Genetic Cause of Hybrid Lethality Observed in Reciprocal Interspecific Crosses between Nicotiana simulans and N. tabacum
Abstract
:1. Introduction
2. Results
2.1. Type of Hybrid Lethality Observed in Reciprocal Hybrids
2.2. Effect of Elevated Temperature on Hybrid Lethality
2.3. Involvement of the Q chromosome in Hybrid Lethality
2.4. Haplotype Analysis of the HLA1 Candidate Region
3. Discussion
4. Materials and Methods
4.1. Plant Materials
4.2. Interspecific Crosses
4.3. Cultivation of Hybrid Seedlings
4.4. Detection of Q-Chromosome-Specific DNA Markers
4.5. Marker Analysis for the HLA1 Candidate Region
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hajjar, R.; Hodgkin, T. The use of wild relatives in crop improvement: A survey of developments over the last 20 years. Euphytica 2007, 156, 1–13. [Google Scholar] [CrossRef]
- Kuligowska, K.; Lütken, H.; Müller, R. Towards development of new ornamental plants: Status and progress in wide hybridization. Planta 2016, 244, 1–17. [Google Scholar] [CrossRef]
- Crespo-Herrera, L.A.; Garkava-Gustavsson, L.; Åhman, I. A systematic review of rye (Secale cereale L.) as a source of resistance to pathogens and pests in wheat (Triticum aestivum L.). Hereditas 2017, 154, 14. [Google Scholar] [CrossRef] [PubMed]
- Baek, Y.S.; Royer, S.M.; Broz, A.K.; Covey, P.A.; López-Casado, G.; Nuñez, R.; Kear, P.J.; Bonierbale, M.; Orillo, M.; van der Knaap, E.; et al. Interspecific reproductive barriers between sympatric populations of wild tomato species (Solanum section Lycopersicon). Am. J. Bot. 2016, 103, 1964–1978. [Google Scholar] [CrossRef] [PubMed]
- Murfett, J.; Strabala, T.J.; Zurek, D.M.; Mou, B.; Beecher, B.; McClure, B.A. S RNase and interspecific pollen rejection in the genus Nicotiana: Multiple pollen-rejection pathways contribute to unilateral incompatibility between self-incompatible and self-compatible species. Plant Cell 1996, 8, 943–958. [Google Scholar] [CrossRef] [PubMed]
- Kuhl, J.C.; Havey, M.J.; Hanneman, R.E. A genetic study of unilateral incompatibility between diploid (1EBN) Mexican species Solanum pinnatisectum and S. cardiophyllum subsp. cardiophyllum. Sex. Plant Reprod. 2002, 14, 305–313. [Google Scholar] [CrossRef]
- Sanchez, A.M.; Mariani, C. Expression of the ACC synthase and ACC oxidase coding genes after self-pollination and incongruous pollination of tobacco pistils. Plant Mol. Biol. 2002, 48, 351–359. [Google Scholar] [CrossRef] [PubMed]
- Onus, A.N.; Pickersgill, B. Unilateral incompatibility in Capsicum (Solanaceae): Occurrence and taxonomic distribution. Ann. Bot. 2004, 94, 289–295. [Google Scholar] [CrossRef]
- Lee, C.B.; Page, L.E.; McClure, B.A.; Holtsford, T.P. Post-pollination hybridization barriers in Nicotiana section Alatae. Sex Plant Reprod. 2008, 21, 183–195. [Google Scholar] [CrossRef]
- Maune, J.F.; Camadro, E.L.; Erazzú, L.E. Cross-incompatibility and self-incompatibility: Unrelated phenomena in wild and cultivated potatoes? Botany 2018, 96, 33–45. [Google Scholar] [CrossRef]
- Wang, L.; Filatov, D.A. Mechanisms of prezygotic post-pollination reproductive barriers in plants. Front. Plant Sci. 2023, 14, 1230278. [Google Scholar] [CrossRef] [PubMed]
- Burkart-Waco, D.; Ngo, K.; Dilkes, B.; Josefsson, C.; Comai, L. Early disruption of maternal-zygotic interaction and activation of defense-like responses in Arabidopsis interspecific crosses. Plant Cell 2013, 25, 2037–2055. [Google Scholar] [CrossRef] [PubMed]
- Kirkbride, R.C.; Yu, H.H.; Nah, G.; Zhang, C.; Shi, X.; Chen, Z.J. An epigenetic role for disrupted paternal gene expression in postzygotic seed abortion in Arabidopsis interspecific hybrids. Mol. Plant 2015, 8, 1766–1775. [Google Scholar] [CrossRef] [PubMed]
- Rebernig, C.A.; Lafon-Placette, C.; Hatorangan, M.R.; Slotte, T.; Köhler, C. Non-reciprocal interspecies hybridization barriers in the Capsella genus are established in the endosperm. PLoS Genet. 2015, 11, e1005295. [Google Scholar] [CrossRef] [PubMed]
- Oneal, E.; Willis, J.H.; Franks, R.G. Disruption of endosperm development is a major cause of hybrid seed inviability between Mimulus guttatus and Mimulus nudatus. New Phytol. 2016, 210, 1107–1120. [Google Scholar] [CrossRef] [PubMed]
- Lafon-Placette, C.; Johannessen, I.M.; Hornslien, K.S.; Ali, M.F.; Bjerkan, K.N.; Bramsiepe, J.; Glockle, B.M.; Rebernig, C.A.; Brysting, A.K.; Grini, P.E.; et al. Endosperm-based hybridization barriers explain the pattern of gene flow between Arabidopsis lyrata and Arabidopsis arenosa in Central Europe. Proc. Natl. Acad. Sci. USA 2017, 114, E1027–E1035. [Google Scholar] [CrossRef] [PubMed]
- Tikhenko, N.; Poursarebani, N.; Rutten, T.; Schnurbusch, T.; Börner, A. Embryo lethality in wheat-rye hybrids: Dosage effect and deletion bin mapping of the responsible wheat locus. Biol. Plant. 2017, 61, 342–348. [Google Scholar] [CrossRef]
- Cremona, G.; Iovene, M.; Festa, G.; Conicella, C.; Parisi, M. Production of embryo rescued hybrids between the landrace “Friariello” (Capsicum annuum var. annuum) and C. baccatum var. pendulum: Phenotypic and cytological characterization. Euphytica 2018, 214, 129. [Google Scholar] [CrossRef]
- Lafon-Placette, C.; Hatorangan, M.R.; Steige, K.A.; Cornille, A.; Lascoux, M.; Slotte, T.; Köhler, C. Paternally expressed imprinted genes associate with hybridization barriers in Capsella. Nat. Plants 2018, 4, 352–357. [Google Scholar] [CrossRef]
- Roth, M.; Florez-Rueda, A.M.; Griesser, S.; Paris, M.; Städler, T. Incidence and developmental timing of endosperm failure in post-zygotic isolation between wild tomato lineages. Ann. Bot. 2018, 121, 107–118. [Google Scholar] [CrossRef]
- Tonosaki, K.; Sekine, D.; Ohnishi, T.; Ono, A.; Furuumi, H.; Kurata, N.; Kinoshita, T. Overcoming the species hybridization barrier by ploidy manipulation in the genus Oryza. Plant J. 2018, 93, 534–544. [Google Scholar] [CrossRef] [PubMed]
- Roth, M.; Florez-Rueda, A.M.; Städler, T. Differences in effective ploidy drive genome-wide endosperm expression polarization and seed failure in wild tomato hybrids. Genetics 2019, 212, 141–152. [Google Scholar] [CrossRef] [PubMed]
- Toyomoto, D.; Uemura, M.; Taura, S.; Sato, T.; Henry, R.; Ishikawa, R.; Ichitani, K. Segregation distortion observed in the progeny of crosses between Oryza sativa and O. meridionalis caused by abortion during seed development. Plants 2019, 8, 398. [Google Scholar] [CrossRef] [PubMed]
- Bjerkan, K.N.; Hornslien, K.S.; Johannessen, I.M.; Krabberød, A.K.; van Ekelenburg, Y.S.; Kalantarian, M.; Shirzadi, R.; Comai, L.; Brysting, A.K.; Bramsiepe, J.; et al. Genetic variation and temperature affects hybrid barriers during interspecific hybridization. Plant J. 2020, 101, 122–140. [Google Scholar] [CrossRef] [PubMed]
- Coughlan, J.M.; Wilson Brown, M.; Willis, J.H. Patterns of hybrid seed inviability in the Mimulus guttatus sp. complex reveal a potential role of parental conflict in reproductive isolation. Curr. Biol. 2020, 30, 83–93.e85. [Google Scholar] [CrossRef] [PubMed]
- Dziasek, K.; Simon, L.; Lafon-Placette, C.; Laenen, B.; Wärdig, C.; Santos-González, J.; Slotte, T.; Köhler, C. Hybrid seed incompatibility in Capsella is connected to chromatin condensation defects in the endosperm. PLoS Genet. 2021, 17, e1009370. [Google Scholar] [CrossRef] [PubMed]
- Florez-Rueda, A.M.; Fiscalini, F.; Roth, M.; Grossniklaus, U.; Städler, T. Endosperm and seed transcriptomes reveal possible roles for small RNA pathways in wild tomato hybrid seed failure. Genome Biol. Evol. 2021, 13, evab107. [Google Scholar] [CrossRef]
- Kinser, T.J.; Smith, R.D.; Lawrence, A.H.; Cooley, A.M.; Vallejo-Marín, M.; Conradi Smith, G.D.; Puzey, J.R. Endosperm-based incompatibilities in hybrid monkeyflowers. Plant Cell 2021, 33, 2235–2257. [Google Scholar] [CrossRef]
- Köhler, C.; Dziasek, K.; Del Toro-De León, G. Postzygotic reproductive isolation established in the endosperm: Mechanisms, drivers and relevance. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2021, 376, 20200118. [Google Scholar] [CrossRef]
- Städler, T.; Florez-Rueda, A.M.; Roth, M. A revival of effective ploidy: The asymmetry of parental roles in endosperm-based hybridization barriers. Curr. Opin. Plant Biol. 2021, 61, 102015. [Google Scholar] [CrossRef]
- Huc, J.; Dziasek, K.; Pachamuthu, K.; Woh, T.; Kohler, C.; Borges, F. Bypassing reproductive barriers in hybrid seeds using chemically induced epimutagenesis. Plant Cell 2022, 34, 989–1001. [Google Scholar] [CrossRef] [PubMed]
- He, H.; Shiragaki, K.; Tezuka, T. Understanding and overcoming hybrid lethality in seed and seedling stages as barriers to hybridization and gene flow. Front. Plant Sci. 2023, 14, 1219417. [Google Scholar] [CrossRef] [PubMed]
- He, H.; Sadahisa, K.; Yokoi, S.; Tezuka, T. Parental genome imbalance causes hybrid seed lethality as well as ovary abscission in interspecific and interploidy crosses in Nicotiana. Front. Plant Sci. 2022, 13, 899206. [Google Scholar] [CrossRef] [PubMed]
- Sandstedt, G.D.; Sweigart, A.L. Developmental evidence for parental conflict in driving Mimulus species barriers. New Phytol. 2022, 236, 1545–1557. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.; Sato, H.; Bente, H.; Santos-González, J.; Köhler, C. Endosperm cellularization failure induces a dehydration stress response leading to embryo arrest. Plant Cell 2023, 35, 874–888. [Google Scholar] [CrossRef] [PubMed]
- Zumajo-Cardona, C.; Aguirre, M.; Castillo-Bravo, R.; Mizzotti, C.; Di Marzo, M.; Banfi, C.; Mendes, M.A.; Spillane, C.; Colombo, L.; Ezquer, I. Maternal control of triploid seed development by the TRANSPARENT TESTA 8 (TT8) transcription factor in Arabidopsis thaliana. Sci. Rep. 2023, 13, 1316. [Google Scholar] [CrossRef] [PubMed]
- Chu, Y.E.; Oka, H.I. The distribution and effects of genes causing F1 weakness in Oryza breviligulata and O. glaberrima. Genetics 1972, 70, 163–173. [Google Scholar] [CrossRef] [PubMed]
- Sato, Y.I.; Hayashi, K. Distribution of the complementary genes causing F1 weakness in the common rice and its wild relatives. I. L-2-a gene in Asian native cultivars. Jpn. J. Genet. 1983, 58, 411–418. [Google Scholar] [CrossRef]
- Gepts, P.; Bliss, F.A. F1 hybrid weakness in the common bean: Differential geographic origin suggets two gene pools in cultivated bean germplasm. J. Hered. 1985, 76, 447–450. [Google Scholar] [CrossRef]
- Reiber, J.M.; Neuman, D.S. Hybrid weakness in Phaseolus vulgaris. II. Disruption of root-shoot integration. J. Plant Growth Regul. 1999, 18, 107–112. [Google Scholar] [CrossRef]
- Hannah, M.A.; Krämer, K.M.; Geffroy, V.; Kopka, J.; Blair, M.W.; Erban, A.; Vallejos, C.E.; Heyer, A.G.; Sanders, F.E.; Millner, P.A.; et al. Hybrid weakness controlled by the dosage-dependent lethal (DL) gene system in common bean (Phaseolus vulgaris) is caused by a shoot-derived inhibitory signal leading to salicylic acid-associated root death. New Phytol. 2007, 176, 537–549. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Chen, H.; Lin, Y.S.; Shen, J.B.; Shan, J.X.; Qi, P.; Shi, M.; Zhu, M.Z.; Huang, X.H.; Feng, Q.; et al. A two-locus interaction causes interspecific hybrid weakness in rice. Nat. Commun. 2014, 5, 3357. [Google Scholar] [CrossRef] [PubMed]
- Ichitani, K.; Taura, S.; Sato, M.; Kuboyama, T. Distribution of Hwc2-1, a causal gene of a hybrid weakness, in the World Rice Core collection and the Japanese Rice mini Core collection: Its implications for varietal differentiation and artificial selection. Breed. Sci. 2016, 66, 776–789. [Google Scholar] [CrossRef] [PubMed]
- Nadir, S.; Li, W.; Zhu, Q.; Khan, S.; Zhang, X.L.; Zhang, H.; Wei, Z.F.; Li, M.T.; Zhou, L.; Li, C.Y.; et al. A novel discovery of a long terminal repeat retrotransposon-induced hybrid weakness in rice. J. Exp. Bot. 2019, 70, 1197–1207. [Google Scholar] [CrossRef] [PubMed]
- Shiragaki, K.; Iizuka, T.; Ichitani, K.; Kuboyama, T.; Morikawa, T.; Oda, M.; Tezuka, T. HWA1-and HWA2-mediated hybrid weakness in rice involves cell death, reactive oxygen species accumulation, and disease resistance-related gene upregulation. Plants 2019, 8, 450. [Google Scholar] [CrossRef]
- Shiragaki, K.; Seko, S.; Yokoi, S.; Tezuka, T. Capsicum annuum with causal allele of hybrid weakness is prevalent in Asia. PLoS ONE 2022, 17, e0271091. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Mao, C.; Wu, X.; Zhou, H.; Zhao, K.; Jiang, J.; Chen, S.; Fang, W.; Guan, Z.; Zhang, J.; et al. Hybrid weakness and continuous flowering caused by compound expression of FTLs in Chrysanthemum morifolium × Leucanthemum paludosum intergeneric hybridization. Front. Plant Sci. 2023, 14, 1120820. [Google Scholar] [CrossRef]
- Hollingshead, L. A lethal factor in Crepis effective only in an interspecific hybrid. Genetics 1930, 15, 114–140. [Google Scholar] [CrossRef]
- Oka, H.I. Phylogenetic differentiation of cultivated rice. XV. Complementary lethal genes in rice. Jpn. J. Genet. 1957, 32, 83–87. [Google Scholar] [CrossRef]
- Tsunewaki, K. Monosomic and conventional analyses in common wheat. III. Lethality. Jpn. J. Genet. 1960, 35, 71–75. [Google Scholar] [CrossRef]
- Nishikawa, K. Hybrid lethality in crosses between Emmer wheats and Aegilops squarrosa, II. Synthesized 6x wheatis employed as test varieties. Jpn. J. Genet. 1962, 37, 227–236. [Google Scholar] [CrossRef]
- Yamaguchi, H.; Tatara, A. Cell biological study on seedling lethality by complementary genes in barley. Jpn. J. Breed. 1974, 24, 25–30. [Google Scholar] [CrossRef]
- Lee, J.A. Genetics of D3 complementary lethality in Gossypium hirsutum and G. barbadense. J. Hered. 1981, 72, 299–300. [Google Scholar] [CrossRef]
- Inoue, E.; Sakuma, F.; Kasumi, M.; Hara, H.; Tsukihashi, T. Effect of high-temperature on suppression of the lethality exhibited in the intergeneric hybrid between Japanese pear (Pyrus pyrifolia Nakai) and apple (Malus × domestica Borkh.). Sci. Hortic. 2003, 98, 385–396. [Google Scholar] [CrossRef]
- Song, L.; Guo, W.; Zhang, T. Interaction of novel Dobzhansky-Muller type genes for the induction of hybrid lethality between Gossypium hirsutum and G. barbadense cv. Coastland R4-4. Theor. Appl. Genet. 2009, 119, 33–41. [Google Scholar] [CrossRef]
- Tezuka, T.; Kuboyama, T.; Matsuda, T.; Marubashi, W. Seven of eight species in Nicotiana section Suaveolentes have common factors leading to hybrid lethality in crosses with Nicotiana tabacum. Ann. Bot. 2010, 106, 267–276. [Google Scholar] [CrossRef]
- Hu, Y.; Xue, Y.; Liu, J.; Fang, Z.; Yang, L.; Zhang, Y.; Lv, H.; Liu, Y.; Li, Z.; Zhuang, M. Hybrid lethality caused by two complementary dominant genes in cabbage (Brassica oleracea L.). Mol. Breed. 2016, 36, 73. [Google Scholar] [CrossRef]
- Xiao, Z.; Hu, Y.; Zhang, X.; Xue, Y.; Fang, Z.; Yang, L.; Zhang, Y.; Liu, Y.; Li, Z.; Liu, X.; et al. Fine mapping and transcriptome analysis reveal candidate genes associated with hybrid lethality in cabbage (Brassica oleracea). Genes 2017, 8, 147. [Google Scholar] [CrossRef]
- Deng, J.; Fang, L.; Zhu, X.; Zhou, B.; Zhang, T. A CC-NBS-LRR gene induces hybrid lethality in cotton. J. Exp. Bot. 2019, 70, 5145–5156. [Google Scholar] [CrossRef]
- Xiao, Z.; Liu, X.; Fang, Z.; Yang, L.; Zhang, Y.; Wang, Y.; Zhuang, M.; Lv, H. Transcriptome and plant hormone analyses provide new insight into the molecular regulatory networks underlying hybrid lethality in cabbage (Brassica oleracea). Planta 2021, 253, 96. [Google Scholar] [CrossRef]
- Mori, N.; Tsunewaki, K. Distribution of the necrosis and chlorosis genes in two wild tetraploid wheats, Triticum dicoccoides and T. araraticum. Jpn. J. Genet. 1992, 67, 371–380. [Google Scholar] [CrossRef]
- Krüger, J.; Thomas, C.M.; Golstein, C.; Dixon, M.S.; Smoker, M.; Tang, S.; Mulder, L.; Jones, J.D.G. A tomato cysteine protease required for Cf-2-dependent disease resistance and suppression of autonecrosis. Science 2002, 296, 744–747. [Google Scholar] [CrossRef]
- Jeuken, M.J.W.; Zhang, N.W.; McHale, L.K.; Pelgrom, K.; den Boer, E.; Lindhout, P.; Michelmore, R.W.; Visser, R.G.F.; Niks, R.E. Rin4 causes hybrid necrosis and race-specific resistance in an interspecific lettuce hybrid. Plant Cell 2009, 21, 3368–3378. [Google Scholar] [CrossRef]
- Montanari, S.; Brewer, L.; Lamberts, R.; Velasco, R.; Malnoy, M.; Perchepied, L.; Guérif, P.; Durel, C.E.; Bus, V.G.M.; Gardiner, S.E.; et al. Genome mapping of postzygotic hybrid necrosis in an interspecific pear population. Hortic. Res. 2016, 3, 15064. [Google Scholar] [CrossRef]
- Sakaguchi, K.; Nishijima, R.; Iehisa, J.C.; Takumi, S. Fine mapping and genetic association analysis of Net2, the causative D-genome locus of low temperature-induced hybrid necrosis in interspecific crosses between tetraploid wheat and Aegilops tauschii. Genetica 2016, 144, 523–533. [Google Scholar] [CrossRef]
- Świadek, M.; Proost, S.; Sieh, D.; Yu, J.; Todesco, M.; Jorzig, C.; Rodriguez Cubillos, A.E.; Plötner, B.; Nikoloski, Z.; Chae, E.; et al. Novel allelic variants in ACD6 cause hybrid necrosis in local collection of Arabidopsis thaliana. New Phytol. 2017, 213, 900–915. [Google Scholar] [CrossRef]
- Kuki, Y.; Ohno, R.; Yoshida, K.; Takumi, S. Heterologous expression of wheat WRKY transcription factor genes transcriptionally activated in hybrid necrosis strains alters abiotic and biotic stress tolerance in transgenic Arabidopsis. Plant Physiol. Biochem. 2020, 150, 71–79. [Google Scholar] [CrossRef]
- Barragan, A.C.; Collenberg, M.; Wang, J.; Lee, R.R.Q.; Cher, W.Y.; Rabanal, F.A.; Ashkenazy, H.; Weigel, D.; Chae, E. A truncated singleton NLR causes hybrid necrosis in Arabidopsis thaliana. Mol. Biol. Evol. 2021, 38, 557–574. [Google Scholar] [CrossRef]
- Jia, H.; Xue, S.; Lei, L.; Fan, M.; Peng, S.; Li, T.; Nagarajan, R.; Carver, B.; Ma, Z.; Deng, J.; et al. A semi-dominant NLR allele causes whole-seedling necrosis in wheat. Plant Physiol. 2021, 186, 483–496. [Google Scholar] [CrossRef]
- Zhang, M.; Lv, S.; Wang, Y.; Wang, S.; Chen, C.; Wang, C.; Wang, Y.; Zhang, H.; Ji, W. Fine mapping and distribution analysis of hybrid necrosis genes Ne1 and Ne2 in wheat in China. Theor. Appl. Genet. 2022, 135, 1177–1189. [Google Scholar] [CrossRef]
- Li, C.; Binaghi, M.; Pichon, V.; Cannarozzi, G.; Brandão de Freitas, L.; Hanemian, M.; Kuhlemeier, C. Tight genetic linkage of genes causing hybrid necrosis and pollinator isolation between young species. Nat. Plants 2023, 9, 420–432. [Google Scholar] [CrossRef] [PubMed]
- Mariam, A.L.; Zakri, A.H.; Mahani, M.C.; Normah, M.N. Interspecific hybridization of cultivated rice, Oryza sativa L. with the wild rice, O. minuta Presl. Theor. Appl. Genet. 1996, 93, 664–671. [Google Scholar] [CrossRef] [PubMed]
- Fu, X.; Lu, Y.; Liu, X.; Li, J.; Feng, J. Cytological mechanisms of interspecific incrossability and hybrid sterility between Oryza sativa L. and O. alta Swallen. Chi. Sci. Bull. 2007, 52, 755–765. [Google Scholar] [CrossRef]
- Yamagata, Y.; Yamamoto, E.; Aya, K.; Win, K.T.; Doi, K.; Sobrizal; Ito, T.; Kanamori, H.; Wu, J.; Matsumoto, T.; et al. Mitochondrial gene in the nuclear genome induces reproductive barrier in rice. Proc. Natl. Acad. Sci. USA 2010, 107, 1494–1499. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Zhao, X.; Cheng, K.; Du, H.; Ouyang, Y.; Chen, J.; Qiu, S.; Huang, J.; Jiang, Y.; Jiang, L.; et al. A killer-protector system regulates both hybrid sterility and segregation distortion in rice. Science 2012, 337, 1336–1340. [Google Scholar] [CrossRef] [PubMed]
- Stathos, A.; Fishman, L. Chromosomal rearrangements directly cause underdominant F1 pollen sterility in Mimulus lewisii-Mimulus cardinalis hybrids. Evolution 2014, 68, 3109–3119. [Google Scholar] [CrossRef]
- Chetelat, R.T. Overcoming sterility and unilateral incompatibility of Solanum lycopersicum × S. sitiens hybrids. Euphytica 2016, 207, 319–330. [Google Scholar] [CrossRef]
- Koide, Y.; Ogino, A.; Yoshikawa, T.; Kitashima, Y.; Saito, N.; Kanaoka, Y.; Onishi, K.; Yoshitake, Y.; Tsukiyama, T.; Saito, H.; et al. Lineage-specific gene acquisition or loss is involved in interspecific hybrid sterility in rice. Proc. Natl. Acad. Sci. USA 2018, 115, E1955–E1962. [Google Scholar] [CrossRef]
- Li, J.; Zhou, J.; Zhang, Y.; Yang, Y.; Pu, Q.; Tao, D. New insights into the nature of interspecific hybrid sterility in rice. Front. Plant Sci. 2020, 11, 555572. [Google Scholar] [CrossRef]
- Jiang, W.; Chu, S.H.; Piao, R.; Chin, J.H.; Jin, Y.M.; Lee, J.; Qiao, Y.; Han, L.; Piao, Z.; Koh, H.J. Fine mapping and candidate gene analysis of hwh1 and hwh2, a set of complementary genes controlling hybrid breakdown in rice. Theor. Appl. Genet. 2008, 116, 1117–1127. [Google Scholar] [CrossRef]
- Miura, K.; Yamamoto, E.; Morinaka, Y.; Takashi, T.; Kitano, H.; Matsuoka, M.; Ashikari, M. The hybrid breakdown 1(t) locus induces interspecific hybrid breakdown between rice Oryza sativa cv. Koshihikari and its wild relative O. nivara. Breed. Sci. 2008, 58, 99–105. [Google Scholar] [CrossRef]
- Boutraa, T. Root and shoot abnormalities in F2 progeny of a cross between two cultivars of common bean (Phaseolus vulgaris L.) from different gene pools. Am. Eurasian J. Agron. 2009, 2, 117–123. [Google Scholar]
- Plötner, B.; Nurmi, M.; Fischer, A.; Watanabe, M.; Schneeberger, K.; Holm, S.; Vaid, N.; Schöttler, M.A.; Walther, D.; Hoefgen, R.; et al. Chlorosis caused by two recessively interacting genes reveals a role of RNA helicase in hybrid breakdown in Arabidopsis thaliana. Plant J. 2017, 91, 251–262. [Google Scholar] [CrossRef]
- Zuellig, M.P.; Sweigart, A.L. A two-locus hybrid incompatibility is widespread, polymorphic, and active in natural populations of Mimulus. Evolution 2018, 72, 2394–2405. [Google Scholar] [CrossRef] [PubMed]
- Zuellig, M.P.; Sweigart, A.L. Gene duplicates cause hybrid lethality between sympatric species of Mimulus. PLoS Genet. 2018, 14, e1007130. [Google Scholar] [CrossRef] [PubMed]
- Matsubara, K. How hybrid breakdown can be handled in rice crossbreeding? Front. Plant Sci. 2020, 11, 575412. [Google Scholar] [CrossRef] [PubMed]
- Munguambe, N.E.; Inoue, S.; Demeter, Z.; Yamagata, Y.; Yasui, H.; Zheng, S.H.; Fujita, D. Substitution mapping of a locus responsible for hybrid breakdown in populations derived from interspecific introgression line. Front. Plant Sci. 2021, 12, 633247. [Google Scholar] [CrossRef]
- Zhang, M.; Wei, H.; Liu, J.; Bian, Y.; Ma, Q.; Mao, G.; Wang, H.; Wu, A.; Zhang, J.; Chen, P.; et al. Non-functional GoFLA19s are responsible for the male sterility caused by hybrid breakdown in cotton (Gossypium spp.). Plant J. 2021, 107, 1198–1212. [Google Scholar] [CrossRef]
- Xu, P.; Xu, J.; Guo, Q.; Xu, Z.; Ji, W.; Yu, H.; Cai, J.; Zhao, L.; Zhao, J.; Liu, J.; et al. A recessive LRR-RLK gene causes hybrid breakdown in cotton. Theor. Appl. Genet. 2023, 136, 189. [Google Scholar] [CrossRef]
- Knapp, S.; Chase, M.W.; Clarkson, J.J. Nomenclatural changes and a new sectional classification in Nicotiana (Solanaceae). Taxon 2004, 53, 73–82. [Google Scholar] [CrossRef]
- Chase, M.W.; Christenhusz, M.J.M.; Palsson, R.L.; Fay, M.F.; Dodsworth, S.; Conran, J.G.; Cauz-Santos, L.A.; Nollet, F.; Samuel, R.; Paun, O. Species delimitation in Nicotiana sect. Suaveolentes (Solanaceae): Reciprocal illumination leads to recognition of many new species. Curtis’s Bot. Mag. 2021, 38, 266–286. [Google Scholar] [CrossRef]
- Holmes, F.O. Inheritance of resistance to tobacco-mosaic disease in tobacco. Phytopathology 1938, 28, 553–561. [Google Scholar]
- Gerstel, D.U. Inheritance in Nicotiana Tabacum. XIX. Identification of the Tabacum chromosome replaced by one from N. glutinosa in mosaic-resistant Holmes Samsoun tobacco. Genetics 1945, 30, 448–454. [Google Scholar] [CrossRef] [PubMed]
- Valleau, W.D. Breeding tobacco for disease resistance. Econ. Bot. 1952, 6, 69–102. [Google Scholar] [CrossRef]
- Clayton, E.E. The genetics and breeding progress in tobacco during the last 50 years. Agron. J. 1958, 50, 352–356. [Google Scholar] [CrossRef]
- Marathe, R.; Anandalakshmi, R.; Liu, Y.; Dinesh-Kumar, S.P. The tobacco mosaic virus resistance gene, N. Mol. Plant Pathol. 2002, 3, 167–172. [Google Scholar] [CrossRef] [PubMed]
- Johnson, E.S.; Wolff, M.F.; Wernsman, E.A.; Atchley, W.R.; Shew, H.D. Origin of the black shank resistance gene, Ph, in tobacco cultivar Coker 371-Gold. Plant Dis. 2002, 86, 1080–1084. [Google Scholar] [CrossRef] [PubMed]
- Bao, Y.; Ding, N.; Qin, Q.; Wu, X.; Martinez, N.; Miller, R.; Zaitlin, D.; Li, D.; Yang, S. Genetic mapping of the Ph gene conferring disease resistance to black shank in tobacco. Mol. Breed. 2019, 39, 122. [Google Scholar] [CrossRef]
- Clayton, E.E. Male sterile tobacco. J. Hered. 1950, 41, 171–175. [Google Scholar] [CrossRef]
- Sand, S.A. Genetic modification of cytoplasmic male sterility in tobacco. J. Hered. 1968, 59, 175–177. [Google Scholar] [CrossRef]
- Schweppenhauser, M.A.; Mann, T.J. Restoration of staminal fertility in Nicotiana by introgression. Can. J. Genet. Cytol. 1968, 10, 401–411. [Google Scholar] [CrossRef]
- Sand, S.A.; Christoff, G.T. Cytoplasmic-chromosomal interactions and altered differentiation in tobacco. J. Hered. 1973, 64, 24–30. [Google Scholar] [CrossRef]
- Burns, J.A.; Gerstel, D.U.; Sand, S.A. Cytoplasmic male sterility in Nicotiana, restoration of fertility, and the nucleolus. II. N. debneyi cytoplasm. Genetics 1978, 90, 151–159. [Google Scholar] [CrossRef] [PubMed]
- Kumashiro, T.; Kubo, T. Cytoplasm transfer of Nicotiana debneyi to N. tabacum by protoplast fusion. Jpn. J. Breed. 1986, 36, 39–48. [Google Scholar] [CrossRef]
- Kumashiro, T.; Asahi, T.; Komari, T. A new source of cytoplasmic male sterile tobacco obtained by fusion between Nicotiana tabacum and X-irradiated N. africana protoplasts. Plant Sci. 1988, 55, 247–254. [Google Scholar] [CrossRef]
- Nikova, V.M.; Zagorska, N.A. Overcoming hybrid incompatibility between Nicotiana africana Merxm. and N. tabacum and development of cytoplasmically male sterile tobacco forms. Plant Cell Tiss. Org. Cult. 1990, 23, 71–75. [Google Scholar] [CrossRef]
- Nikova, V.M.; Zagorska, N.A.; Pundeva, R.S. Development of four tobacco cytoplasmic male sterile sources using in vitro techniques. Plant Cell Tiss. Org. Cult. 1991, 27, 289–295. [Google Scholar] [CrossRef]
- Berbeć, A.; Doroszewska, T. The use of Nicotiana species in tobacco improvement. In The Tobacco Plant Genome; Ivanov, N.V., Sierro, N., Peitsch, M.C., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 101–146. [Google Scholar]
- Burk, L.G.; Heggestad, H.E. The genus Nicotiana: A source of resistance to diseases of cultivated tobacco. Econ. Bot. 1966, 20, 76–88. [Google Scholar] [CrossRef]
- Japan Tobacco Inc. The Genus Nicotiana Illustrated; Seibundo Shinkosha: Tokyo, Japan, 1994. [Google Scholar]
- Kubo, T. Studies on hybrid breeding by the use of cytoplasmic male sterility in flue-cured tobacco. Bull. Iwata Tob. Exp. Stn. 1985, 17, 69–138, (In Japanese with English summary). [Google Scholar] [CrossRef]
- Kubo, T. Male sterility in tobacco. Plant Tis. Cult. Lett. 1985, 2, 76–77. (In Japanese) [Google Scholar] [CrossRef]
- Chase, M.W.; Samuel, R.; Leitch, A.R.; Guignard, M.S.; Conran, J.G.; Nollet, F.; Fletcher, P.; Jakob, A.; Cauz-Santos, L.A.; Vignolle, G.; et al. Down, then up: Non-parallel genome size changes and a descending chromosome series in a recent radiation of the Australian allotetraploid plant species, Nicotiana section Suaveolentes (Solanaceae). Ann. Bot. 2023, 131, 123–142. [Google Scholar] [CrossRef] [PubMed]
- Goodspeed, T.; Thompson, M.C. Cytotaxonomy of Nicotiana. II. Bot. Rev. 1959, 25, 385–415. [Google Scholar] [CrossRef]
- Gopinath, D.; Krishnamurthy, K.; Krishnamurthy, A. Cytological studies on interspecific hybrids in Nicotiana involving a new Australian species, Nicotiana amplexicaulis. Can. J. Genet. Cytol. 1965, 7, 328–340. [Google Scholar] [CrossRef]
- Clarkson, J.J.; Dodsworth, S.; Chase, M.W. Time-calibrated phylogenetic trees establish a lag between polyploidisation and diversification in Nicotiana (Solanaceae). Plant Syst. Evol. 2017, 303, 1001–1012. [Google Scholar] [CrossRef]
- Schiavinato, M.; Marcet-Houben, M.; Dohm, J.C.; Gabaldón, T.; Himmelbauer, H. Parental origin of the allotetraploid tobacco Nicotiana benthamiana. Plant J. 2020, 102, 541–554. [Google Scholar] [CrossRef]
- Tezuka, T.; Marubashi, W. Hybrid lethality in interspecific hybrids between Nicotiana tabacum and N. suaveolens: Evidence that the Q chromosome causes hybrid lethality based on Q-chromosome-specific DNA markers. Theor. Appl. Genet. 2006, 112, 1172–1178. [Google Scholar] [CrossRef] [PubMed]
- Tezuka, T.; Kuboyama, T.; Matsuda, T.; Marubashi, W. Possible involvement of genes on the Q chromosome of Nicotiana tabacum in expression of hybrid lethality and programmed cell death during interspecific hybridization to Nicotiana debneyi. Planta 2007, 226, 753–764. [Google Scholar] [CrossRef]
- Iizuka, T.; Kuboyama, T.; Marubashi, W.; Oda, M.; Tezuka, T. Nicotiana debneyi has a single dominant gene causing hybrid lethality in crosses with N. tabacum. Euphytica 2012, 186, 321–328. [Google Scholar] [CrossRef]
- Tezuka, T.; Matsuo, C.; Iizuka, T.; Oda, M.; Marubashi, W. Identification of Nicotiana tabacum linkage group corresponding to the Q chromosome gene(s) involved in hybrid lethality. PLoS ONE 2012, 7, e37822. [Google Scholar] [CrossRef]
- Ma, J.; Hancock, W.G.; Nifong, J.M.; Kernodle, S.P.; Lewis, R.S. Identification and editing of a hybrid lethality gene expands the range of interspecific hybridization potential in Nicotiana. Theor. Appl. Genet. 2020, 133, 2915–2925. [Google Scholar] [CrossRef]
- Yamada, T.; Marubashi, W.; Niwa, M. Detection of four lethality types in interspecific crosses among Nicotiana species through the use of three rescue methods for lethality. Breed. Sci. 1999, 49, 203–210. [Google Scholar] [CrossRef]
- Yamada, T.; Marubashi, W.; Niwa, M. Apoptotic cell death induces temperature-sensitive lethality in hybrid seedlings and calli derived from the cross of Nicotiana suaveolens × N. tabacum. Planta 2000, 211, 614–622. [Google Scholar] [CrossRef]
- Mino, M.; Maekawa, K.; Ogawa, K.; Yamagishi, H.; Inoue, M. Cell death process during expression of hybrid lethality in interspecific F1 hybrid between Nicotiana gossei Domin and Nicotiana tabacum. Plant Physiol. 2002, 130, 1776–1787. [Google Scholar] [CrossRef] [PubMed]
- Masuda, Y.; Yamada, T.; Kuboyama, T.; Marubashi, W. Identification and characterization of genes involved in hybrid lethality in hybrid tobacco cells (Nicotiana suaveolens × N. tabacum) using suppression subtractive hybridization. Plant Cell Rep. 2007, 26, 1595–1604. [Google Scholar] [CrossRef] [PubMed]
- Mino, M.; Kubota, M.; Nogi, T.; Zhang, S.; Inoue, M. Hybrid lethality in interspecific F1 hybrid Nicotiana gossei × N. tabacum involves a MAP-kinases signalling cascade. Plant Biol. 2007, 9, 366–373. [Google Scholar] [CrossRef] [PubMed]
- Shiragaki, K.; Nakamura, R.; Nomura, S.; He, H.; Yamada, T.; Marubashi, W.; Oda, M.; Tezuka, T. Phenylalanine ammonia-lyase and phenolic compounds are related to hybrid lethality in the cross Nicotiana suaveolens × N. tabacum. Plant Biotechnol. 2020, 37, 327–333. [Google Scholar] [CrossRef]
- Tezuka, T.; Marubashi, W. Genes in S and T subgenomes are responsible for hybrid lethality in interspecific hybrids between Nicotiana tabacum and Nicotiana occidentalis. PLoS ONE 2012, 7, e36204. [Google Scholar] [CrossRef]
- Kawaguchi, K.; Ohya, Y.; Maekawa, M.; Iizuka, T.; Hasegawa, A.; Shiragaki, K.; He, H.; Oda, M.; Morikawa, T.; Yokoi, S.; et al. Two Nicotiana occidentalis accessions enable gene identification for Type II hybrid lethality by the cross to N. sylvestris. Sci. Rep. 2021, 11, 17093. [Google Scholar] [CrossRef]
- Gangadevi, T.; Rao, P.N. Cytogenetic study of an interspecific cross of Nicotiana debneyi × N. umbratica. Theor. Appl. Genet. 1982, 63, 177–181. [Google Scholar] [CrossRef]
- Gangadevi, T.; Rao, P.N.; KV, S. Morphological and cytological studies of interspecific hybrids in Nicotiona involving N. umbratica Burbidge. Cytologia 1987, 52, 475–486. [Google Scholar] [CrossRef]
- Gangadevi, T.; Rao, P.; Satyanarayana, K. Cytogenetic studies of some synthetic amphiploids of Nicotiana. J. Hered. 1988, 79, 119–122. [Google Scholar] [CrossRef]
- Tezuka, T.; Kitamura, N.; Yanase, M.; Morikawa, T. Evaluation of crossability between Nicotiana benthamiana and Nicotiana excelsior. Agronomy 2021, 11, 2583. [Google Scholar] [CrossRef]
- Olmo, H.P. Genetical studies of monosomic types of Nicotiana tabacum. Genetics 1935, 20, 286–300. [Google Scholar] [CrossRef] [PubMed]
- Tezuka, T.; Onosato, K.; Hijishita, S.; Marubashi, W. Development of Q-chromosome-specific DNA markers in tobacco and their use for identification of a tobacco monosomic line. Plant Cell Physiol. 2004, 45, 1863–1869. [Google Scholar] [CrossRef] [PubMed]
- Tezuka, T.; Kitamura, N.; Imagawa, S.; Hasegawa, A.; Shiragaki, K.; He, H.; Yanase, M.; Ogata, Y.; Morikawa, T.; Yokoi, S. Genetic mapping of the HLA1 locus causing hybrid lethality in Nicotiana interspecific hybrids. Plants 2021, 10, 2062. [Google Scholar] [CrossRef] [PubMed]
- Bombarely, A.; Rosli, H.G.; Vrebalov, J.; Moffett, P.; Mueller, L.A.; Martin, G.B. A draft genome sequence of Nicotiana benthamiana to enhance molecular plant-microbe biology research. Mol. Plant Microbe Interact. 2012, 25, 1523–1530. [Google Scholar] [CrossRef] [PubMed]
- Tezuka, T.; Marubashi, W. Genomic factors lead to programmed cell death during hybrid lethality in interspecific hybrids between Nicotiana tabacum and N. debneyi. SABRAO J. Breed. Genet. 2006, 38, 69–81. [Google Scholar]
- Mino, M.; Murata, N.; Date, S.; Inoue, M. Cell death in seedlings of the interspecific hybrid of Nicotiana gossei and N. tabacum; possible role of knob-like bodies formed on tonoplast in vacuolar-collapse-mediated cell death. Plant Cell Rep. 2007, 26, 407–419. [Google Scholar] [CrossRef]
- Lloyd, R. Tissue culture as a means of circumventing lethality in an interspecific Nicotiana hybrid. Tob. Sci. 1975, 19, 4–6. [Google Scholar]
- Ternovskii, M.F.; Shinkareva, I.K.; Lar’kina, N.I. Production of interspecific tobacco hybrids by the pollination of ovules in vitro. Sov. Genet. 1976, 12, 1209–1213. [Google Scholar]
- Inoue, E.; Marubashi, W.; Niwa, M. Simple method for overcoming the lethality observed in the hybrid between Nicotiana suaveolens and N. tabacum. Breed. Sci. 1994, 44, 333–336. [Google Scholar] [CrossRef]
- Inoue, E.; Marubashi, W.; Niwa, M. Improvement of the method for overcoming the hybrid lethality between Nicotiana suaveolens and N. tabacum by culture of F1 seeds in liquid media containing cytokisnins. Breed. Sci. 1997, 47, 211–216. [Google Scholar] [CrossRef]
- Kitamura, S.; Inoue, M.; Ohmido, N.; Fukui, K.; Tanaka, A. Chromosomal rearrangements in interspecific hybrids between Nicotiana gossei Domin and N. tabacum L., obtained by crossing with pollen exposed to helium ion beams or gamma-rays. Nucl. Instrum. Methods Phys. Res. B 2003, 206, 548–552. [Google Scholar] [CrossRef]
- Murashige, T.; Skoog, F. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol. Plant. 1962, 15, 473–497. [Google Scholar] [CrossRef]
- Tezuka, T.; Marubashi, W. Apoptotic cell death observed during the expression of hybrid lethality in interspecific hybrids between Nicotiana tabacum and N. suaveolens. Breed. Sci. 2004, 54, 59–66. [Google Scholar] [CrossRef]
- Murray, M.G.; Thompson, W.F. Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res. 1980, 8, 4321–4325. [Google Scholar] [CrossRef]
Cross Combination (♀ × ♂) | No. of Flowers Pollinated | No. of Capsules Obtained | No. of Seeds Sown | No. of Hybrids Obtained | Lethality Type 1 | ||
---|---|---|---|---|---|---|---|
Total | Viable | Inviable | |||||
N. simulans × N. tabacum | 20 | 17 | 352 | 242 | 0 | 242 | II |
N. tabacum × N. simulans | 6 | 1 | 199 | 5 | 0 | 5 | II |
Cross Combination (♀ × ♂) | STS Markers 1 | No. of Hybrids | ||
---|---|---|---|---|
Total | Viable | Inviable | ||
(Haplo-Q × ‘Samsun NN’) × N. simulans | + | 6 | 0 | 6 |
− | 30 | 30 | 0 |
Haplotype | Species | Allele at the HLA1 Locus | Marker | ||||
---|---|---|---|---|---|---|---|
Nb14-CAPS (150 kb) 1 | Nb45-CAPS (624 kb) | Nb48-CAPS (725 kb) | Nb49-CAPS (747 kb) | NbRGH1-CAPS (832 kb) 3 | |||
Hap1 | N. forsteri | Hla1-1 | AA 2 | AA | AA | AA | AA |
Hap2 | N. ingulba, N. simulans | Hla1-1 | AA | AA | BB | AA | AA |
Hap3 | N. excelsior, N. goodspeedii, N. gossei, N. maritima, N. velutina | Hla1-1 | AA | BB | BB | AA | AA |
Hap4 | N. suaveolens | Hla1-1 | AA | BB | − | AA | AA |
Hap5 | N. megalosiphon | Hla1-1 | AB | AB | − | AA | AA |
Hap6 | N. africana | Hla1-1 | AA | BB | CC | AA | B |
Hap7 | N. benthamiana | hla1-2 | BB | BB | BB | AA | AA |
Hap8 | N. fragrans | hla1-2 | BB | BB | BB | BB | B |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tezuka, T.; Nagai, S.; Matsuo, C.; Okamori, T.; Iizuka, T.; Marubashi, W. Genetic Cause of Hybrid Lethality Observed in Reciprocal Interspecific Crosses between Nicotiana simulans and N. tabacum. Int. J. Mol. Sci. 2024, 25, 1226. https://doi.org/10.3390/ijms25021226
Tezuka T, Nagai S, Matsuo C, Okamori T, Iizuka T, Marubashi W. Genetic Cause of Hybrid Lethality Observed in Reciprocal Interspecific Crosses between Nicotiana simulans and N. tabacum. International Journal of Molecular Sciences. 2024; 25(2):1226. https://doi.org/10.3390/ijms25021226
Chicago/Turabian StyleTezuka, Takahiro, Shota Nagai, Chihiro Matsuo, Toshiaki Okamori, Takahiro Iizuka, and Wataru Marubashi. 2024. "Genetic Cause of Hybrid Lethality Observed in Reciprocal Interspecific Crosses between Nicotiana simulans and N. tabacum" International Journal of Molecular Sciences 25, no. 2: 1226. https://doi.org/10.3390/ijms25021226
APA StyleTezuka, T., Nagai, S., Matsuo, C., Okamori, T., Iizuka, T., & Marubashi, W. (2024). Genetic Cause of Hybrid Lethality Observed in Reciprocal Interspecific Crosses between Nicotiana simulans and N. tabacum. International Journal of Molecular Sciences, 25(2), 1226. https://doi.org/10.3390/ijms25021226