Substrate Specificity Diversity of Human Terminal Deoxynucleotidyltransferase May Be a Naturally Programmed Feature Facilitating Its Biological Function
Abstract
:1. Introduction
2. Results and Discussion
2.1. Conformational Dynamics of TdT
2.2. DNA Conformational Dynamics: Binding and Attachment of dCPyTP
2.3. Functional Residues in the Active Site of TdT That Ensure Substrate Specificity of the Enzyme
2.4. Alterations (by Site-Directed Mutagenesis) of Substrate Specificity of TdT towards the Inserted dNTP
3. Materials and Methods
3.1. Protein Purification and Mutagenesis
3.2. Nucleoside Triphosphates and DNAss Primer
3.3. Stopped-Flow Fluorescence Experiments
3.4. Quenched-Flow Experiments
3.5. CPy Fluorescence Lifetime Measurement
3.6. Data Analysis
3.7. Protein Sequence Alignment
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hübscher, U.; Maga, G.; Villani, G.; Spadari, S. DNA Polymerases Discovery, Characterization and Functions in Cellular DNA Transactions; Illustrated edition; World Scientific Publishing Company: Singapore, 2013; ISBN 9814299162. [Google Scholar]
- Garcia-Diaz, M.; Bebenek, K. Multiple Functions of DNA Polymerases. Crit. Rev. Plant Sci. 2007, 26, 105–122. [Google Scholar] [CrossRef] [PubMed]
- Steitz, T.A. DNA Polymerases: Structural Diversity and Common Mechanisms. J. Biol. Chem. 1999, 274, 17395–17398. [Google Scholar] [CrossRef] [PubMed]
- Steitz, T.A. A mechanism for all polymerases. Nature 1998, 391, 231–232. [Google Scholar] [CrossRef]
- Rothwell, P.J.; Waksman, G. Structure and Mechanism of DNA Polymerases. Adv. Protein. Chem. 2005, 71, 401–440. [Google Scholar] [CrossRef]
- Raper, A.T.; Reed, A.J.; Suo, Z. Kinetic Mechanism of DNA Polymerases: Contributions of Conformational Dynamics and a Third Divalent Metal Ion. Chem. Rev. 2018, 118, 6000–6025. [Google Scholar] [CrossRef] [PubMed]
- Berdis, A.J. Mechanisms of DNA Polymerases. Chem. Rev. 2009, 109, 2862–2879. [Google Scholar] [CrossRef] [PubMed]
- Kuznetsova, A.A.; Fedorova, O.S.; Kuznetsov, N.A. Structural and Molecular Kinetic Features of Activities of DNA Polymerases. Int. J. Mol. Sci. 2022, 23, 6373. [Google Scholar] [CrossRef]
- Kato, K.I.; Gonçalves, J.M.; Houts, G.E.; Bollum, F.J. Deoxynucleotide-Polymerizing Enzymes of Calf Thymus Gland. II. Properties of the Terminal Deoxynucleotidyltransferase. J. Biol. Chem. 1967, 242, 2780–2789. [Google Scholar] [CrossRef]
- Chang, L.M.S.; Bollum, F.J.; Gallo, R.C. Molecular Biology of Terminal Transferas. Crit. Rev. Biochem. Mol Biol. 1986, 21, 27–52. [Google Scholar] [CrossRef]
- Loc’h, J.; Delarue, M. Terminal Deoxynucleotidyltransferase: The Story of an Untemplated DNA Polymerase Capable of DNA Bridging and Templated Synthesis across Strands. Curr. Opin. Struct. Biol. 2018, 53, 22–31. [Google Scholar] [CrossRef]
- Jarchow-choy, S.K.; Krueger, A.T.; Liu, H.; Gao, J.; Kool, E.T. Fluorescent XDNA Nucleotides as Efficient Substrates for a Template-Independent Polymerase. Nucleic Acids Res. 2011, 39, 1586–1594. [Google Scholar] [CrossRef]
- Tauraitė, D.; Jakubovska, J.; Dabužinskaitė, J.; Bratchikov, M.; Meškys, R. Modified Nucleotides as Substrates of Terminal Deoxynucleotidyl Transferase. Molecules 2017, 22, 672. [Google Scholar] [CrossRef] [PubMed]
- Sarac, I.; Hollenstein, M. Terminal Deoxynucleotidyl Transferase in the Synthesis and Modification of Nucleic Acids. ChemBioChem 2018, 20, 860–871. [Google Scholar] [CrossRef] [PubMed]
- Kuznetsova, A.A.; Tyugashev, T.E.; Alekseeva, I.V.; Timofeyeva, N.A.; Fedorova, O.S.; Kuznetsov, N.A. Insight into the Mechanism of DNA Synthesis by Human Terminal Deoxynucleotidyltransferase. Life Sci. Alliance 2022, 5. [Google Scholar] [CrossRef] [PubMed]
- Gouge, J.; Rosario, S.; Romain, F.; Beguin, P.; Delarue, M. Structures of Intermediates along the Catalytic Cycle of Terminal Deoxynucleotidyltransferase: Dynamical Aspects of the Two-Metal Ion Mechanism. J. Mol. Biol. 2013, 425, 4334–4352. [Google Scholar] [CrossRef] [PubMed]
- Dunlap, C.A.; Tsai, M.D. Use of 2-Aminopurine and Tryptophan Fluorescence as Probes in Kinetic Analyses of DNA Polymerase β. Biochemistry 2002, 41, 11226–11235. [Google Scholar] [CrossRef]
- Purohit, V.; Grindley, N.D.F.; Joyce, C.M. Use of 2-Aminopurine Fluorescence to Examine Conformational Changes during Nucleotide Incorporation by DNA Polymerase I (Klenow Fragment). Biochemistry 2003, 42, 10200–10211. [Google Scholar] [CrossRef]
- Mandal, S.S.; Fidalgo da Silva, E.; Reha-Krantz, L.J. Using 2-Aminopurine Fluorescence to Detect Base Unstacking in the Template Strand during Nucleotide Incorporation by the Bacteriophage T4 DNA Polymerase. Biochemistry 2002, 41, 4399–4406. [Google Scholar] [CrossRef]
- Hardman, S.; Thompson, K.; Botchway, S. Fluorescence Lifetimes of Nucleotide Oligomers Containing the Cytosine Analogue Pyrrolocytosine. Lasers Sci. Facil. Programme 2007, 2006–2007. [Google Scholar]
- Nguyen, Q.L.; Spata, V.A.; Matsika, S. Photophysical Properties of Pyrrolocytosine, a Cytosine Fluorescent Base Analogue. Phys Chem Chem Phys 2016, 18, 20189–20198. [Google Scholar] [CrossRef]
- Loc’h, J.; Rosario, S.; Delarue, M. Structural Basis for a New Templated Activity by Terminal Deoxynucleotidyl Transferase: Implications for V(D)J Recombination. Structure 2016, 24, 1452–1463. [Google Scholar] [CrossRef] [PubMed]
- Romain, F.; Barbosa, I.; Gouge, J.; Rougeon, F.; Delarue, M. Conferring a Template-Dependent Polymerase Activity to Terminal Deoxynucleotidyltransferase by Mutations in the Loop1 Region. Nucleic Acids Res. 2009, 37, 4642–4656. [Google Scholar] [CrossRef] [PubMed]
- Lu, X.; Li, J.; Li, C.; Lou, Q.; Peng, K.; Cai, B.; Liu, Y.; Yao, Y.; Lu, L.; Tian, Z.; et al. Enzymatic DNA Synthesis by Engineering Terminal Deoxynucleotidyl Transferase. ACS Catal. 2022, 12, 2988–2997. [Google Scholar] [CrossRef]
- Gouge, J.; Rosario, S.; Romain, F.; Poitevin, F.; Béguin, P.; Delarue, M. Structural Basis for a Novel Mechanism of DNA Bridging and Alignment in Eukaryotic DSB DNA Repair. EMBO J. 2015, 34, 1126–1142. [Google Scholar] [CrossRef]
- Costi, R.; Crucitti, G.C.; Pescatori, L.; Messore, A.; Scipione, L.; Tortorella, S.; Amoroso, A.; Crespan, E.; Campiglia, P.; Maresca, B.; et al. New Nucleotide-Competitive Non-Nucleoside Inhibitors of Terminal Deoxynucleotidyl Transferase: Discovery, Characterization, and Crystal Structure in Complex with the Target. J. Med. Chem. 2013, 56, 7431–7441. [Google Scholar] [CrossRef]
- Moon, A.F.; Garcia-Diaz, M.; Batra, V.K.; Beard, W.A.; Bebenek, K.; Kunkel, T.A.; Wilson, S.H.; Pedersen, L.C. The X family portrait: Structural insights into biological functions of X family polymerases. DNA Repair. 2007, 6, 1709–1725. [Google Scholar] [CrossRef]
- Ghosh, D.; Raghavan, S.C. 20 Years of DNA Polymerase μ, the Polymerase That Still Surprises. FEBS J. 2021, 288, 7230–7242. [Google Scholar] [CrossRef]
- Ruiz, J.F. Lack of Sugar Discrimination by Human Pol Requires a Single Glycine Residue. Nucleic Acids Res. 2003, 31, 4441–4449. [Google Scholar] [CrossRef]
- Cavanaugh, N.A.; Beard, W.A.; Batra, V.K.; Perera, L.; Pedersen, L.G.; Wilson, S.H. Molecular Insights into DNA Polymerase Deterrents for Ribonucleotide Insertion. J. Biol. Chem. 2011, 286, 31650–31660. [Google Scholar] [CrossRef]
- Gosavi, R.A.; Moon, A.F.; Kunkel, T.A.; Pedersen, L.C.; Bebenek, K. The Catalytic Cycle for Ribonucleotide Incorporation by Human DNA Pol λ. Nucleic Acids Res. 2012, 40, 7518–7527. [Google Scholar] [CrossRef]
- Nick McElhinny, S.A.; Ramsden, D.A. Polymerase Mu Is a DNA-Directed DNA/RNA Polymerase. Mol. Cell Biol. 2003, 23, 2309–2315. [Google Scholar] [CrossRef] [PubMed]
- Boulé, J.-B.; Rougeon, F.; Papanicolaou, C. Terminal Deoxynucleotidyl Transferase Indiscriminately Incorporates Ribonucleotides and Deoxyribonucleotides. J. Biol. Chem. 2001, 276, 31388–31393. [Google Scholar] [CrossRef]
- Brown, J.A.; Fiala, K.A.; Fowler, J.D.; Sherrer, S.M.; Newmister, S.A.; Duym, W.W.; Suo, Z. A Novel Mechanism of Sugar Selection Utilized by a Human X-Family DNA Polymerase. J. Mol. Biol. 2010, 395, 282–290. [Google Scholar] [CrossRef] [PubMed]
- Bienstock, R.J.; Beard, W.A.; Wilson, S.H. Phylogenetic analysis and evolutionary origins of DNA polymerase X-family members. DNA Repair 2014, 22, 77–88. [Google Scholar] [CrossRef] [PubMed]
- Kladova, O.A.; Kuznetsov, N.A.; Fedorova, O.S. Thermodynamics of the DNA Repair Process by Endonuclease VIII. Acta Naturae 2019, 11, 29–37. [Google Scholar] [CrossRef] [PubMed]
- Kuznetsova, A.A.; Kladova, O.A.; Barthes, N.P.F.; Michel, B.Y.; Burger, A.; Fedorova, O.S.; Kuznetsov, N.A. Comparative Analysis of Nucleotide Fluorescent Analogs for Registration of DNA Conformational Changes Induced by Interaction with Formamidopyrimidine-DNA Glycosylase Fpg. Russ. J. Bioorganic. Chem. 2019, 45, 591–598. [Google Scholar] [CrossRef]
- Kuznetsov, N.A. Conformational Dynamics of Biopolymers in the Course of Their Interaction: Multifaceted Approaches to the Analysis by the Stopped-Flow Technique with Fluorescence Detection. Photonics 2023, 10, 1033. [Google Scholar] [CrossRef]
- Schaudy, E.; Lietard, J.; Somoza, M.M. Sequence Preference and Initiator Promiscuity for de Novo DNA Synthesis by Terminal Deoxynucleotidyl Transferase. ACS Synth. Biol. 2021, 10, 1750–1760. [Google Scholar] [CrossRef]
- Kuzmič, P. Program DYNAFIT for the Analysis of Enzyme Kinetic Data: Application to HIV Proteinase. Anal. Biochem. 1996, 237, 260–273. [Google Scholar] [CrossRef]
- Kuzmič, P. DynaFit-A Software Package for Enzymology. Methods Enzymol. 2009, 467, 247–280. [Google Scholar] [CrossRef]
- Kladova, O.A.; Krasnoperov, L.N.; Kuznetsov, N.A.; Fedorova, O.S. Kinetics and Thermodynamics of DNA Processing by Wild Type DNA-Glycosylase Endo III and Its Catalytically Inactive Mutant Forms. Genes 2018, 9, 190. [Google Scholar] [CrossRef] [PubMed]
- Alekseeva, I.V.; Bakman, A.S.; Vorobjev, Y.N.; Fedorova, O.S.; Kuznetsov, N.A. Role of Ionizing Amino Acid Residues in the Process of DNA Binding by Human AP Endonuclease 1 and in Its Catalysis. J. Phys. Chem. B 2019, 123, 9546–9556. [Google Scholar] [CrossRef] [PubMed]
- Katoh, K.; Standley, D.M. MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability. Mol. Biol. Evol. 2013, 30, 772–780. [Google Scholar] [CrossRef] [PubMed]
- Blum, M.; Chang, H.-Y.; Chuguransky, S.; Grego, T.; Kandasaamy, S.; Mitchell, A.; Nuka, G.; Paysan-Lafosse, T.; Qureshi, M.; Raj, S.; et al. The InterPro Protein Families and Domains Database: 20 Years On. Nucleic Acids Res. 2021, 49, D344–D354. [Google Scholar] [CrossRef]
- Bateman, A.; Martin, M.-J.; Orchard, S.; Magrane, M.; Ahmad, S.; Alpi, E.; Bowler-Barnett, E.H.; Britto, R.; Bye-A-Jee, H.; Cukura, A.; et al. UniProt: The Universal Protein Knowledgebase in 2023. Nucleic Acids Res. 2023, 51, D523–D531. [Google Scholar] [CrossRef]
- Waterhouse, A.M.; Procter, J.B.; Martin, D.M.A.; Clamp, M.; Barton, G.J. Jalview Version 2—A Multiple Sequence Alignment Editor and Analysis Workbench. Bioinformatics 2009, 25, 1189–1191. [Google Scholar] [CrossRef]
Constants | ddGTP | ddTTP | ddATP | ddCTP |
---|---|---|---|---|
k1, (µM·s)−1 | 19 ± 1.8 | 7.2 ± 2 | 20 ± 0.8 | 16 ± 3 |
k−1, s−1 | 15 ± 1.0 | 18 ± 1.8 | 2.1 ± 0.05 | 40 ± 4 |
K1, µM−1 | 1.3 ± 0.2 | 0.4 ± 0.15 | 9.2 ± 0.6 | 0.4 ± 0.1 |
k2, s−1 | 22 ± 2.0 | 5.6 ± 1.8 | 0.17 ± 0.07 | 19 ± 1.5 |
k−2, s−1 | 20 ± 2.0 | 12 ± 0.9 | 3.0 ± 0.1 | 9.5 ± 0.8 |
K2 | 1.1 ± 0.2 | 0.45 ± 0.2 | 0.06 ± 0.01 | 2 ± 0.3 |
KdNTPd, µM | 0.4 ± 0.1 | 1.7 ± 0.8 | 0.1 ± 0.03 Trp 0.37 ± 0.13 PAAG | 0.8 ± 0.2 |
kpol, s−1 | 2.4 ± 0.4 | 0.5 ± 0.1 | 0.1 ± 0.03 PAAG | 1.2 ± 0.2 |
Constants | dCPyTP Binding | dCPyTP Incorporation | |
---|---|---|---|
Fluorescence Analysis | PAGE Analysis | ||
k1, (µM·s)−1 | 2.9 ± 0.5 | 3.6 ± 0.4 | NA |
k−1, s−1 | 11.0 ± 0.4 | 4.5 ± 0.3 | NA |
K1, µM−1 | 0.26 ± 0.06 | 0.8 ± 0.1 | NA |
k2, s−1 | 1.6 ± 0.15 | 4.2 ± 0.2 | NA |
k−2, s−1 | 0.15 ± 0.02 | 2.5 ± 0.1 | NA |
K2 | 11.0 ± 2.4 | 1.7 ± 0.1 | NA |
KdCPyTPd, µM | 0.3 ± 0.1 | 0.5 ± 0.1 | 1.8 ± 0.7 |
kpol, s−1 | NA | 3.3 ± 0.2 | 3.6 ± 0.5 |
Amino Acid Residue of Human TdT | Frequency Profile of Amino Acid Residues, % |
---|---|
Asp395 | Asp 72.3%, Glu 27.3%, Asn 0.2% (1 of 469), Lys 0.2% (1 of 469) |
Leu397 | Leu 45.2%, Met 50.7%, Phe 4.1% |
Phe404 | Phe 100% |
Trp449 | Trp 100% |
Arg453 | Arg 91.4%, Thr 6.3%, Lys 1% (5 of 469), Pro 1% (5 of 469) |
Glu456 | Glu 76.3%, Gly 21.1%, Asp 1.5% (7 of 469), Leu 0.6% (3 of 469) |
Arg457 | Arg 99.8%, Lys 0.2% (1 of 469) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kuznetsova, A.A.; Senchurova, S.I.; Gavrilova, A.A.; Tyugashev, T.E.; Mikushina, E.S.; Kuznetsov, N.A. Substrate Specificity Diversity of Human Terminal Deoxynucleotidyltransferase May Be a Naturally Programmed Feature Facilitating Its Biological Function. Int. J. Mol. Sci. 2024, 25, 879. https://doi.org/10.3390/ijms25020879
Kuznetsova AA, Senchurova SI, Gavrilova AA, Tyugashev TE, Mikushina ES, Kuznetsov NA. Substrate Specificity Diversity of Human Terminal Deoxynucleotidyltransferase May Be a Naturally Programmed Feature Facilitating Its Biological Function. International Journal of Molecular Sciences. 2024; 25(2):879. https://doi.org/10.3390/ijms25020879
Chicago/Turabian StyleKuznetsova, Aleksandra A., Svetlana I. Senchurova, Anastasia A. Gavrilova, Timofey E. Tyugashev, Elena S. Mikushina, and Nikita A. Kuznetsov. 2024. "Substrate Specificity Diversity of Human Terminal Deoxynucleotidyltransferase May Be a Naturally Programmed Feature Facilitating Its Biological Function" International Journal of Molecular Sciences 25, no. 2: 879. https://doi.org/10.3390/ijms25020879
APA StyleKuznetsova, A. A., Senchurova, S. I., Gavrilova, A. A., Tyugashev, T. E., Mikushina, E. S., & Kuznetsov, N. A. (2024). Substrate Specificity Diversity of Human Terminal Deoxynucleotidyltransferase May Be a Naturally Programmed Feature Facilitating Its Biological Function. International Journal of Molecular Sciences, 25(2), 879. https://doi.org/10.3390/ijms25020879