Let-7a-5p Regulates Animal Lipid Accumulation by Targeting Srebf2 and Thbs1 Signaling
Abstract
:1. Introduction
2. Results
2.1. Let-7a-5p Is Associated with Lipid Metabolism
2.2. Let-7a-5p Regulates Adipogenesis by Targeting the PI3K-AKT-mTOR Signaling
2.3. RNA-seq Revealed Potential Let-7a-5p Target Genes
2.4. Let-7a-5p Regulates Lipid Metabolism by Targeting the Srebf2 Signaling
2.5. A Let-7a-5p Target—Thbs1 Is Required for Adipogenesis via the PI3K-AKT-mTOR Pathway
2.6. Let-7a-5p Inhibites High-Fat-Diet-Induced Obesity in a Mice Model
3. Discussion
4. Materials and Methods
4.1. Animals
4.2. Cell Culture
4.3. Quantitative Real-Time Polymerase Chain Reaction (qRT-PCR)
4.4. Western Blotting (WB)
4.5. Oil Red O Staining
4.6. Measuring Blood Markers
4.7. Measuring Cell Proliferation
4.8. Dual-Luciferase Reporter Assay
4.9. Transcriptome Sequencing
4.10. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Popkin, B.; Doak, C. The Obesity Epidemic Is a Worldwide Phenomenon. Nutr. Rev. 2010, 56, 106–114. [Google Scholar] [CrossRef] [PubMed]
- Kokkoris, P.; Pi-Sunyer, F. Obesity and endocrine disease. Endocrinol. Metab. Clin. N. Am. 2003, 32, 895–914. [Google Scholar] [CrossRef] [PubMed]
- Tahergorabi, Z.; Khazaei, M.; Moodi, M.; Chamani, E. From obesity to cancer: A review on proposed mechanisms. Cell Biochem. Funct. 2020, 34, 533–545. [Google Scholar] [CrossRef] [PubMed]
- Goran, M.; Ball, G.; Cruz, M. Obesity and risk of type 2 diabetes and cardiovascular disease in children and adolescents. J. Clin. Endocrinol. Metab. 2003, 88, 1417–1427. [Google Scholar] [CrossRef]
- Trayhurn, P.; Beattie, J. Physiological role of adipose tissue: White adipose tissue as an endocrine and secretory organ. Proc. Nutr. Soc. 2001, 60, 329–339. [Google Scholar] [CrossRef] [PubMed]
- Jeyakumar, S.; Yasmeen, R.; Reichert, B.; Ziouzenkova, O. Metabolism of Vitamin A in White Adipose Tissue and Obesity. In Carotenoids and Vitamin A in Translational Medicine; CRC Press: Boca Raton, FL, USA, 2013; pp. 23–54. [Google Scholar]
- Llewellyn, C.; Wardle, J. Behavioral susceptibility to obesity: Gene–environment interplay in the development of weight. Physiol. Behav. 2015, 152, 494–501. [Google Scholar] [CrossRef] [PubMed]
- Swinburn, B.; Sacks, G.; Hall, K.; McPherson, K.; Finegood, D.; Moodie, M.; Gortmaker, S. The global obesity pandemic: Shaped by global drivers and local environments. Lancet 2011, 378, 804–814. [Google Scholar] [CrossRef]
- Kirkland, J.; Hollenberg, C.; Kindler, S.; Gillon, W. Effects of age and anatomic site on preadipocyte number in rat fat depots. J. Gerontol. 1994, 49, B31–B35. [Google Scholar] [CrossRef]
- Wang, Y.; Sul, H. Pref-1 regulates mesenchymal cell commitment and differentiation through Sox9. Cell Metab. 2009, 9, 287–302. [Google Scholar] [CrossRef]
- Lagathu, C.; Christodoulides, C.; Virtue, S.; Cawthorn, W.; Franzin, C.; Kimber, W.; Nora, E.; Campbell, M.; Medina-Gomez, G.; Cheyette, B.; et al. Dact1, a nutritionally regulated preadipocyte gene, controls adipogenesis by coordinating the Wnt/β-catenin signaling network. Diabetes 2009, 58, 609–619. [Google Scholar] [CrossRef]
- Reichert, B.; Yasmeen, R.; Jeyakumar, S.; Yang, F.; Thomou, T.; Alder, H.; Duester, G.; Maiseyeu, A.; Mihai, G.; Harrison, E.; et al. Concerted action of aldehyde dehydrogenases influences depot-specific fat formation. Mol. Endocrinol. 2011, 25, 799–809. [Google Scholar] [CrossRef] [PubMed]
- Chartoumpekis, D.; Zaravinos, A.; Ziros, P.; Iskrenova, R.; Psyrogiannis, A.; Kyriazopoulou, V.; Habeos, I. Differential expression of microRNAs in adipose tissue after long-term high-fat diet-induced obesity in mice. PLoS ONE 2012, 7, e34872. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Shang, C.; Pan, H.; Yang, H.; Zhu, H.; Gong, F. MicroRNA Expression Profiles in the Subcutaneous Adipose Tissues of Morbidly Obese Chinese Women. Obes. Facts 2021, 14, 78–92. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Du, J.; Wang, L.; Niu, L.; Zhao, Y.; Tang, G.; Jiang, Y.; Shuai, S.; Bai, L.; Li, X. MicroRNA-143a-3p modulates preadipocyte proliferation and differentiation by targeting MAPK7. Biomed. Pharmacother. 2018, 108, 531–539. [Google Scholar] [CrossRef] [PubMed]
- Xi, F.; Wei, C.; Xu, Y.; Ma, L.; He, Y.; Shi, X.; Yang, G.; Yu, T. MicroRNA-214-3p Targeting Ctnnb1 Promotes 3T3-L1 Preadipocyte Differentiation by Interfering with the Wnt/β-Catenin Signaling Pathway. Int. J. Mol. Sci. 2019, 20, 1816. [Google Scholar] [CrossRef] [PubMed]
- Fang, W.; Jia, Y.; Wang, P.; Yang, Q.; Chang, Z. Identification and profiling of Cyprinus carpio microRNAs during ovary differentiation by deep sequencing. BMC Genom. 2017, 18, 333. [Google Scholar]
- Pitto, L.; Ripoli, A.; Cremisi, F.; Rainaldi, G. microRNA (interference) networks are embedded in the gene regulatory networks. Cell Cycle 2008, 7, 2458–2461. [Google Scholar] [CrossRef]
- Wang, J.; Shao, J.; Li, Y.; Elzo, M.A.; Jia, X.; Lai, S. Genome-wide identification and characterization of perirenal adipose tissue microRNAs in rabbits fed a high-fat diet. Biosci. Rep. 2021, 41, BSR20204297. [Google Scholar] [CrossRef]
- Youssef, E.; Elfiky, A.; BanglySoliman; Abu-Shahba, N.; Elhefnawi, M. Expression profiling and analysis of some miRNAs in subcutaneous white adipose tissue during development of obesity. Genes. Nutr. 2020, 15, 8. [Google Scholar] [CrossRef]
- Lin, Z.; Tang, Y.; Li, Z.; Li, J.; Yu, C.; Yang, C.; Liu, L.; Wang, Y.; Liu, Y. miR-24-3p Dominates the Proliferation and Differentiation of Chicken Intramuscular Preadipocytes by Blocking ANXA6 Expression. Genes 2022, 13, 635. [Google Scholar] [CrossRef]
- Luo, G.; Hu, S.; Lai, T.; Wang, J.; Wang, L.; Lai, S. MiR-9-5p promotes rabbit preadipocyte differentiation by suppressing leptin gene expression. Lipids Health Dis. 2020, 19, 126. [Google Scholar] [CrossRef] [PubMed]
- Ma, W.; Dou, Q.; Ha, X. Let-7a-5p inhibits BMSCs osteogenesis in postmenopausal osteoporosis mice. Biochem. Biophys. Res. Commun. 2019, 510, 53–58. [Google Scholar] [CrossRef]
- Shakerzadeh, J.; Movahedin, M.; Eidi, A.; Roodbari, N.; Parivar, K. Forced Suppression of let-7a-5p in Mouse Blastocysts Improves Implantation Rate. Reprod. Sci. 2022, 29, 1730–1737. [Google Scholar] [CrossRef] [PubMed]
- Luo, Z.; Sun, Y.; Qi, B.; Lin, J.; Chen, Y.; Xu, Y.; Chen, J. Human bone marrow mesenchymal stem cell-derived extracellular vesicles inhibit shoulder stiffness via let-7a/Tgfbr1 axis. Bioact. Mater. 2022, 17, 344–359. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Han, L.; Chen, F. Let-7a-5p regulates the inflammatory response in chronic rhinosinusitis with nasal polyps. Diagn. Pathol. 2021, 16, 27. [Google Scholar] [CrossRef]
- Liu, L.; Zhao, J.; Peng, Y.; Yang, M.; Zhang, L.; Jin, X. miR-let-7a-5p Inhibits Invasion and Migration of Hepatoma Cells by Regulating BZW2 Expression. Onco Targets Ther. 2020, 13, 12269–12279. [Google Scholar] [CrossRef]
- Li, J.; Tang, Q.; Dong, W.; Wang, Y. CircBACH1/let-7a-5p axis enhances the proliferation and metastasis of colorectal cancer by upregulating CREB5 expression. J. Gastrointest. Oncol. 2020, 11, 1186–1199. [Google Scholar] [CrossRef]
- Chen, Z.; Qiu, J.; Gao, Y.; Lu, Q.; Lin, Y.; Shi, H. Study on the mechanism of let-7a-5p in regulating the proliferation in cervical cancer cells. Clin. Transl. Oncol. 2022, 24, 1631–1642. [Google Scholar] [CrossRef]
- Eberlé, D.; Hegarty, B.; Bossard, P.; Ferré, P.; Foufelle, F.; Eberlé, D.; Hegarty, B.; Bossard, P.; Ferré, P.; Foufelle, F. SREBP transcription factors: Master regulators of lipid homeostasis. Biochimie 2004, 86, 839–848. [Google Scholar] [CrossRef]
- Bengoechea-Alonso, M.; Ericsson, J. The phosphorylation-dependent regulation of nuclear SREBP1 during mitosis links lipid metabolism and cell growth. Cell Cycle 2016, 15, 2753–2765. [Google Scholar] [CrossRef]
- Bauer, S.; Wanninger, J.; Schmidhofer, S.; Weigert, J.; Neumeier, M.; Dorn, C.; Hellerbrand, C.; Zimara, N.; Schäffler, A.; Aslanidis, C.; et al. Sterol regulatory element-binding protein 2 (SREBP2) activation after excess triglyceride storage induces chemerin in hypertrophic adipocytes. Endocrinology 2011, 152, 26–35. [Google Scholar] [CrossRef] [PubMed]
- Inoue, M.; Jiang, Y.; Barnes, R.n.; Tokunaga, M.; Martinez-Santibañez, G.; Geletka, L.; Lumeng, C.; Buchner, D.; Chun, T. Thrombospondin 1 mediates high-fat diet-induced muscle fibrosis and insulin resistance in male mice. Endocrinology 2013, 154, 4548–4559. [Google Scholar] [CrossRef] [PubMed]
- Varma, V.; Yao-Borengasser, A.; Bodles, A.; Rasouli, N.; Phanavanh, B.; Nolen, G.; Kern, E.; Nagarajan, R.; Spencer, H.R.; Lee, M.; et al. Thrombospondin-1 is an adipokine associated with obesity, adipose inflammation, and insulin resistance. Diabetes 2008, 57, 432–439. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Tong, X.; Rumala, C.; Clemons, K.; Wang, S. Thrombospondin1 deficiency reduces obesity-associated inflammation and improves insulin sensitivity in a diet-induced obese mouse model. PLoS ONE 2011, 6, e26656. [Google Scholar] [CrossRef]
- Peterson, T.; Sengupta, S.; Harris, T.; Carmack, A.; Kang, S.; Balderas, E.; Guertin, D.; Madden, K.; Carpenter, A.; Finck, B.; et al. mTOR complex 1 regulates lipin 1 localization to control the SREBP pathway. Cell 2011, 146, 408–420. [Google Scholar] [CrossRef]
- Zhang, E.; Gao, J.; Wei, Z.; Zeng, J.; Li, J.; Li, G.; Liu, J. MicroRNA-mediated regulation of lipid metabolism in virus-infected Emiliania huxleyi. ISME J. 2022, 16, 2457–2466. [Google Scholar] [CrossRef]
- Shao, J.; Wang, J.; Li, Y.; Elzo, M.; Tang, T.; Lai, T.; Ma, Y.; Gan, M.; Wang, L.; Jia, X.; et al. Growth, behavioural, serum biochemical and morphological changes in female rabbits fed high-fat diet. J. Anim. Physiol. Anim. Nutr. 2020, 105, 345–353. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shao, J.; Jiang, G.; Li, Y.; Wang, M.; Tang, T.; Wang, J.; Jia, X.; Lai, S. Let-7a-5p Regulates Animal Lipid Accumulation by Targeting Srebf2 and Thbs1 Signaling. Int. J. Mol. Sci. 2024, 25, 894. https://doi.org/10.3390/ijms25020894
Shao J, Jiang G, Li Y, Wang M, Tang T, Wang J, Jia X, Lai S. Let-7a-5p Regulates Animal Lipid Accumulation by Targeting Srebf2 and Thbs1 Signaling. International Journal of Molecular Sciences. 2024; 25(2):894. https://doi.org/10.3390/ijms25020894
Chicago/Turabian StyleShao, Jiahao, Genglong Jiang, Yanhong Li, Meigui Wang, Tao Tang, Jie Wang, Xianbo Jia, and Songjia Lai. 2024. "Let-7a-5p Regulates Animal Lipid Accumulation by Targeting Srebf2 and Thbs1 Signaling" International Journal of Molecular Sciences 25, no. 2: 894. https://doi.org/10.3390/ijms25020894
APA StyleShao, J., Jiang, G., Li, Y., Wang, M., Tang, T., Wang, J., Jia, X., & Lai, S. (2024). Let-7a-5p Regulates Animal Lipid Accumulation by Targeting Srebf2 and Thbs1 Signaling. International Journal of Molecular Sciences, 25(2), 894. https://doi.org/10.3390/ijms25020894