Proline Dehydrogenase (PRODH) Is Expressed in Lung Adenocarcinoma and Modulates Cell Survival and 3D Growth by Inducing Cellular Senescence
Abstract
:1. Introduction
2. Results
2.1. PRODH Expression Is Elevated in Lung Adenocarcinomas but Not in Squamocellular Carcinomas
2.2. PRODH Expression Is Low in Lung Adenocarcinoma Cell Lines
2.3. PRODH Modulation Affects Survival and Growth of Lung Adenocarcinoma Cells
2.4. PRODH-Expressing Clones from the NCI-H1299 Lung Adenocarcinoma Cell Line Have Increased ROS Levels
2.5. PRODH Expression Does Not Induce Apoptosis in NCI-H1299 Cells
2.6. PRODH Expression Induces Cellular Senescence in the NCI-H1299 Lung Adenocarcinoma Cell Line
3. Discussion
4. Materials and Methods
4.1. Samples for Immunohistochemical Analysis
4.2. Immunohistochemical Analyses
4.3. Cell Culture and Constructs
4.4. RNA Extraction from FFPE Tumors and qPCR Analyses
4.5. RNA Extraction from Cell Lines and Clones, Digital PCR and Quantitative PCR Analyses
4.6. Immunoblotting
4.7. Colony Formation Assay
4.8. Cell Proliferation Assays
4.9. Soft Agar Assay
4.10. ROS Measurement
4.11. Cell Viability Evaluation by Trypan Blue Exclusion Assay
4.12. Detection of Apoptosis by Flow Cytometry
4.13. Senescence-Associated β-Galactosidase Assay
4.14. Generation of Conditioned Media
4.15. Analysis of the Senescence-Associated Secretory Phenotype by Protein-Membrane Arrays
4.16. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ADC | Adenocarcinoma |
B2M | Beta-2-microglobulin |
cDNA | Complementary deoxyribonucleic acid |
Ct | Cycle threshold |
DCFDA | 2′,7′-dichlorofluorescein diacetate |
ddPCR | Droplet digital PCR |
DMEM | Dulbecco’s modified Eagle’s medium |
DMSO | Dimethyl sulfoxide |
ECL | Enhanced chemiluminescence |
EDTA | Ethylenediaminetetracetic acid |
EGFR | Epidermal growth factor receptor |
FAD | Flavin adenine dinucleotide |
FBS | Fetal bovine serum |
FFPE | Formalin fixed paraffin embedded |
GAPDH | Glyceraldehyde-3-phosphate dehydrogenase |
GOI | Gene of interest |
HRP | Horseradish peroxidase |
IL-8 | Interleukin-8 |
MCP-1 | Monocyte chemoattractant protein-1 |
MEM | Minimal essential medium |
MTT | 4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay |
NAC | N-acetyl cysteine |
NEAA | Non-essential amino acid |
NSCLC | Non-Small Cell Lung Cancer |
OAT | Ornithine-δ-aminotransferase |
P5C | Δ-1-pyrroline-5-carboxylate |
P5CS | P5C synthase |
PBS | Phosphate-buffered saline |
PI | Propidium iodide |
PMSF | Phenylmethylsulfonylfluoride |
PRODH | Proline dehydrogenase |
PYCR | P5C reductase |
qPCR | Quantitative PCR |
REF | Reference gene |
RIPA | Radioimmunoprecipitation assay |
RNA | Ribonucleic acid |
ROS | Reactive oxygen species |
RPMI | Roswell Park Memorial Institute |
SASP | Senescence-associated secretory phenotype |
SA-β-gal | Senescence-associated β-galactosidase |
SCC | Squamous cell carcinoma |
SCLC | Small Cell Lung Cancer |
SDS-PAGE | Sodium dodecyl sulphate-polyacrylamide gel electrophoresis |
SEM | Standard error of the mean |
TBS | Tris-buffered saline |
TNFα | Tumor necrosis factor alpha |
WHO | World Health Organization |
X-gal | 5-bromo-4-chloro-3-indolyl-β-D-galactopyranoside |
References
- Siegel, R.L.; Miller, K.D.; Wagle, N.S.; Jemal, A. Cancer statistics, 2023. CA Cancer J. Clin. 2023, 73, 17–48. [Google Scholar] [CrossRef] [PubMed]
- Jantus-Lewintre, E.; Uso, M.; Sanmartin, E.; Camps, C. Update on biomarkers for the detection of lung cancer. Lung Cancer 2012, 3, 21–29. [Google Scholar]
- Chen, Z.; Fillmore, C.M.; Hammerman, P.S.; Kim, C.F.; Wong, K.K. Non-small-cell lung cancers: A heterogeneous set of diseases. Nat. Rev. Cancer 2014, 14, 535–546. [Google Scholar] [CrossRef] [PubMed]
- Wilde, L.; Roche, M.; Domingo-Vidal, M.; Tanson, K.; Philp, N.; Curry, J.; Martinez-Outschoorn, U. Metabolic coupling and the Reverse Warburg Effect in cancer: Implications for novel biomarker and anticancer agent development. Semin. Oncol. 2017, 44, 198–203. [Google Scholar] [CrossRef] [PubMed]
- Phang, J.M. Proline Metabolism in Cell Regulation and Cancer Biology: Recent Advances and Hypotheses. Antioxid. Redox Signal. 2019, 30, 635–649. [Google Scholar] [CrossRef] [PubMed]
- Burke, L.; Guterman, I.; Palacios Gallego, R.; Britton, R.G.; Burschowsky, D.; Tufarelli, C.; Rufini, A. The Janus-like role of proline metabolism in cancer. Cell Death Discov. 2020, 6, 104. [Google Scholar] [CrossRef] [PubMed]
- D’Aniello, C.; Patriarca, E.J.; Phang, J.M.; Minchiotti, G. Proline Metabolism in Tumor Growth and Metastatic Progression. Front. Oncol. 2020, 10, 776. [Google Scholar] [CrossRef]
- Liang, X.; Zhang, L.; Natarajan, S.K.; Becker, D.F. Proline mechanisms of stress survival. Antioxid. Redox Signal 2013, 19, 998–1011. [Google Scholar] [CrossRef]
- Phang, J.M.; Liu, W.; Zabirnyk, O. Proline metabolism and microenvironmental stress. Annu. Rev. Nutr. 2010, 30, 441–463. [Google Scholar] [CrossRef]
- Liu, W.; Phang, J.M. Proline dehydrogenase (oxidase) in cancer. Biofactors 2012, 38, 398–406. [Google Scholar] [CrossRef]
- Raimondi, I.; Ciribilli, Y.; Monti, P.; Bisio, A.; Pollegioni, L.; Fronza, G.; Inga, A.; Campomenosi, P. P53 family members modulate the expression of PRODH, but not PRODH2, via intronic p53 response elements. PLoS ONE 2013, 8, e69152. [Google Scholar] [CrossRef]
- Liu, W.; Zabirnyk, O.; Wang, H.; Shiao, Y.H.; Nickerson, M.L.; Khalil, S.; Anderson, L.M.; Perantoni, A.O.; Phang, J.M. miR-23b targets proline oxidase, a novel tumor suppressor protein in renal cancer. Oncogene 2010, 29, 4914–4924. [Google Scholar] [CrossRef]
- Pandhare, J.; Cooper, S.K.; Phang, J.M. Proline oxidase, a proapoptotic gene, is induced by troglitazone: Evidence for both peroxisome proliferator-activated receptor gamma-dependent and -independent mechanisms. J. Biol. Chem. 2006, 281, 2044–2052. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Phang, J.M. Proline dehydrogenase (oxidase), a mitochondrial tumor suppressor, and autophagy under the hypoxia microenvironment. Autophagy 2012, 8, 1407–1409. [Google Scholar] [CrossRef] [PubMed]
- Circu, M.L.; Aw, T.Y. Reactive oxygen species, cellular redox systems, and apoptosis. Free Radic. Biol. Med. 2010, 48, 749–762. [Google Scholar] [CrossRef] [PubMed]
- Phang, J.M.; Liu, W.; Hancock, C.N.; Fischer, J.W. Proline metabolism and cancer: Emerging links to glutamine and collagen. Curr. Opin. Clin. Nutr. Metab. Care 2015, 18, 71–77. [Google Scholar] [CrossRef] [PubMed]
- Zareba, I.; Palka, J. Prolidase-proline dehydrogenase/proline oxidase-collagen biosynthesis axis as a potential interface of apoptosis/autophagy. Biofactors 2016, 42, 341–348. [Google Scholar] [CrossRef] [PubMed]
- Polyak, K.; Xia, Y.; Zweier, J.L.; Kinzler, K.W.; Vogelstein, B. A model for p53-induced apoptosis. Nature 1997, 389, 300–305. [Google Scholar] [CrossRef] [PubMed]
- Pandhare, J.; Donald, S.P.; Cooper, S.K.; Phang, J.M. Regulation and function of proline oxidase under nutrient stress. J. Cell. Biochem. 2009, 107, 759–768. [Google Scholar] [CrossRef] [PubMed]
- Olivares, O.; Mayers, J.R.; Gouirand, V.; Torrence, M.E.; Gicquel, T.; Borge, L.; Lac, S.; Roques, J.; Lavaut, M.N.; Berthezene, P.; et al. Collagen-derived proline promotes pancreatic ductal adenocarcinoma cell survival under nutrient limited conditions. Nat. Commun. 2017, 8, 16031. [Google Scholar] [CrossRef]
- Maxwell, S.A.; Rivera, A. Proline oxidase induces apoptosis in tumor cells, and its expression is frequently absent or reduced in renal carcinomas. J. Biol. Chem. 2003, 278, 9784–9789. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Borchert, G.L.; Donald, S.P.; Diwan, B.A.; Anver, M.; Phang, J.M. Proline oxidase functions as a mitochondrial tumor suppressor in human cancers. Cancer Res. 2009, 69, 6414–6422. [Google Scholar] [CrossRef] [PubMed]
- Monti, P.; Ciribilli, Y.; Bisio, A.; Foggetti, G.; Raimondi, I.; Campomenosi, P.; Menichini, P.; Fronza, G.; Inga, A. ∆N-P63alpha and TA-P63alpha exhibit intrinsic differences in transactivation specificities that depend on distinct features of DNA target sites. Oncotarget 2014, 5, 2116–2130. [Google Scholar] [CrossRef]
- Elia, I.; Broekaert, D.; Christen, S.; Boon, R.; Radaelli, E.; Orth, M.F.; Verfaillie, C.; Grunewald, T.G.P.; Fendt, S.M. Proline metabolism supports metastasis formation and could be inhibited to selectively target metastasizing cancer cells. Nat. Commun. 2017, 8, 15267. [Google Scholar] [CrossRef] [PubMed]
- Zareba, I.; Surazynski, A.; Chrusciel, M.; Miltyk, W.; Doroszko, M.; Rahman, N.; Palka, J. Functional Consequences of Intracellular Proline Levels Manipulation Affecting PRODH/POX-Dependent Pro-Apoptotic Pathways in a Novel in Vitro Cell Culture Model. Cell. Physiol. Biochem. 2017, 43, 670–684. [Google Scholar] [CrossRef] [PubMed]
- Zareba, I.; Celinska-Janowicz, K.; Surazynski, A.; Miltyk, W.; Palka, J. Proline oxidase silencing induces proline-dependent pro-survival pathways in MCF-7 cells. Oncotarget 2018, 9, 13748–13757. [Google Scholar] [CrossRef]
- Gyorffy, B.; Surowiak, P.; Budczies, J.; Lanczky, A. Online survival analysis software to assess the prognostic value of biomarkers using transcriptomic data in non-small-cell lung cancer. PLoS ONE 2013, 8, e82241. [Google Scholar] [CrossRef]
- Nagano, T.; Nakano, M.; Nakashima, A.; Onishi, K.; Yamao, S.; Enari, M.; Kikkawa, U.; Kamada, S. Identification of cellular senescence-specific genes by comparative transcriptomics. Sci. Rep. 2016, 6, 31758. [Google Scholar] [CrossRef]
- Nagano, T.; Nakashima, A.; Onishi, K.; Kawai, K.; Awai, Y.; Kinugasa, M.; Iwasaki, T.; Kikkawa, U.; Kamada, S. Proline dehydrogenase promotes senescence through the generation of reactive oxygen species. J. Cell Sci. 2017, 130, 1413–1420. [Google Scholar]
- Toloczko-Iwaniuk, N.; Dziemianczyk-Pakiela, D.; Celinska-Janowicz, K.; Zareba, I.; Klupczynska, A.; Kokot, Z.J.; Nowaszewska, B.K.; Reszec, J.; Borys, J.; Miltyk, W. Proline-Dependent Induction of Apoptosis in Oral Squamous Cell Carcinoma (OSCC)-The Effect of Celecoxib. Cancers 2020, 12, 136. [Google Scholar] [CrossRef]
- Liu, Y.; Mao, C.; Wang, M.; Liu, N.; Ouyang, L.; Liu, S.; Tang, H.; Cao, Y.; Liu, S.; Wang, X.; et al. Cancer progression is mediated by proline catabolism in non-small cell lung cancer. Oncogene 2020, 39, 2358–2376. [Google Scholar] [CrossRef] [PubMed]
- Oscilowska, I.; Rolkowski, K.; Baszanowska, W.; Huynh, T.Y.L.; Lewoniewska, S.; Niziol, M.; Sawicka, M.; Bielawska, K.; Szoka, P.; Miltyk, W.; et al. Proline Dehydrogenase/Proline Oxidase (PRODH/POX) Is Involved in the Mechanism of Metformin-Induced Apoptosis in C32 Melanoma Cell Line. Int. J. Mol. Sci. 2022, 23, 2354. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Zhang, G.; Chen, Y.; Xu, W.; Liu, Y.; Ji, G.; Xu, H. Can proline dehydrogenase-a key enzyme involved in proline metabolism-be a novel target for cancer therapy? Front. Oncol. 2023, 13, 1254439. [Google Scholar] [CrossRef] [PubMed]
- Angulo, B.; Suarez-Gauthier, A.; Lopez-Rios, F.; Medina, P.P.; Conde, E.; Tang, M.; Soler, G.; Lopez-Encuentra, A.; Cigudosa, J.C.; Sanchez-Cespedes, M. Expression signatures in lung cancer reveal a profile for EGFR-mutant tumours and identify selective PIK3CA overexpression by gene amplification. J. Pathol. 2008, 214, 347–356. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Xu, Z.; Tian, Z.; Zhang, X.; Xu, D.; Li, Q.; Zhang, J.; Wang, T. The EF-1alpha promoter maintains high-level transgene expression from episomal vectors in transfected CHO-K1 cells. J. Cell. Mol. Med. 2017, 21, 3044–3054. [Google Scholar] [CrossRef] [PubMed]
- Monti, P.; Lionetti, M.; De Luca, G.; Menichini, P.; Recchia, A.G.; Matis, S.; Colombo, M.; Fabris, S.; Speciale, A.; Barbieri, M.; et al. Time to first treatment and P53 dysfunction in chronic lymphocytic leukaemia: Results of the O-CLL1 study in early stage patients. Sci. Rep. 2020, 10, 18427. [Google Scholar] [CrossRef] [PubMed]
- Coppe, J.P.; Desprez, P.Y.; Krtolica, A.; Campisi, J. The senescence-associated secretory phenotype: The dark side of tumor suppression. Annu. Rev. Pathol. 2010, 5, 99–118. [Google Scholar] [CrossRef] [PubMed]
- Milanovic, M.; Yu, Y.; Schmitt, C.A. The Senescence-Stemness Alliance—A Cancer-Hijacked Regeneration Principle. Trends Cell Biol. 2018, 28, 1049–1061. [Google Scholar] [CrossRef]
- Schmitt, C.A.; Wang, B.; Demaria, M. Senescence and cancer—Role and therapeutic opportunities. Nat. Rev. Clin. Oncol. 2022, 19, 619–636. [Google Scholar] [CrossRef]
- Chen, C.; Wei, Y.; Wei, L.; Chen, J.; Chen, X.; Dong, X.; He, J.; Lin, L.; Zhu, Y.; Huang, H.; et al. Epigenome-wide gene-age interaction analysis reveals reversed effects of PRODH DNA methylation on survival between young and elderly early-stage NSCLC patients. Aging 2020, 12, 10642–10662. [Google Scholar] [CrossRef]
- Travis, W.D.; Brambilla, E.; Burke, A.P.; Marx, A.; Nicholson, A.G. Introduction to The 2015 World Health Organization Classification of Tumors of the Lung, Pleura, Thymus, and Heart. J. Thorac. Oncol. 2015, 10, 1240–1242. [Google Scholar] [CrossRef]
- Edge, S.B.; Compton, C.C. The American Joint Committee on Cancer: The 7th edition of the AJCC cancer staging manual and the future of TNM. Ann. Surg. Oncol. 2010, 17, 1471–1474. [Google Scholar] [CrossRef]
- Tallarita, E.; Pollegioni, L.; Servi, S.; Molla, G. Expression in Escherichia coli of the catalytic domain of human proline oxidase. Protein Expr. Purif. 2012, 82, 345–351. [Google Scholar] [CrossRef] [PubMed]
- Tang, J.; Hu, M.; Lee, S.; Roblin, R. A polymerase chain reaction based method for detecting Mycoplasma/Acholeplasma contaminants in cell culture. J. Microbiol. Methods 2000, 39, 121–126. [Google Scholar] [CrossRef] [PubMed]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Debacq-Chainiaux, F.; Erusalimsky, J.D.; Campisi, J.; Toussaint, O. Protocols to detect senescence-associated beta-galactosidase (SA-betagal) activity, a biomarker of senescent cells in culture and in vivo. Nat. Protoc. 2009, 4, 1798–1806. [Google Scholar] [CrossRef] [PubMed]
NSCLC a | |||
---|---|---|---|
ADC (70 Cases) | SCC (65 Cases) | ||
PRODH + Cases/Total (%) | PRODH + Cases/Total (%) | ||
N. of cases | 40/70 (57.14) | 9/65 (13.85) | |
Grade | 1 | 5/6 (83.33) | 0/2 (0) |
2 | 24/50 (48) | 8/40 (20) | |
3 | 10/14 (71.43) | 1/23 (4.35) | |
pT | 1 | 22/32 (66.67) | 5/26 (19.23) |
2 | 18/31 (58.06) | 3/31 (9.68) | |
3 | 0/5 (0) | 1/4 (25) | |
4 | 0/1 (0) | 0/2 (0) | |
x | 0 | 0/2 (0) | |
pN | 0 | 35/53 (66.04) | 8/54 (14.81) |
1 | 0/2 (0) | 1/2 (50) | |
2 | 3/8 (37) | 0/3 (0) | |
x | 2/7 (28.57) | 0/6 (0) | |
Stage | I | 37/55 (67.27) | 8/55 (14.55) |
II | 0/1 (0) | 0/1 (0) | |
III | 3/8 (37.5) | 1/6 (16.67) | |
IV | 0/5 (0) | 0/3 (0) | |
x | 0/1 (0) | 0 |
Cell Line | Histology | Growth Medium | Origin |
---|---|---|---|
A549 | NSCLC, adenocarcinoma | RPMI1640 a + 10% FBS b + 2 mM L-Gln | ATCC |
NCI-H1299 | NSCLC, lymph node metastasis | RPMI1640 + 10% FBS + 2 mM L-Gln | ATCC |
NCI-H1975 | NSCLC, adenocarcinoma | RPMI1640 + 10% FBS + 2 mM L-Gln + Sodium Pyruvate | Dr. A. Bisio, Università di Trento, Trento, Italy |
Calu-6 | NSCLC, anaplastic carcinoma (derived from metastatic site: pleural effusion) | RPMI1640 + 10% FBS + 2 mM L-Gln | Dr. E. Grassilli, Università di Milano Bicocca, Milan, Italy |
NCI-H2228 | NSCLC, adenocarcinoma | RPMI1640 + 10% FBS + 2 mM L-Gln + Sodium Pyruvate | Dr. E. Grassilli, Università di Milano Bicocca, Milan, Italy |
SK LU-1 | NSCLC, adenocarcinoma | DMEM c + 10% FBS + 2 mM L-Gln + Sodium Pyruvate + MEM d NEAA e | Dr. E. Grassilli, Università di Milano Bicocca, Milan, Italy |
NCI-H441 | NSCLC, papillary adenocarcinoma | RPMI1640 + 10% FBS + 2 mM L-Gln + 10 mM Hepes + Sodium Pyruvate + Glucose (final 4500 mg/L) | Dr. V. Dall’Asta, Università di Parma, Parma, Italy |
LX1 | NSCLC, squamous-cell carcinoma | DMEM + 10% FBS +2 mM L-Gln | Cell Bank Interlab Cell Line Collection (ICLC), IRCCS San Martino Policlinico Hospital |
SKMES-1 | NSCLC, squamous-cell carcinoma (derived from metastatic site: pleural effusion) | DMEM + 10% FBS + 2 mM L-Gln | Cell Bank Interlab Cell Line Collection (ICLC), IRCCS San Martino Policlinico Hospital |
HCC827 | NSCLC, adenocarcinoma | RPMI 1640 + FBS 10% + 2 mM L-Gln | Dr. R. Alfieri, Università di Parma, Parma, Italy |
HCC827-GR5 | NSCLC, adenocarcinoma (derived from HCC827) | RPMI 1640 + FBS 10% + 2 mM L-Gln + 1 μM Gefitinib | Dr. R. Alfieri, Università di Parma, Parma, Italy |
NCI-H2342 | NSCLC, adenocarcinoma | DMEM:F12 Medium + heat inactivated FBS 5% + 4.5 mM L-Gln + 0.0005 mg/mL Insulin + 0.01 mg/mL Transferrin + 30 nM Sodium selenite + 10 nM Hydrocortisone + 10 nM beta-estradiol | Dr. G. Damia, Mario Negri Institute, Milan, Italy |
NCI-H1437 | NSCLC, adenocarcinoma (derived from metastatic site: pleural effusion) | RPMI 1640 + FBS 10% + 2 mM L-Gln | Dr. G. Damia, Mario Negri Institute, Milan, Italy |
NCI-H727 | Bronchial carcinoid | RPMI 1640 + FBS 10% + 2 mM L-Gln | Cell Bank Interlab Cell Line Collection (ICLC), IRCCS San Martino Policlinico Hospital |
IGROV-1 | Ovarian endometrioid adenocarcinoma (control for PRODH expression) | RPMI 1640 + FBS 10% + 2 mM L-Gln + MEM NEAA | ATCC |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grossi, S.; Berno, E.; Chiofalo, P.; Chiaravalli, A.M.; Cinquetti, R.; Bruno, A.; Palano, M.T.; Gallazzi, M.; La Rosa, S.; Sessa, F.; et al. Proline Dehydrogenase (PRODH) Is Expressed in Lung Adenocarcinoma and Modulates Cell Survival and 3D Growth by Inducing Cellular Senescence. Int. J. Mol. Sci. 2024, 25, 714. https://doi.org/10.3390/ijms25020714
Grossi S, Berno E, Chiofalo P, Chiaravalli AM, Cinquetti R, Bruno A, Palano MT, Gallazzi M, La Rosa S, Sessa F, et al. Proline Dehydrogenase (PRODH) Is Expressed in Lung Adenocarcinoma and Modulates Cell Survival and 3D Growth by Inducing Cellular Senescence. International Journal of Molecular Sciences. 2024; 25(2):714. https://doi.org/10.3390/ijms25020714
Chicago/Turabian StyleGrossi, Sarah, Elena Berno, Priscilla Chiofalo, Anna Maria Chiaravalli, Raffaella Cinquetti, Antonino Bruno, Maria Teresa Palano, Matteo Gallazzi, Stefano La Rosa, Fausto Sessa, and et al. 2024. "Proline Dehydrogenase (PRODH) Is Expressed in Lung Adenocarcinoma and Modulates Cell Survival and 3D Growth by Inducing Cellular Senescence" International Journal of Molecular Sciences 25, no. 2: 714. https://doi.org/10.3390/ijms25020714
APA StyleGrossi, S., Berno, E., Chiofalo, P., Chiaravalli, A. M., Cinquetti, R., Bruno, A., Palano, M. T., Gallazzi, M., La Rosa, S., Sessa, F., Acquati, F., & Campomenosi, P. (2024). Proline Dehydrogenase (PRODH) Is Expressed in Lung Adenocarcinoma and Modulates Cell Survival and 3D Growth by Inducing Cellular Senescence. International Journal of Molecular Sciences, 25(2), 714. https://doi.org/10.3390/ijms25020714