Proteome Analysis of Serum Purified Using Solanum tuberosum and Lycopersicon esculentum Lectins
Abstract
:1. Introduction
2. Results and Discussion
2.1. Enrichment of Trace Proteins in Serum Using Lectins
2.2. Deep Proteomics Using the STL/LEL Enrichment Method
3. Materials and Methods
3.1. Serum
3.2. Preparation of Serum Samples
3.3. Protein Digestion
3.4. LC–MS/MS with Data-Independent Acquisition (DIA)
3.5. Data Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Geyer, P.E.; Holdt, L.M.; Teupser, D.; Mann, M. Revisiting biomarker discovery by plasma proteomics. Mol. Syst. Biol. 2017, 13, 942. [Google Scholar] [CrossRef] [PubMed]
- Repetto, O.; Vettori, R.; Steffan, A.; Cannizzaro, R.; De Re, V. Circulating Proteins as Diagnostic Markers in Gastric Cancer. Int. J. Mol. Sci. 2023, 24, 16931. [Google Scholar] [CrossRef] [PubMed]
- Eldjarn, G.H.; Ferkingstad, E.; Lund, S.H.; Helgason, H.; Magnusson, O.T.; Gunnarsdottir, K.; Olafsdottir, T.A.; Halldorsson, B.V.; Olason, P.I.; Zink, F.; et al. Large-scale plasma proteomics comparisons through genetics and disease associations. Nature 2023, 622, 348–358. [Google Scholar] [CrossRef] [PubMed]
- Nieddu, G.; Formato, M.; Lepedda, A.J. Searching for Atherosclerosis Biomarkers by Proteomics: A Focus on Lesion Pathogenesis and Vulnerability. Int. J. Mol. Sci. 2023, 24, 15175. [Google Scholar] [CrossRef]
- He, B.; Huang, Z.; Huang, C.; Nice, E.C. Clinical applications of plasma proteomics and peptidomics: Towards precision medicine. Proteom. Clin. Appl. 2022, 16, e2100097. [Google Scholar] [CrossRef] [PubMed]
- Kosaka, P.M.; Calleja, M.; Tamayo, J. Optomechanical devices for deep plasma cancer proteomics. Semin. Cancer Biol. 2018, 52 Pt 1, 26–38. [Google Scholar] [CrossRef] [PubMed]
- Anderson, N.L.; Anderson, N.G. The human plasma proteome: History, character, and diagnostic prospects. Mol. Cell. Proteom. 2002, 1, 845–867. [Google Scholar] [CrossRef]
- Jaros, J.A.; Guest, P.C.; Bahn, S.; Martins-de-Souza, D. Affinity depletion of plasma and serum for mass spectrometry-based proteome analysis. In Proteomics for Biomarker Discovery; Methods in Molecular Biology; Humana Press: Totowa, NJ, USA, 2013; Volume 1002, pp. 1–11. [Google Scholar] [CrossRef]
- Sato, H.; Inoue, Y.; Kawashima, Y.; Nakajima, D.; Ishikawa, M.; Konno, R.; Nakamura, R.; Kato, D.; Mitsunaga, K.; Yamamoto, T.; et al. In-depth serum proteomics by DIA-MS with in silico spectral libraries reveals dynamics during the active phase of systemic juvenile idiopathic arthritis. ACS Omega 2022, 7, 7012–7023. [Google Scholar] [CrossRef]
- Burton, J.B.; Carruthers, N.J.; Stemmer, P.M. Enriching extracellular vesicles for mass spectrometry. Mass Spectrom. Rev. 2023, 42, 779–795. [Google Scholar] [CrossRef]
- Fan, S.; Poetsch, A. Proteomic research of extracellular vesicles in clinical biofluid. Proteomes 2023, 11, 18. [Google Scholar] [CrossRef]
- Muraoka, S.; Hirano, M.; Isoyama, J.; Nagayama, S.; Tomonaga, T.; Adachi, J. Comprehensive proteomic profiling of plasma and serum phosphatidylserine-positive extracellular vesicles reveals tissue-specific proteins. iScience 2022, 25, 104012. [Google Scholar] [CrossRef] [PubMed]
- Brito-Suarez, J.M.; Camacho-Juarez, F.; Sanchez-Medina, C.M.; Hernandez-Pliego, G.; Gutierrez-Camacho, C. Gross motor disorders in pediatric patients with acute lymphoblastic leukemia and survivors: A systematic review. Pediatr. Hematol. Oncol. 2022, 39, 658–671. [Google Scholar] [CrossRef] [PubMed]
- Blume, J.E.; Manning, W.C.; Troiano, G.; Hornburg, D.; Figa, M.; Hesterberg, L.; Platt, T.L.; Zhao, X.; Cuaresma, R.A.; Everley, P.A.; et al. Rapid, deep and precise profiling of the plasma proteome with multi-nanoparticle protein corona. Nat. Commun. 2020, 11, 3662. [Google Scholar] [CrossRef] [PubMed]
- Meng, Y.; Chen, J.; Liu, Y.; Zhu, Y.; Wong, Y.K.; Lyu, H.; Shi, Q.; Xia, F.; Gu, L.; Zhang, X.; et al. A highly efficient protein corona-based proteomic analysis strategy for the discovery of pharmacodynamic biomarkers. J. Pharm. Anal. 2022, 12, 879–888. [Google Scholar] [CrossRef] [PubMed]
- Zhong, W.; Edfors, F.; Gummesson, A.; Bergstrom, G.; Fagerberg, L.; Uhlen, M. Next generation plasma proteome profiling to monitor health and disease. Nat. Commun. 2021, 12, 2493. [Google Scholar] [CrossRef]
- Pietzner, M.; Wheeler, E.; Carrasco-Zanini, J.; Kerrison, N.D.; Oerton, E.; Koprulu, M.; Luan, J.; Hingorani, A.D.; Williams, S.A.; Wareham, N.J.; et al. Synergistic insights into human health from aptamer- and antibody-based proteomic profiling. Nat. Commun. 2021, 12, 6822. [Google Scholar] [CrossRef] [PubMed]
- Berrone, E.; Chiorino, G.; Guana, F.; Benedetti, V.; Palmitessa, C.; Gallo, M.; Calvo, A.; Casale, F.; Manera, U.; Favole, A.; et al. SOMAscan Proteomics Identifies Novel Plasma Proteins in Amyotrophic Lateral Sclerosis Patients. Int. J. Mol. Sci. 2023, 24, 1899. [Google Scholar] [CrossRef]
- Apweiler, R.; Hermjakob, H.; Sharon, N. On the frequency of protein glycosylation, as deduced from analysis of the SWISS-PROT database. Biochim. Biophys. Acta 1999, 1473, 4–8. [Google Scholar] [CrossRef]
- Ohtsubo, K.; Marth, J.D. Glycosylation in cellular mechanisms of health and disease. Cell 2006, 126, 855–867. [Google Scholar] [CrossRef]
- Pinho, S.S.; Reis, C.A. Glycosylation in cancer: Mechanisms and clinical implications. Nat. Rev. Cancer 2015, 15, 540–555. [Google Scholar] [CrossRef]
- Fanayan, S.; Hincapie, M.; Hancock, W.S. Using lectins to harvest the plasma/serum glycoproteome. Electrophoresis 2012, 33, 1746–1754. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Yin, H.; Lu, H. Recent progress in quantitative glycoproteomics. Glycoconj. J. 2012, 29, 249–258. [Google Scholar] [CrossRef] [PubMed]
- Doud, E.H.; Yeh, E.S. Mass spectrometry-based glycoproteomic workflows for cancer biomarker discovery. Technol. Cancer Res. Treat. 2023, 22, 15330338221148811. [Google Scholar] [CrossRef] [PubMed]
- Chandler, K.B.; Costello, C.E. Glycomics and glycoproteomics of membrane proteins and cell-surface receptors: Present trends and future opportunities. Electrophoresis 2016, 37, 1407–1419. [Google Scholar] [CrossRef] [PubMed]
- Hughes, C.S.; Moggridge, S.; Muller, T.; Sorensen, P.H.; Morin, G.B.; Krijgsveld, J. Single-pot, solid-phase-enhanced sample preparation for proteomics experiments. Nat. Protoc. 2019, 14, 68–85. [Google Scholar] [CrossRef] [PubMed]
- Hughes, C.S.; Foehr, S.; Garfield, D.A.; Furlong, E.E.; Steinmetz, L.M.; Krijgsveld, J. Ultrasensitive proteome analysis using paramagnetic bead technology. Mol. Syst. Biol. 2014, 10, 757. [Google Scholar] [CrossRef]
- Konno, R.; Ishikawa, M.; Nakajima, D.; Endo, Y.; Ohara, O.; Kawashima, Y. Universal pretreatment development for low-input proteomics using lauryl maltose neopentyl glycol. bioRxiv, 2023; preprint. [Google Scholar] [CrossRef]
- Kawashima, Y.; Ishikawa, M.; Konno, R.; Nakajima, D.; Ohara, O. Development of a simple and stable NanoESI spray system using suction wind from the MS inlet. J. Proteome Res. 2023, 22, 1564–1569. [Google Scholar] [CrossRef] [PubMed]
- Kawashima, Y.; Nagai, H.; Konno, R.; Ishikawa, M.; Nakajima, D.; Sato, H.; Nakamura, R.; Furuyashiki, T.; Ohara, O. Single-shot 10 K proteome approach: Over 10,000 protein identifications by data-independent acquisition-based single-shot proteomics with ion mobility spectrometry. J. Proteome Res. 2022, 21, 1418–1427. [Google Scholar] [CrossRef]
- Demichev, V.; Messner, C.B.; Vernardis, S.I.; Lilley, K.S.; Ralser, M. DIA-NN: Neural networks and interference correction enable deep proteome coverage in high throughput. Nat. Methods 2020, 17, 41–44. [Google Scholar] [CrossRef]
- Tyanova, S.; Temu, T.; Sinitcyn, P.; Carlson, A.; Hein, M.Y.; Geiger, T.; Mann, M.; Cox, J. The Perseus computational platform for comprehensive analysis of (prote)omics data. Nat. Methods 2016, 13, 731–740. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nakajima, D.; Konno, R.; Miyashita, Y.; Ishikawa, M.; Ohara, O.; Kawashima, Y. Proteome Analysis of Serum Purified Using Solanum tuberosum and Lycopersicon esculentum Lectins. Int. J. Mol. Sci. 2024, 25, 1315. https://doi.org/10.3390/ijms25021315
Nakajima D, Konno R, Miyashita Y, Ishikawa M, Ohara O, Kawashima Y. Proteome Analysis of Serum Purified Using Solanum tuberosum and Lycopersicon esculentum Lectins. International Journal of Molecular Sciences. 2024; 25(2):1315. https://doi.org/10.3390/ijms25021315
Chicago/Turabian StyleNakajima, Daisuke, Ryo Konno, Yasuomi Miyashita, Masaki Ishikawa, Osamu Ohara, and Yusuke Kawashima. 2024. "Proteome Analysis of Serum Purified Using Solanum tuberosum and Lycopersicon esculentum Lectins" International Journal of Molecular Sciences 25, no. 2: 1315. https://doi.org/10.3390/ijms25021315
APA StyleNakajima, D., Konno, R., Miyashita, Y., Ishikawa, M., Ohara, O., & Kawashima, Y. (2024). Proteome Analysis of Serum Purified Using Solanum tuberosum and Lycopersicon esculentum Lectins. International Journal of Molecular Sciences, 25(2), 1315. https://doi.org/10.3390/ijms25021315