Prediction of Successful Liberation from Continuous Renal Replacement Therapy Using a Novel Biomarker in Patients with Acute Kidney Injury after Cardiac Surgery—An Observational Trial
Abstract
:1. Introduction
2. Results
2.1. Primary Outcome
2.2. Differences in Relevant Kidney Parameters
3. Discussion
Limitations
4. Materials and Methods
4.1. Study Design and Population
4.2. Procedure and Measurements
- When AKI was diagnosed.
- In patients who required CRRT, at the start of CRRT.
- On the day when the clinical decision was made to discontinue CRRT.
4.3. Data Collection
4.4. Outcomes
4.5. Statistical Analysis and Sample Size Calculation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Grams, M.E.; Sang, Y.; Coresh, J.; Ballew, S.; Matsushita, K.; Molnar, M.Z.; Szabo, Z.; Kalantar-Zadeh, K.; Kovesdy, C.P. Acute Kidney Injury after Major Surgery: A Retrospective Analysis of Veterans Health Administration Data. Am. J. Kidney Dis. 2016, 67, 872–880. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Bellomo, R. Cardiac surgery-associated acute kidney injury: Risk factors, pathophysiology and treatment. Nat. Rev. Nephrol. 2017, 13, 697–711. [Google Scholar] [CrossRef]
- Borthwick, E.; Ferguson, A. Perioperative acute kidney injury: Risk factors, recognition, management, and outcomes. BMJ 2010, 341, c3365. [Google Scholar] [CrossRef] [PubMed]
- Weerasinghe, A.; Hornick, P.; Smith, P.; Taylor, K.; Ratnatunga, C. Coronary artery bypass grafting in non-dialysis-dependent mild-to-moderate renal dysfunction. J. Thorac. Cardiovasc. Surg. 2001, 121, 1083–1089. [Google Scholar] [CrossRef]
- Chertow, G.M.; Burdick, E.; Honour, M.; Bonventre, J.V.; Bates, D.W. Acute kidney injury, mortality, length of stay, and costs in hospitalized patients. J. Am. Soc. Nephrol. 2005, 16, 3365–3370. [Google Scholar] [CrossRef] [PubMed]
- Lassnigg, A.; Schmidlin, D.; Mouhieddine, M.; Bachmann, L.M.; Druml, W.; Bauer, P.; Hiesmayr, M. Minimal changes of serum creatinine predict prognosis in patients after cardiothoracic surgery: A prospective cohort study. J. Am. Soc. Nephrol. 2004, 15, 1597–1605. [Google Scholar] [CrossRef]
- Meersch, M.; Schmidt, C.; Zarbock, A. Perioperative Acute Kidney Injury: An Under-Recognized Problem. Anesth. Analg. 2017, 125, 1223–1232. [Google Scholar] [CrossRef]
- Khwaja, A. KDIGO Clinical Practice Guidelines for Acute Kidney Injury. Nephron Clin. Pract. 2012, 120, c179–c184. [Google Scholar] [CrossRef]
- Li, Y.; Deng, X.; Feng, J.; Xu, B.; Chen, Y.; Li, Z.; Guo, X.; Guan, T. Predictors for short-term successful weaning from continuous renal replacement therapy: A systematic review and meta-analysis. Ren. Fail. 2023, 45, 2176170. [Google Scholar] [CrossRef]
- Raurich, J.M.; Llompart-Pou, J.A.; Novo, M.A.; Talavera, C.; Ferreruela, M.; Ayestarán, I. Successful weaning from continuous renal replacement therapy. Associated risk factors. J. Crit. Care 2018, 45, 144–148. [Google Scholar] [CrossRef]
- Beunders, R.; van Groenendael, R.; Leijte, G.P.; Kox, M.; Pickkers, P. Proenkephalin Compared to Conventional Methods to Assess Kidney Function in Critically Ill Sepsis Patients. Shock 2020, 54, 308–314. [Google Scholar] [CrossRef]
- Caironi, P.; Latini, R.; Struck, J.; Hartmann, O.; Bergmann, A.; Bellato, V.; Ferraris, S.; Tognoni, G.; Pesenti, A.; Gattinoni, L.; et al. Circulating Proenkephalin, Acute Kidney Injury, and Its Improvement in Patients with Severe Sepsis or Shock. Clin. Chem. 2018, 64, 1361–1369. [Google Scholar] [CrossRef]
- Donato, L.J.; Meeusen, J.W.; Lieske, J.C.; Bergmann, D.; Sparwaßer, A.; Jaffe, A.S. Analytical performance of an immunoassay to measure proenkephalin. Clin. Biochem. 2018, 58, 72–77. [Google Scholar] [CrossRef]
- Ernst, A.; Kohrle, J.; Bergmann, A. Proenkephalin A 119-159, a stable proenkephalin A precursor fragment identified in human circulation. Peptides 2006, 27, 1835–1840. [Google Scholar] [CrossRef]
- Khorashadi, M.; Beunders, R.; Pickkers, P.; Legrand, M. Proenkephalin: A New Biomarker for Glomerular Filtration Rate and Acute Kidney Injury. Nephron 2020, 144, 655–661. [Google Scholar] [CrossRef]
- von Groote, T.; Albert, F.; Meersch, M.; Koch, R.; Gerss, J.; Arlt, B.; Sadjadi, M.; Porschen, C.; Pickkers, P.; Zarbock, A.; et al. Evaluation of Proenkephalin A 119–159 for liberation from renal replacement therapy: An external, multicenter pilot study in critically ill patients with acute kidney injury. Crit. Care 2023, 27, 276. [Google Scholar] [CrossRef]
- Zarbock, A.; Kellum, J.A.; Schmidt, C.; Van Aken, H.; Wempe, C.; Pavenstädt, H.; Boanta, A.; Gerß, J.; Meersch, M. Effect of Early vs Delayed Initiation of Renal Replacement Therapy on Mortality in Critically Ill Patients with Acute Kidney Injury: The ELAIN Randomized Clinical Trial. JAMA 2016, 315, 2190–2199. [Google Scholar] [CrossRef]
- Shah, K.S.; Taub, P.; Patel, M.; Rehfeldt, M.; Struck, J.; Clopton, P.; Mehta, R.L.; Maisel, A.S. Proenkephalin predicts acute kidney injury in cardiac surgery patients. Clin. Nephrol. 2015, 83, 29–35. [Google Scholar] [CrossRef]
- Dépret, F.; Hollinger, A.; Cariou, A.; Deye, N.; Vieillard-Baron, A.; Fournier, M.C.; Jaber, S.; Damoisel, C.; Lu, Q.; Monnet, X.; et al. Incidence and Outcome of Subclinical Acute Kidney Injury Using penKid in Critically Ill Patients. Am. J. Respir. Crit. Care Med. 2020, 202, 822–829. [Google Scholar] [CrossRef]
- Kim, C.S.; Bae, E.H.; Ma, S.K.; Kim, S.W. A Prospective Observational Study on the Predictive Value of Serum Cystatin C for Successful Weaning from Continuous Renal Replacement Therapy. Kidney Blood Press. Res. 2018, 43, 872–881. [Google Scholar] [CrossRef]
- Yang, T.; Sun, S.; Zhao, Y.; Liu, Q.; Han, M.; Lin, L.; Su, B.; Huang, S.; Yang, L. Biomarkers upon discontinuation of renal replacement therapy predict 60-day survival and renal recovery in critically ill patients with acute kidney injury. Hemodial. Int. 2018, 22, 56–65. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Chen, Z.; Wei, T.; Li, P.; Zhang, L.; Fu, P. The Effect of Serum Neutrophil Gelatinase-Associated Lipocalin on the Discontinuation of Continuous Renal Replacement Therapy in Critically Ill Patients with Acute Kidney Injury. Blood Purif. 2019, 48, 10–17. [Google Scholar] [CrossRef]
- Pan, H.C.; Huang, T.T.; Huang, C.T.; Sun, C.Y.; Chen, Y.M.; Wu, V.C. Urinary Biomarkers Can Predict Weaning From Acute Dialysis Therapy in Critically Ill Patients. Arch. Pathol. Lab. Med. 2022, 146, 1353–1363. [Google Scholar] [CrossRef] [PubMed]
- Jia, H.M.; Cheng, L.; Weng, Y.B.; Wang, J.Y.; Zheng, X.; Jiang, Y.J.; Xin, X.; Guo, S.Y.; Chen, C.D.; Guo, F.X.; et al. Cell cycle arrest biomarkers for predicting renal recovery from acute kidney injury: A prospective validation study. Ann. Intensive Care 2022, 12, 14. [Google Scholar] [CrossRef] [PubMed]
- Tichy, J.; Pajenda, S.; Bernardi, M.H.; Wagner, L.; Ryz, S.; Aiad, M.; Gerges, D.; Schmidt, A.; Lassnigg, A.; Herkner, H.; et al. Urinary Collectrin as Promising Biomarker for Acute Kidney Injury in Patients Undergoing Cardiac Surgery. Biomedicines 2023, 11, 3244. [Google Scholar] [CrossRef] [PubMed]
- Uchino, S.; Bellomo, R.; Morimatsu, H.; Morgera, S.; Schetz, M.; Tan, I.; Bouman, C.; Macedo, E.; Gibney, N.; Tolwani, A.; et al. Discontinuation of continuous renal replacement therapy: A post hoc analysis of a prospective multicenter observational study. Crit. Care Med. 2009, 37, 2576–2582. [Google Scholar] [CrossRef]
- Viallet, N.; Brunot, V.; Kuster, N.; Daubin, D.; Besnard, N.; Platon, L.; Buzançais, A.; Larcher, R.; Jonquet, O.; Klouche, K. Daily urinary creatinine predicts the weaning of renal replacement therapy in ICU acute kidney injury patients. Ann. Intensive Care 2016, 6, 71. [Google Scholar] [CrossRef]
- Katulka, R.J.; Al Saadon, A.; Sebastianski, M.; Featherstone, R.; Vandermeer, B.; Silver, S.A.; Gibney, R.N.; Bagshaw, S.M.; Rewa, O.G. Determining the optimal time for liberation from renal replacement therapy in critically ill patients: A systematic review and meta-analysis (DOnE RRT). Crit. Care 2020, 24, 50. [Google Scholar] [CrossRef]
- Heise, D.; Gries, D.; Moerer, O.; Bleckmann, A.; Quintel, M. Predicting restoration of kidney function during CRRT-free intervals. J. Cardiothorac. Surg. 2012, 7, 6. [Google Scholar] [CrossRef]
- Bernardi, M.H.; Schmidlin, D.; Schiferer, A.; Ristl, R.; Neugebauer, T.; Hiesmayr, M.; Druml, W.; Lassnigg, A. Impact of preoperative serum creatinine on short- and long-term mortality after cardiac surgery: A cohort study. Br. J. Anaesth. 2015, 114, 53–62. [Google Scholar] [CrossRef]
- Bernardi, M.H.; Ristl, R.; Neugebauer, T.; Hiesmayr, M.J.; Druml, W.; Lassnigg, A. Very early changes in serum creatinine are associated with 30-day mortality after cardiac surgery: A cohort study. Eur. J. Anaesthesiol. 2020, 37, 898–907. [Google Scholar] [CrossRef] [PubMed]
- Lassnigg, A.; Donner, E.; Grubhofer, G.; Presterl, E.; Druml, W.; Hiesmayr, M. Lack of renoprotective effects of dopamine and furosemide during cardiac surgery. J. Am. Soc. Nephrol. 2000, 11, 97–104. [Google Scholar] [CrossRef] [PubMed]
- Bernardi, M.H.; Wagner, L.; Ryz, S.; Puchinger, J.; Nixdorf, L.; Edlinger-Stanger, M.; Geilen, J.; Kainz, M.; Hiesmayr, M.J.; Lassnigg, A. Urinary neprilysin for early detection of acute kidney injury after cardiac surgery: A prospective observational study. Eur. J. Anaesthesiol. 2021, 38, 13–21. [Google Scholar] [CrossRef] [PubMed]
- Bernardi, M.H.; Schmidlin, D.; Ristl, R.; Heitzinger, C.; Schiferer, A.; Neugebauer, T.; Wrba, T.; Hiesmayr, M.; Druml, W.; Lassnigg, A. Serum Creatinine Back-Estimation in Cardiac Surgery Patients: Misclassification of AKI Using Existing Formulae and a Data-Driven Model. Clin. J. Am. Soc. Nephrol. CJASN 2016, 11, 395–404. [Google Scholar] [CrossRef]
- Shan, G. Improved Confidence Intervals for the Youden Index. PLoS ONE 2015, 10, e0127272. [Google Scholar] [CrossRef]
CRRT Liberation Unsuccessful (N = 9) | CRRT Liberation Successful (N = 11) | p-Value | |
---|---|---|---|
Preoperative characteristics | |||
Age, years | 70.3 ± 63.5 | 63.5 ± 11.2 | 0.139 |
Female | 6 (66.7%) | 3 (27.3%) | 0.175 |
Male | 3 (33.3%) | 8 (72.7%) | |
BMI, kg/m2 | 25.9 ± 6.96 | 25.5 ± 4.79 | 0.882 |
ASA classification | 3.78 ± 0.83 | 4.09 ± 0.70 | 0.383 |
EuroSCORE 2, % | 15.7 ± 12.0 | 22.9 ± 17.6 | 0.292 |
COPD | 2 (22.2%) | 2 (18.2%) | 1.000 |
Diabetes | 4 (40.0%) | 3 (27.3%) | 0.642 |
CKD | 1 (11.1%) | 3 (27.3%) | 0.591 |
aHTN | 6 (66.7%) | 6 (54.5%) | 0.670 |
LVEF > 50% | 6 (66.7%) | 5 (50.0%) | 1.000 |
LVEF 30–50% | 2 (22.2%) | 3 (30.0%) | |
LVEF < 30% | 1 (11.1%) | 2 (20.0%) | |
Intraoperative characteristics | |||
Valve procedure | 4 (44.4%) | 4 (36.4%) | 1.000 |
Combined procedure | 3 (33.3%) | 3 (27.3%) | |
Thoracic aortic procedure | 1 (11.1%) | 2 (18.2%) | |
HTX | 1 (11.1%) | 1 (9.09%) | |
LVAD implantation | 0 (0.0%) | 1 (9.09%) | |
Anaesthesia, min | 500 ± 137 | 533 ± 121 | 0.596 |
Surgery, min | 416 ± 130 | 442 ± 112 | 0.654 |
Elective surgery | 6 (66.7%) | 5 (45.5%) | 0.835 |
Urgent surgery | 1 (11.1%) | 2 (18.2%) | |
Emergency surgery | 2 (22.2%) | 4 (36.4%) | |
CPB time, min | 229 ± 114 | 249 ± 91.4 | 0.670 |
AoCC time, min | 178 ± 120 | 131 ± 63.6 | 0.315 |
Fluid balanceintraoperative, mL | 6981 ± 4342 | 5903 ± 3913 | 0.572 |
Urine outputintraoperative, mL | 762 ± 559 | 578 ± 412 | 0.424 |
Crystalloids, mL | 4978 ± 2444 | 4259 ± 1875 | 0.480 |
PRBC, units | 5.11 ± 2.32 | 5.18 ± 3.09 | 0.954 |
Thrombocytes, units | 1.67 ± 1.12 | 1.55 ± 0.52 | 0.770 |
Fibrinogen, mg | 225 ± 666 | 549 ± 1808 | 0.591 |
PCC, units | 1778 ± 870 | 2636 ± 1433 | 0.118 |
vaECMO post-CPB | 3 (33.3%) | 3 (27.3%) | 1.000 |
Postoperative characteristics | |||
SOFA scoreICU admission | 10.1 ± 2.71 | 10.9 ± 2.12 | 0.482 |
SAPS 2 | 52.8 ± 8.61 | 51.5 ± 9.41 | 0.747 |
SAPS 3 | 53.8 ± 8.41 | 60.8 ± 11.0 | 0.123 |
LOS-ICU, days | 52.8 ± 42.5 | 27.5 ± 17.2 | 0.124 |
LOS-Hospital, days | 56.7 ± 41.2 | 41.6 ± 23.7 | 0.351 |
30-day mortality | 2 (22.2%) | 0 (0.0%) | 0.474 |
90-day mortality | 4 (44.4%) | 1 (9.1%) | 0.303 |
CRRT Liberation Unsuccessful (N = 9) | CRRT Liberation Successful (N = 11) | p-Value | |
---|---|---|---|
SCrbaseline, mmol/L | 111.8 ± 44.9 | 152.2 ± 81.0 | 0.173 |
PENKbaseline, pmol/L | 262 ± 156 | 172 ± 117 | 0.172 |
PENKCRRT Start, pmol/L | 268 ± 163 | 178 ± 161 | 0.232 |
PENKCRRT discontinuation, pmol/L | 290 ± 175 | 113 ± 95.4 | 0.018 |
Time to start CRRT, days | 2.33 ± 3.61 | 2.45 ± 2.62 | 0.934 |
Duration of CRRT, days | 9.78 ± 6.46 | 9.18 ± 5.12 | 0.825 |
UO6h before CRRT discontinuation, mL | 48.8 ± 70.2 | 193 ± 160 | 0.018 |
mL/kg/h | 0.11 ± 0.16 | 0.37 ± 0.31 | 0.029 |
UO24h before CRRT discontinuation, mL | 184 ± 294 | 599 ± 439 | 0.025 |
mL/kg/h | 0.10 ± 0.17 | 0.29 ± 0.21 | 0.042 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tichy, J.; Hausmann, A.; Lanzerstorfer, J.; Ryz, S.; Wagner, L.; Lassnigg, A.; Bernardi, M.H. Prediction of Successful Liberation from Continuous Renal Replacement Therapy Using a Novel Biomarker in Patients with Acute Kidney Injury after Cardiac Surgery—An Observational Trial. Int. J. Mol. Sci. 2024, 25, 10873. https://doi.org/10.3390/ijms252010873
Tichy J, Hausmann A, Lanzerstorfer J, Ryz S, Wagner L, Lassnigg A, Bernardi MH. Prediction of Successful Liberation from Continuous Renal Replacement Therapy Using a Novel Biomarker in Patients with Acute Kidney Injury after Cardiac Surgery—An Observational Trial. International Journal of Molecular Sciences. 2024; 25(20):10873. https://doi.org/10.3390/ijms252010873
Chicago/Turabian StyleTichy, Johanna, Andrea Hausmann, Johannes Lanzerstorfer, Sylvia Ryz, Ludwig Wagner, Andrea Lassnigg, and Martin H. Bernardi. 2024. "Prediction of Successful Liberation from Continuous Renal Replacement Therapy Using a Novel Biomarker in Patients with Acute Kidney Injury after Cardiac Surgery—An Observational Trial" International Journal of Molecular Sciences 25, no. 20: 10873. https://doi.org/10.3390/ijms252010873
APA StyleTichy, J., Hausmann, A., Lanzerstorfer, J., Ryz, S., Wagner, L., Lassnigg, A., & Bernardi, M. H. (2024). Prediction of Successful Liberation from Continuous Renal Replacement Therapy Using a Novel Biomarker in Patients with Acute Kidney Injury after Cardiac Surgery—An Observational Trial. International Journal of Molecular Sciences, 25(20), 10873. https://doi.org/10.3390/ijms252010873