206 ± 0.539 | 0.404 ± 0.691 | 0.350 ± 0.648 |
20:4 | 0.200 ± 0.546 | 0.159 ± 0.477 | 0.343 ± 0.624 | 0.293 ± 0.577 |
20:5 | 0.182 ± 0.482 | 0.209 ± 0.575 | 0.270 ± 0.587 | 0.324 ± 0.647 |
22:5 | 0.260 ± 0.608 | 0.235 ± 0.590 | 0.514 ± 0.718 | 0.486 ± 0.706 |
22:6 | 0.139 ± 0.434 | 0.119 ± 0.373 | 0.261 ± 0.604 | 0.231 ± 0.550 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peschel, G.; Krautbauer, S.; Weigand, K.; Grimm, J.; Höring, M.; Liebisch, G.; Müller, M.; Buechler, C. Rising Lysophosphatidylcholine Levels Post-Hepatitis C Clearance. Int. J. Mol. Sci. 2024, 25, 1198. https://doi.org/10.3390/ijms25021198
Peschel G, Krautbauer S, Weigand K, Grimm J, Höring M, Liebisch G, Müller M, Buechler C. Rising Lysophosphatidylcholine Levels Post-Hepatitis C Clearance. International Journal of Molecular Sciences. 2024; 25(2):1198. https://doi.org/10.3390/ijms25021198
Chicago/Turabian StylePeschel, Georg, Sabrina Krautbauer, Kilian Weigand, Jonathan Grimm, Marcus Höring, Gerhard Liebisch, Martina Müller, and Christa Buechler. 2024. "Rising Lysophosphatidylcholine Levels Post-Hepatitis C Clearance" International Journal of Molecular Sciences 25, no. 2: 1198. https://doi.org/10.3390/ijms25021198
APA StylePeschel, G., Krautbauer, S., Weigand, K., Grimm, J., Höring, M., Liebisch, G., Müller, M., & Buechler, C. (2024). Rising Lysophosphatidylcholine Levels Post-Hepatitis C Clearance. International Journal of Molecular Sciences, 25(2), 1198. https://doi.org/10.3390/ijms25021198