Microbial Gatekeepers of Fertility in the Female Reproductive Microbiome of Cattle
Abstract
:1. Introduction
2. Microbial Composition in the Female Reproductive Tract
2.1. Taxonomic Diversity
2.2. Inter-Species Variation in Microbiome Composition
2.3. Temporal Dynamics across the Reproductive Cycle
3. Microbial Functions and Mechanisms
3.1. Microbial Functions (Beyond Passive Commensals)
3.2. Immune Modulation and Pathogen Defense
4. Factors Influencing Microbiome Dynamics
4.1. Dietary Impact on Microbiome Composition
4.2. Environmental Factors and Microbial Resilience
5. Microbiome and Reproductive Health
5.1. Microbial Impact on Fertility and Reproductive Outcomes
5.2. Microbial Factors in Reproductive Disorders
6. The Role of the Male Reproductive Microbiome in Fertility
6.1. Microbial Diversity in the Male Reproductive Tract
6.2. Clinical Implications and Management
7. Microbiome-Based Interventions for Disease Management
7.1. Utilizing Microbiome as Probiotics in Livestock Disease Management
Probiotic Strain | Method of Administration | Disease Targeted | Observed Effects | Key References |
---|---|---|---|---|
Lactobacillus rhamnosus, Pediococcus acidilactici, Lactobacillus reuteri | Intravaginal | Metritis | Reduced metritis prevalence by 58%, modulation of inflammatory response | [153] |
Lactobacillus sakei, Pediococcus acidilactici | Intravaginal | Uterine diseases | Modulation of immune reactions, reduced uterine inflammation | [156] |
Lactobacillus sakei FUA3089, Pediococcus acidilactici FUA3138, FUA3140 | Intravaginal | Reproductive performance | Improved productive and reproductive performances, reduced uterine inflammation | [76] |
Lactobacillus buchneri | Intravaginal | Postpartum uterine health | Improved uterine health, higher conception rates, shorter median days to conception | [161] |
Lactobacillus gasseri CRL1421, CRL1412 | In vitro | Postpartum infections | Inhibited growth of Staphylococcus aureus | [21] |
Mechanism | Description | References |
---|---|---|
Competition | Probiotics outcompete pathogenic bacteria for adhesion sites | [153] |
Coaggregation | Probiotics coaggregate with pathogens, reducing their adhesion to cell receptors | [74] |
Anti-inflammatory effects | Downregulation of mRNA transcripts for inflammatory proteins, reducing neutrophil infiltration | [153,159] |
Inhibition of pathogenic growth | Probiotics produce substances like Pediocin that inhibit growth of pathogens | [162,163] |
7.2. Disease Prevention and Treatment Strategies
8. Advanced Techniques in Microbiome Analysis
8.1. Methodologies for Data Collection and Analysis
8.2. Culture-Dependent Techniques
8.3. High-Throughput Sequencing for Microbiome Studies
8.4. Functional Metagenomics and Omics Approaches
9. Future Research Frontiers
9.1. Unexplored Dimensions of the Female Reproductive Microbiome
9.2. Future Directions in Microbiome Manipulation
9.3. Clinical and Commercial Applications
9.4. Enhancing Existing and Novel Commercial Applications
10. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Otero, C.; Saavedra, L.; Silva de Ruiz, C.; Wilde, O.; Holgado, A.R.; Nader-Macias, M.E. Vaginal bacterial microflora modifications during the growth of healthy cows. Lett. Appl. Microbiol. 2000, 31, 251–254. [Google Scholar] [CrossRef] [PubMed]
- Otero, C.; Silva de Ruiz, C.; Ibañez, R.; Wilde, O.R.; de Ruiz Holgado, A.A.P.; Nader-Macias, M.E. Lactobacilli and Enterococci Isolated from the Bovine Vagina during the Estrous cycle. Anaerobe 1999, 5, 305–307. [Google Scholar] [CrossRef]
- Swartz, J.D.; Lachman, M.; Westveer, K.; O’Neill, T.; Geary, T.; Kott, R.W.; Berardinelli, J.G.; Hatfield, P.G.; Thomson, J.M.; Roberts, A.; et al. Characterization of the Vaginal Microbiota of Ewes and Cows Reveals a Unique Microbiota with Low Levels of Lactobacilli and Near-Neutral pH. Front. Vet. Sci. 2014, 1, 19. [Google Scholar] [CrossRef] [PubMed]
- Laguardia-Nascimento, M.; Branco, K.M.; Gasparini, M.R.; Giannattasio-Ferraz, S.; Leite, L.R.; Araujo, F.M.; Salim, A.C.; Nicoli, J.R.; de Oliveira, G.C.; Barbosa-Stancioli, E.F. Vaginal Microbiome Characterization of Nellore Cattle Using Metagenomic Analysis. PLoS ONE 2015, 10, e0143294. [Google Scholar] [CrossRef] [PubMed]
- Nesengani, L.T.; Wang, J.; Yang, Y.; Yang, L.; Lu, W. Unravelling vaginal microbial genetic diversity and abundance between Holstein and Fleckvieh cattle. RSC Adv. 2017, 7, 56137–56143. [Google Scholar] [CrossRef]
- Giannattasio-Ferraz, S.; Laguardia-Nascimento, M.; Gasparini, M.R.; Leite, L.R.; Araujo, F.M.G.; de Matos Salim, A.C.; de Oliveira, A.P.; Nicoli, J.R.; de Oliveira, G.C.; da Fonseca, F.G.; et al. A common vaginal microbiota composition among breeds of Bos taurus indicus (Gyr and Nellore). Braz. J. Microbiol. 2019, 50, 1115–1124. [Google Scholar] [CrossRef]
- Chen, S.Y.; Deng, F.; Zhang, M.; Jia, X.; Lai, S.J. Characterization of Vaginal Microbiota Associated with Pregnancy Outcomes of Artificial Insemination in Dairy Cows. J. Microbiol. Biotechnol. 2020, 30, 804–810. [Google Scholar] [CrossRef]
- Moreno, C.G.; Luque, A.T.; Galvão, K.N.; Otero, M.C. Bacterial communities from vagina of dairy healthy heifers and cows with impaired reproductive performance. Res. Vet. Sci. 2022, 142, 15–23. [Google Scholar] [CrossRef]
- Quadros, D.L.; Zanella, R.; Bondan, C.; Zanella, G.C.; Facioli, F.L.; da Silva, A.N.; Zanella, E.L. Study of vaginal microbiota of Holstein cows submitted to an estrus synchronization protocol with the use of intravaginal progesterone device. Res. Vet. Sci. 2020, 131, 1–6. [Google Scholar] [CrossRef]
- Quereda, J.J.; Barba, M.; Moce, M.L.; Gomis, J.; Jimenez-Trigos, E.; Garcia-Munoz, A.; Gomez-Martin, A.; Gonzalez-Torres, P.; Carbonetto, B.; Garcia-Rosello, E. Vaginal Microbiota Changes during Estrous Cycle in Dairy Heifers. Front. Vet. Sci. 2020, 7, 371. [Google Scholar] [CrossRef]
- Saini, P.; Singh, M.; Kumar, P. Fungal endometritis in bovines. Open Vet. J. 2019, 9, 94–98. [Google Scholar] [CrossRef] [PubMed]
- Appiah, M.O.; Wang, J.; Lu, W. Microflora in the Reproductive Tract of Cattle: A Review. Agriculture 2020, 10, 232. [Google Scholar] [CrossRef]
- Sheldon, I.M.; Dobson, H. Postpartum uterine health in cattle. Anim. Reprod. Sci. 2004, 82–83, 295–306. [Google Scholar] [CrossRef] [PubMed]
- Singer, E.; Bushnell, B.; Coleman-Derr, D.; Bowman, B.; Bowers, R.M.; Levy, A.; Gies, E.A.; Cheng, J.F.; Copeland, A.; Klenk, H.P.; et al. High-resolution phylogenetic microbial community profiling. ISME J. 2016, 10, 2020–2032. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, J.; Li, H.; Fu, K.; Pang, B.; Yang, Y.; Liu, Y.; Tian, W.; Cao, R. Characterization of the cervical bacterial community in dairy cows with metritis and during different physiological phases. Theriogenology 2018, 108, 306–313. [Google Scholar] [CrossRef]
- Galvão, K.N. Postpartum uterine diseases in dairy cows. Anim. Reprod. (AR) 2012, 9, 290–296. [Google Scholar]
- Deguillaume, L.; Geffre, A.; Desquilbet, L.; Dizien, A.; Thoumire, S.; Vorniere, C.; Constant, F.; Fournier, R.; Chastant-Maillard, S. Effect of endocervical inflammation on days to conception in dairy cows. J. Dairy Sci. 2012, 95, 1776–1783. [Google Scholar] [CrossRef]
- Adnane, M.; Meade, K.G.; O’Farrelly, C. Cervico-vaginal mucus (CVM)—An accessible source of immunologically informative biomolecules. Vet. Res. Commun. 2018, 42, 255–263. [Google Scholar] [CrossRef]
- Sheldon, I.M.; Cronin, J.G.; Bromfield, J.J. Tolerance and innate immunity shape the development of postpartum uterine disease and the impact of endometritis in dairy cattle. Annu. Rev. Anim. Biosci. 2019, 7, 361–384. [Google Scholar] [CrossRef]
- Karstrup, C.C.; Klitgaard, K.; Jensen, T.K.; Agerholm, J.S.; Pedersen, H.G. Presence of bacteria in the endometrium and placentomes of pregnant cows. Theriogenology 2017, 99, 41–47. [Google Scholar] [CrossRef]
- Otero, M.C.; Morelli, L.; Nader-Macias, M.E. Probiotic properties of vaginal lactic acid bacteria to prevent metritis in cattle. Lett. Appl. Microbiol. 2006, 43, 91–97. [Google Scholar] [CrossRef] [PubMed]
- Ault, T.B.; Clemmons, B.A.; Reese, S.T.; Dantas, F.G.; Franco, G.A.; Smith, T.P.L.; Edwards, J.L.; Myer, P.R.; Pohler, K.G. Uterine and vaginal bacterial community diversity prior to artificial insemination between pregnant and nonpregnant postpartum cows1. J. Anim. Sci. 2019, 97, 4298–4304. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, N.F.; Kastle, J.; Coutinho, T.J.; Amorim, A.T.; Campos, G.B.; Santos, V.M.; Marques, L.M.; Timenetsky, J.; de Farias, S.T. Qualitative analysis of the vaginal microbiota of healthy cattle and cattle with genital-tract disease. Genet. Mol. Res. GMR 2015, 14, 6518–6528. [Google Scholar] [CrossRef] [PubMed]
- Deng, F.; McClure, M.; Rorie, R.; Wang, X.; Chai, J.; Wei, X.; Lai, S.; Zhao, J. The vaginal and fecal microbiomes are related to pregnancy status in beef heifers. J. Anim. Sci. Biotechnol. 2019, 10, 92. [Google Scholar] [CrossRef] [PubMed]
- Messman, R.D.; Contreras-Correa, Z.E.; Paz, H.A.; Perry, G.; Lemley, C.O. Vaginal bacterial community composition and concentrations of estradiol at the time of artificial insemination in Brangus heifers. J. Anim. Sci. 2020, 98, skaa178. [Google Scholar] [CrossRef]
- Adnane, M.; Chapwanya, A. A Review of the Diversity of the Genital Tract Microbiome and Implications for Fertility of Cattle. Animals 2022, 12, 460. [Google Scholar] [CrossRef]
- Moore, S.G.; Ericsson, A.C.; Poock, S.E.; Melendez, P.; Lucy, M.C. Hot topic: 16S rRNA gene sequencing reveals the microbiome of the virgin and pregnant bovine uterus. J. Dairy Sci. 2017, 100, 4953–4960. [Google Scholar] [CrossRef]
- Jeon, S.J.; Cunha, F.; Vieira-Neto, A.; Bicalho, R.C.; Lima, S.; Bicalho, M.L.; Galvao, K.N. Blood as a route of transmission of uterine pathogens from the gut to the uterus in cows. Microbiome 2017, 5, 109. [Google Scholar] [CrossRef]
- van der Burgt, G.; Clark, W.; Knight, R.; Colles, K. Cattle fertility problems and Histophilus somni. Vet. Rec. 2007, 160, 600. [Google Scholar] [CrossRef]
- Nicholas, R.; Ayling, R.; McAuliffe, L. Mycoplasma Diseases of Ruminants; CAB International: Wallingford, UK, 2008. [Google Scholar]
- Adegboye, D.S.; Halbur, P.G.; Nutsch, R.G.; Kadlec, R.G.; Rosenbusch, R.F. Mycoplasma bovis-associated pneumonia and arthritis complicated with pyogranulomatous tenosynovitis in calves. J. Am. Vet. Med. Assoc. 1996, 209, 647–649. [Google Scholar] [CrossRef]
- Bicalho, M.L.; Machado, V.S.; Oikonomou, G.; Gilbert, R.O.; Bicalho, R.C. Association between virulence factors of Escherichia coli, Fusobacterium necrophorum, and Arcanobacterium pyogenes and uterine diseases of dairy cows. Vet. Microbiol. 2012, 157, 125–131. [Google Scholar] [CrossRef]
- Luecke, S.M.; Webb, E.M.; Dahlen, C.R.; Reynolds, L.P.; Amat, S. Seminal and vagino-uterine microbiome and their individual and interactive effects on cattle fertility. Front. Microbiol. 2022, 13, 1029128. [Google Scholar] [CrossRef] [PubMed]
- Carneiro, L.C.; Cronin, J.G.; Sheldon, I.M. Mechanisms linking bacterial infections of the bovine endometrium to disease and infertility. Reprod. Biol. 2016, 16, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Galvao, K.N.; Bicalho, R.C.; Jeon, S.J. Symposium review: The uterine microbiome associated with the development of uterine disease in dairy cows. J. Dairy Sci. 2019, 102, 11786–11797. [Google Scholar] [CrossRef] [PubMed]
- Hashem, N.M.; Gonzalez-Bulnes, A. The Use of Probiotics for Management and Improvement of Reproductive Eubiosis and Function. Nutrients 2022, 14, 902. [Google Scholar] [CrossRef]
- Esposito, G.; Raffrenato, E.; Lukamba, S.D.; Adnane, M.; Irons, P.C.; Cormican, P.; Tasara, T.; Chapwanya, A. Characterization of metabolic and inflammatory profiles of transition dairy cows fed an energy-restricted diet. J. Anim. Sci. 2020, 98, skz391. [Google Scholar] [CrossRef]
- El-Jakee, J.; Ahmed, W.; El-Seedy, F.; El-Moez, S. Bacterial profile of the genital tract in female-buffalo during the different reproductive stages. Glob. Vet. 2008, 2, 7–14. [Google Scholar]
- Wang, J.; Liu, C.; Nesengani, L.T.; Gong, Y.; Yang, Y.; Yang, L.; Lu, W. Comparison of vaginal microbial community structure of beef cattle between luteal phase and follicular phase. Indian J. Anim. Res. 2019, 53, 1298–1303. [Google Scholar] [CrossRef]
- Petit, T.; Spergser, J.; Rosengarten, R.; Aurich, J. Prevalence of potentially pathogenic bacteria as genital pathogens in dairy cattle. Reprod. Domest. Anim. Zuchthyg. 2009, 44, 88–91. [Google Scholar] [CrossRef]
- Udhayavel, S.; Malmarugan, S.; Palanisamy, K.; Rajeswar, J. Antibiogram pattern of bacteria causing endometritis in cows. Vet. World 2013, 6, 100. [Google Scholar] [CrossRef]
- Onnureddy, K.; Vengalrao, Y.; Mohanty, T.K.; Singh, D. Metagenomic Analysis of Uterine Microbiota in Postpartum Normal and Endometritic Water Buffaloes (Bubalus bubalis). J. Buffalo Sci. 2013, 2, 124–134. [Google Scholar] [CrossRef]
- Pascottini, O.B.; Van Schyndel, S.J.; Spricigo, J.F.W.; Rousseau, J.; Weese, J.S.; LeBlanc, S.J. Dynamics of uterine microbiota in postpartum dairy cows with clinical or subclinical endometritis. Sci. Rep. 2020, 10, 12353. [Google Scholar] [CrossRef] [PubMed]
- Miranda-CasoLuengo, R.; Lu, J.; Williams, E.J.; Miranda-CasoLuengo, A.A.; Carrington, S.D.; Evans, A.C.O.; Meijer, W.G. Delayed differentiation of vaginal and uterine microbiomes in dairy cows developing postpartum endometritis. PLoS ONE 2019, 14, e0200974. [Google Scholar] [CrossRef] [PubMed]
- Moore, S.G.; Ericsson, A.C.; Behura, S.K.; Lamberson, W.R.; Evans, T.J.; McCabe, M.S.; Poock, S.E.; Lucy, M.C. Concurrent and long-term associations between the endometrial microbiota and endometrial transcriptome in postpartum dairy cows. BMC Genom. 2019, 20, 405. [Google Scholar] [CrossRef] [PubMed]
- Perry, G.A.; Perry, B.L. Effect of preovulatory concentrations of estradiol and initiation of standing estrus on uterine pH in beef cows. Domest. Anim. Endocrinol. 2008, 34, 333–338. [Google Scholar] [CrossRef]
- Owens, C.E.; Daniels, K.M.; Ealy, A.D.; Knowlton, K.F.; Cockrum, R.R. Graduate Student Literature Review: Potential mechanisms of interaction between bacteria and the reproductive tract of dairy cattle. J. Dairy Sci. 2020, 103, 10951–10960. [Google Scholar] [CrossRef]
- Sheldon, I.M.; Price, S.B.; Cronin, J.; Gilbert, R.O.; Gadsby, J.E. Mechanisms of infertility associated with clinical and subclinical endometritis in high producing dairy cattle. Reprod. Domest. Anim. Zuchthyg. 2009, 44 (Suppl. 3), 1–9. [Google Scholar] [CrossRef]
- Sheldon, I.M.; Noakes, D.E.; Rycroft, A.N.; Pfeiffer, D.U.; Dobson, H. Influence of uterine bacterial contamination after parturition on ovarian dominant follicle selection and follicle growth and function in cattle. Reproduction 2002, 123, 837–845. [Google Scholar] [CrossRef]
- Herath, S.; Lilly, S.T.; Fischer, D.P.; Williams, E.J.; Dobson, H.; Bryant, C.E.; Sheldon, I.M. Bacterial lipopolysaccharide induces an endocrine switch from prostaglandin F2alpha to prostaglandin E2 in bovine endometrium. Endocrinology 2009, 150, 1912–1920. [Google Scholar] [CrossRef]
- Cronin, J.G.; Turner, M.L.; Goetze, L.; Bryant, C.E.; Sheldon, I.M. Toll-like receptor 4 and MYD88-dependent signaling mechanisms of the innate immune system are essential for the response to lipopolysaccharide by epithelial and stromal cells of the bovine endometrium. Biol. Reprod. 2012, 86, 51. [Google Scholar] [CrossRef]
- Herath, S.; Williams, E.J.; Lilly, S.T.; Gilbert, R.O.; Dobson, H.; Bryant, C.E.; Sheldon, I.M. Ovarian follicular cells have innate immune capabilities that modulate their endocrine function. Reproduction 2007, 134, 683–693. [Google Scholar] [CrossRef] [PubMed]
- Bromfield, J.J.; Santos, J.E.; Block, J.; Williams, R.S.; Sheldon, I.M. Physiology and Endocrinology Symposium: Uterine infection: Linking infection and innate immunity with infertility in the high-producing dairy cow. J. Anim. Sci. 2015, 93, 2021–2033. [Google Scholar] [CrossRef] [PubMed]
- Williams, E.J.; Fischer, D.P.; Noakes, D.E.; England, G.C.; Rycroft, A.; Dobson, H.; Sheldon, I.M. The relationship between uterine pathogen growth density and ovarian function in the postpartum dairy cow. Theriogenology 2007, 68, 549–559. [Google Scholar] [CrossRef] [PubMed]
- Bonnett, B.N.; Martin, S.W.; Gannon, V.P.; Miller, R.B.; Etherington, W.G. Endometrial biopsy in Holstein-Friesian dairy cows. III. Bacteriological analysis and correlations with histological findings. Can. J. Vet. Res. 1991, 55, 168–173. [Google Scholar]
- Sakai, M.; Ishiyama, A.; Tabata, M.; Sasaki, Y.; Yoneda, S.; Shiozaki, A.; Saito, S. Relationship between cervical mucus interleukin-8 concentrations and vaginal bacteria in pregnancy. Am. J. Reprod. Immunol. 2004, 52, 106–112. [Google Scholar] [CrossRef]
- Jadon, R.S.; Dhaliwal, G.S.; Jand, S.K. Prevalence of aerobic and anaerobic uterine bacteria during peripartum period in normal and dystocia-affected buffaloes. Anim. Reprod. Sci. 2005, 88, 215–224. [Google Scholar] [CrossRef]
- Raza, S.; Rabbani, M.; Ahmad, N.; Sheikh, A.A.; Muhammad, K.; Akhtar, F.; Rehman, H.U. Uterine microbial flora of Nili-Ravi buffalo during estrus and its relationship with pregnancy rate in Pakistan. Editor. Board 2013, 32, 564–567. [Google Scholar]
- Kumar, M.; Choudhary, S. Age estimation using pulp tooth area ratio in North Indian population. J. Indian Acad. Oral Med. Radiol. 2019, 31, 359–362. [Google Scholar] [CrossRef]
- Aagaard, K.; Riehle, K.; Ma, J.; Segata, N.; Mistretta, T.A.; Coarfa, C.; Raza, S.; Rosenbaum, S.; Van den Veyver, I.; Milosavljevic, A.; et al. A metagenomic approach to characterization of the vaginal microbiome signature in pregnancy. PLoS ONE 2012, 7, e36466. [Google Scholar] [CrossRef]
- Archunan, G.; Rajanarayanan, S.; Karthikeyan, K. Cattle Pheromones. In Neurobiology of Chemical Communication; Mucignat-Caretta, C., Ed.; CRC Press/Taylor & Francis© 2014 by Taylor & Francis Group, LLC: Boca Raton, FL, USA, 2014. [Google Scholar]
- Srinivasan, M.; Adnane, M.; Archunan, G. Significance of cervico-vaginal microbes in bovine reproduction and pheromone production—A hypothetical review. Res. Vet. Sci. 2021, 135, 66–71. [Google Scholar] [CrossRef]
- Buck, L.B. The molecular architecture of odor and pheromone sensing in mammals. Cell 2000, 100, 611–618. [Google Scholar] [CrossRef] [PubMed]
- Root Kustritz, M.V. Reproductive behavior of small animals. Theriogenology 2005, 64, 734–746. [Google Scholar] [CrossRef] [PubMed]
- Mertens, P.A. Reproductive and sexual behavioral problems in dogs. Theriogenology 2006, 66, 606–609. [Google Scholar] [CrossRef] [PubMed]
- Ziegler, T.E.; Epple, G.; Snowdon, C.T.; Porter, T.A.; Belcher, A.M.; Küderling, I. Detection of the chemical signals of ovulation in the cotton-top tamarin, Saguinus oedipus. Anim. Behav. 1993, 45, 313–322. [Google Scholar] [CrossRef]
- Ezenwa, V.O.; Williams, A.E. Microbes and animal olfactory communication: Where do we go from here? Bioessays 2014, 36, 847–854. [Google Scholar] [CrossRef]
- Merkx, J.; Slob, A.K.; van der Werff ten Bosch, J.J. Vaginal bacterial flora partially determines sexual attractivity of female rats. Physiol. Behav. 1988, 44, 147–149. [Google Scholar] [CrossRef]
- Wong, A.C.; Holmes, A.; Ponton, F.; Lihoreau, M.; Wilson, K.; Raubenheimer, D.; Simpson, S.J. Behavioral Microbiomics: A Multi-Dimensional Approach to Microbial Influence on Behavior. Front. Microbiol. 2015, 6, 1359. [Google Scholar] [CrossRef]
- Natsch, A. Biochemistry and Genetics of Human Axilla Odor. In Springer Handbook of Odor; Buettner, A., Ed.; Springer International Publishing: Cham, Switzerland, 2017; pp. 123–124. [Google Scholar] [CrossRef]
- Leclaire, S.; Jacob, S.; Greene, L.K.; Dubay, G.R.; Drea, C.M. Social odours covary with bacterial community in the anal secretions of wild meerkats. Sci. Rep. 2017, 7, 3240. [Google Scholar] [CrossRef]
- Theis, K.R.; Venkataraman, A.; Dycus, J.A.; Koonter, K.D.; Schmitt-Matzen, E.N.; Wagner, A.P.; Holekamp, K.E.; Schmidt, T.M. Symbiotic bacteria appear to mediate hyena social odors. Proc. Natl. Acad. Sci. USA 2013, 110, 19832–19837. [Google Scholar] [CrossRef]
- Theis, K.R.; Schmidt, T.M.; Holekamp, K.E. Evidence for a bacterial mechanism for group-specific social odors among hyenas. Sci. Rep. 2012, 2, 615. [Google Scholar] [CrossRef]
- Sengupta, R.; Altermann, E.; Anderson, R.C.; McNabb, W.C.; Moughan, P.J.; Roy, N.C. The role of cell surface architecture of lactobacilli in host-microbe interactions in the gastrointestinal tract. Mediat. Inflamm. 2013, 2013, 237921. [Google Scholar] [CrossRef] [PubMed]
- Bermudez-Brito, M.; Plaza-Diaz, J.; Munoz-Quezada, S.; Gomez-Llorente, C.; Gil, A. Probiotic mechanisms of action. Ann. Nutr. Metab. 2012, 61, 160–174. [Google Scholar] [CrossRef] [PubMed]
- Ametaj, B.N.; Iqbal, S.; Selami, F.; Odhiambo, J.F.; Wang, Y.; Ganzle, M.G.; Dunn, S.M.; Zebeli, Q. Intravaginal administration of lactic acid bacteria modulated the incidence of purulent vaginal discharges, plasma haptoglobin concentrations, and milk production in dairy cows. Res. Vet. Sci. 2014, 96, 365–370. [Google Scholar] [CrossRef] [PubMed]
- Vinderola, G.; Ouwehand, A.C.; Salminen, S.; von Wright, A. Lactic Acid Bacteria, 5th ed.; CRC Press: Boca Raton, FL, USA, 2019. [Google Scholar] [CrossRef]
- Makras, L.; Triantafyllou, V.; Fayol-Messaoudi, D.; Adriany, T.; Zoumpopoulou, G.; Tsakalidou, E.; Servin, A.; De Vuyst, L. Kinetic analysis of the antibacterial activity of probiotic lactobacilli towards Salmonella enterica serovar Typhimurium reveals a role for lactic acid and other inhibitory compounds. Res. Microbiol. 2006, 157, 241–247. [Google Scholar] [CrossRef]
- Greene, J.D.; Klaenhammer, T.R. Factors involved in adherence of lactobacilli to human Caco-2 cells. Appl. Environ. Microbiol. 1994, 60, 4487–4494. [Google Scholar] [CrossRef]
- Hassan, M.; Kjos, M.; Nes, I.F.; Diep, D.B.; Lotfipour, F. Natural antimicrobial peptides from bacteria: Characteristics and potential applications to fight against antibiotic resistance. J. Appl. Microbiol. 2012, 113, 723–736. [Google Scholar] [CrossRef]
- Yildirim, Z.; Winters, D.K.; Johnson, M.G. Purification, amino acid sequence and mode of action of bifidocin B produced by Bifidobacterium bifidum NCFB 1454. J. Appl. Microbiol. 1999, 86, 45–54. [Google Scholar] [CrossRef]
- Furrie, E.; Macfarlane, S.; Kennedy, A.; Cummings, J.H.; Walsh, S.V.; O’Neil, D.A.; Macfarlane, G.T. Synbiotic therapy (Bifidobacterium longum/Synergy 1) initiates resolution of inflammation in patients with active ulcerative colitis: A randomised controlled pilot trial. Gut 2005, 54, 242–249. [Google Scholar] [CrossRef]
- Prema, P.; Smila, D.; Palavesam, A.; Immanuel, G. Production and Characterization of an Antifungal Compound (3-Phenyllactic Acid) Produced by Lactobacillus plantarum Strain. Food Bioprocess Technol. 2008, 3, 379–386. [Google Scholar] [CrossRef]
- Niku-Paavola, M.L.; Laitila, A.; Mattila-Sandholm, T.; Haikara, A. New types of antimicrobial compounds produced by Lactobacillus plantarum. J. Appl. Microbiol. 1999, 86, 29–35. [Google Scholar] [CrossRef]
- Averesch, N.J.H.; Kromer, J.O. Metabolic Engineering of the Shikimate Pathway for Production of Aromatics and Derived Compounds-Present and Future Strain Construction Strategies. Front. Bioeng. Biotechnol. 2018, 6, 32. [Google Scholar] [CrossRef] [PubMed]
- Buhaescu, I.; Izzedine, H. Mevalonate pathway: A review of clinical and therapeutical implications. Clin. Biochem. 2007, 40, 575–584. [Google Scholar] [CrossRef] [PubMed]
- Dal Bello, F.; Clarke, C.I.; Ryan, L.A.M.; Ulmer, H.; Schober, T.J.; Ström, K.; Sjögren, J.; van Sinderen, D.; Schnürer, J.; Arendt, E.K. Improvement of the quality and shelf life of wheat bread by fermentation with the antifungal strain Lactobacillus plantarum FST 1.7. J. Cereal Sci. 2007, 45, 309–318. [Google Scholar] [CrossRef]
- Liu, M.; Wu, Q.; Wang, M.; Fu, Y.; Wang, J. Lactobacillus rhamnosus GR-1 Limits Escherichia coli-Induced Inflammatory Responses via Attenuating MyD88-Dependent and MyD88-Independent Pathway Activation in Bovine Endometrial Epithelial Cells. Inflammation 2016, 39, 1483–1494. [Google Scholar] [CrossRef]
- Genis, S.; Sanchez-Chardi, A.; Bach, A.; Fabregas, F.; Aris, A. A combination of lactic acid bacteria regulates Escherichia coli infection and inflammation of the bovine endometrium. J. Dairy Sci. 2017, 100, 479–492. [Google Scholar] [CrossRef]
- Otero, M.C.; Nader-Macias, M.E. Inhibition of Staphylococcus aureus by H2O2-producing Lactobacillus gasseri isolated from the vaginal tract of cattle. Anim. Reprod. Sci. 2006, 96, 35–46. [Google Scholar] [CrossRef]
- Alakomi, H.L.; Skytta, E.; Saarela, M.; Mattila-Sandholm, T.; Latva-Kala, K.; Helander, I.M. Lactic acid permeabilizes gram-negative bacteria by disrupting the outer membrane. Appl. Environ. Microbiol. 2000, 66, 2001–2005. [Google Scholar] [CrossRef]
- Dominguez-Bello, M.G.; Costello, E.K.; Contreras, M.; Magris, M.; Hidalgo, G.; Fierer, N.; Knight, R. Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc. Natl. Acad. Sci. USA 2010, 107, 11971–11975. [Google Scholar] [CrossRef]
- Sheldon, I.M.; Cronin, J.; Goetze, L.; Donofrio, G.; Schuberth, H.J. Defining postpartum uterine disease and the mechanisms of infection and immunity in the female reproductive tract in cattle. Biol. Reprod. 2009, 81, 1025–1032. [Google Scholar] [CrossRef]
- LeBlanc, S.J.; Duffield, T.F.; Leslie, K.E.; Bateman, K.G.; Keefe, G.P.; Walton, J.S.; Johnson, W.H. Defining and diagnosing postpartum clinical endometritis and its impact on reproductive performance in dairy cows. J. Dairy Sci. 2002, 85, 2223–2236. [Google Scholar] [CrossRef]
- Peng, Y.; Wang, Y.; Hang, S.; Zhu, W. Microbial diversity in uterus of healthy and metritic postpartum Holstein dairy cows. Folia Microbiol. 2013, 58, 593–600. [Google Scholar] [CrossRef] [PubMed]
- Elkjaer, K.; Ancker, M.L.; Gustafsson, H.; Friggens, N.C.; Waldmann, A.; Molbak, L.; Callesen, H. Uterine bacterial flora in postpartum Danish Holstein dairy cows determined using DNA-based fingerprinting: Correlation to uterine condition and calving management. Anim. Reprod. Sci. 2013, 138, 39–48. [Google Scholar] [CrossRef] [PubMed]
- Bicalho, M.L.S.; Santin, T.; Rodrigues, M.X.; Marques, C.E.; Lima, S.F.; Bicalho, R.C. Dynamics of the microbiota found in the vaginas of dairy cows during the transition period: Associations with uterine diseases and reproductive outcome. J. Dairy Sci. 2017, 100, 3043–3058. [Google Scholar] [CrossRef] [PubMed]
- Akthar, I.; Suarez, S.S.; Morillo, V.A.; Sasaki, M.; Ezz, M.A.; Takahashi, K.I.; Shimada, M.; Marey, M.A.; Miyamoto, A. Sperm enter glands of preovulatory bovine endometrial explants and initiate inflammation. Reproduction 2020, 159, 181–192. [Google Scholar] [CrossRef]
- Sicsic, R.; Goshen, T.; Dutta, R.; Kedem-Vaanunu, N.; Kaplan-Shabtai, V.; Pasternak, Z.; Gottlieb, Y.; Shpigel, N.Y.; Raz, T. Microbial communities and inflammatory response in the endometrium differ between normal and metritic dairy cows at 5–10 days post-partum. Vet. Res. 2018, 49, 77. [Google Scholar] [CrossRef]
- Thulasiraman, S.; Gunasekar, M.; Narayansamy, A.; Sampathkumar, K.U.; Kumar, R.; Alam, K. Uterine Infections/Metritis. In Periparturient Diseases of Cattle; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2024; Chapter 13; pp. 135–151. [Google Scholar] [CrossRef]
- Vallejo-Timaran, D.A.; Reyes, J.; Gilbert, R.O.; Lefebvre, R.C.; Palacio-Baena, L.G.; Maldonado-Estrada, J.G. Incidence, clinical patterns, and risk factors of postpartum uterine diseases in dairy cows from high-altitude tropical herds. J. Dairy Sci. 2021, 104, 9016–9026. [Google Scholar] [CrossRef]
- Donofrio, G.; Herath, S.; Sartori, C.; Cavirani, S.; Flammini, C.F.; Sheldon, I.M. Bovine herpesvirus 4 is tropic for bovine endometrial cells and modulates endocrine function. Reproduction 2007, 134, 183–197. [Google Scholar] [CrossRef]
- Davies, D.; Meade, K.G.; Herath, S.; Eckersall, P.D.; Gonzalez, D.; White, J.O.; Conlan, R.S.; O’Farrelly, C.; Sheldon, I.M. Toll-like receptor and antimicrobial peptide expression in the bovine endometrium. Reprod. Biol. Endocrinol. 2008, 6, 53. [Google Scholar] [CrossRef]
- Kassé, F.; Fairbrother, J.; Dubuc, J. Relationship between Escherichia coli virulence factors and postpartum metritis in dairy cows. J. Dairy Sci. 2016, 99, 4656–4667. [Google Scholar] [CrossRef]
- Schust, D.; Anderson, D.; Hill, J. Progesterone-induced immunosuppression is not mediated through the progesterone receptor. Hum. Reprod. 1996, 11, 980–985. [Google Scholar] [CrossRef]
- Watson, E.D.; Stokes, C.R.; David, J.S.; Bourne, F.J. Effect of ovarian hormones on promotion of bactericidal activity by uterine secretions of ovariectomized mares. J. Reprod. Fertil. 1987, 79, 531–537. [Google Scholar] [CrossRef] [PubMed]
- Ault, T.B.; Clemmons, B.A.; Reese, S.T.; Dantas, F.G.; Franco, G.A.; Smith, T.P.; Edwards, J.L.; Myer, P.R.; Pohler, K.G. Bacterial taxonomic composition of the postpartum cow uterus and vagina prior to artificial insemination. J. Anim. Sci. 2019, 97, 4305–4313. [Google Scholar] [CrossRef] [PubMed]
- Guerreiro, T.M.; Goncalves, R.F.; Melo, C.; de Oliveira, D.N.; Lima, E.O.; Visintin, J.A.; de Achilles, M.A.; Catharino, R.R. A Metabolomic Overview of Follicular Fluid in Cows. Front. Vet. Sci. 2018, 5, 10. [Google Scholar] [CrossRef] [PubMed]
- Martins, N.; Barros, L.; Ferreira, I.C.F.R. In vivo antioxidant activity of phenolic compounds: Facts and gaps. Trends Food Sci. Technol. 2016, 48, 1–12. [Google Scholar] [CrossRef]
- Rodriguez, H.; Curiel, J.A.; Landete, J.M.; de las Rivas, B.; Lopez de Felipe, F.; Gomez-Cordoves, C.; Mancheno, J.M.; Munoz, R. Food phenolics and lactic acid bacteria. Int. J. Food Microbiol. 2009, 132, 79–90. [Google Scholar] [CrossRef]
- Jabbour, H.N.; Sales, K.J.; Catalano, R.D.; Norman, J.E. Inflammatory pathways in female reproductive health and disease. Reproduction 2009, 138, 903–919. [Google Scholar] [CrossRef]
- Li, C.-X.; Jiang, X.-C.; Qiu, Y.-J.; Xu, J.-H. Identification of a new thermostable and alkali-tolerant α-carbonic anhydrase from Lactobacillus delbrueckii as a biocatalyst for CO2 biomineralization. Bioresour. Bioprocess. 2015, 2, 44. [Google Scholar] [CrossRef]
- Visconti, P.E.; Krapf, D.; de la Vega-Beltran, J.L.; Acevedo, J.J.; Darszon, A. Ion channels, phosphorylation and mammalian sperm capacitation. Asian J. Androl. 2011, 13, 395–405. [Google Scholar] [CrossRef]
- Fulop, V.; Demeter, J.; Cseh, A. Significance and effects of prenatal and postnatal microbiome in the period of early individual development and options for interventional treatment. Orvosi Hetil. 2021, 162, 731–740. [Google Scholar] [CrossRef]
- Moreno, I.; Codoner, F.M.; Vilella, F.; Valbuena, D.; Martinez-Blanch, J.F.; Jimenez-Almazan, J.; Alonso, R.; Alama, P.; Remohi, J.; Pellicer, A.; et al. Evidence that the endometrial microbiota has an effect on implantation success or failure. Am. J. Obs. Gynecol. 2016, 215, 684–703. [Google Scholar] [CrossRef]
- Vacca, P.; Cantoni, C.; Vitale, M.; Prato, C.; Canegallo, F.; Fenoglio, D.; Ragni, N.; Moretta, L.; Mingari, M.C. Crosstalk between decidual NK and CD14+ myelomonocytic cells results in induction of Tregs and immunosuppression. Proc. Natl. Acad. Sci. USA 2010, 107, 11918–11923. [Google Scholar] [CrossRef] [PubMed]
- Clemmons, B.A.; Reese, S.T.; Dantas, F.G.; Franco, G.A.; Smith, T.P.L.; Adeyosoye, O.I.; Pohler, K.G.; Myer, P.R. Vaginal and Uterine Bacterial Communities in Postpartum Lactating Cows. Front. Microbiol. 2017, 8, 1047. [Google Scholar] [CrossRef]
- Sheldon, I.M.; Williams, E.J.; Miller, A.N.; Nash, D.M.; Herath, S. Uterine diseases in cattle after parturition. Vet. J. 2008, 176, 115–121. [Google Scholar] [CrossRef] [PubMed]
- Ong, C.T.; Turni, C.; Blackall, P.J.; Boe-Hansen, G.; Hayes, B.J.; Tabor, A.E. Interrogating the bovine reproductive tract metagenomes using culture-independent approaches: A systematic review. Anim. Microbiome 2021, 3, 41. [Google Scholar] [CrossRef]
- Wang, M.L.; Liu, M.C.; Xu, J.; An, L.G.; Wang, J.F.; Zhu, Y.H. Uterine Microbiota of Dairy Cows With Clinical and Subclinical Endometritis. Front. Microbiol. 2018, 9, 2691. [Google Scholar] [CrossRef] [PubMed]
- Potter, T.J.; Guitian, J.; Fishwick, J.; Gordon, P.J.; Sheldon, I.M. Risk factors for clinical endometritis in postpartum dairy cattle. Theriogenology 2010, 74, 127–134. [Google Scholar] [CrossRef]
- Al-Zubaidi, S.F.A.; Hasson, S.O.; Ajeel, H.H. Isolation and identification of the bacteria associated with the retained fetal membranes in cows by PCR technique in Babylon-Iraq. Euphrates J. Agric. Sci. 2017, 9, 18–24. [Google Scholar]
- Kim, I.H.; Kang, H.G. Risk factors for postpartum endometritis and the effect of endometritis on reproductive performance in dairy cows in Korea. J. Reprod. Dev. 2003, 49, 485–491. [Google Scholar] [CrossRef]
- Adnane, M.; Kaidi, R.; Hanzen, C.; England, G.C.W. Risk factors of clinical and subclinical endometritis in cattle: A review. Turk. J. Vet. Anim. Sci. 2017, 41, 1–11. [Google Scholar] [CrossRef]
- Sheldon, I.M.; Lewis, G.S.; LeBlanc, S.; Gilbert, R.O. Defining postpartum uterine disease in cattle. Theriogenology 2006, 65, 1516–1530. [Google Scholar] [CrossRef]
- Yamamura, F.; Sugiura, T.; Munby, M.; Shiokura, Y.; Murata, R.; Nakamura, T.; Fujiki, J.; Iwano, H. Relationship between Escherichia coli virulence factors, notably kpsMTII, and symptoms of clinical metritis and endometritis in dairy cows. J. Vet. Med. Sci. 2022, 84, 420–428. [Google Scholar] [CrossRef]
- Ungerfeld, R.; Silva, L. The presence of normal vaginal flora is necessary for normal sexual attractiveness of estrous ewes. Appl. Anim. Behav. Sci. 2005, 93, 245–250. [Google Scholar] [CrossRef]
- Jemiolo, B.; Miller, K.V.; Wiesler, D.; Jelinek, I.; Novotny, M.; Marchinton, R.L. Putative chemical signals from white-tailed deer (Odocoileus virginianus). Urinary and vaginal mucus volatiles excreted by females during breeding season. J. Chem. Ecol. 1995, 21, 869–879. [Google Scholar] [CrossRef] [PubMed]
- Bonsall, R.W.; Michael, R.P. Volatile constituents of primate vaginal secretions. J. Reprod. Fertil. 1971, 27, 478–479. [Google Scholar] [CrossRef] [PubMed]
- Michael, R.P.; Bonsall, R.W.; Warner, P. Primate Sexual Pheromones. In Olfaction and Taste: 5th Symposium; Denton, D.A., Coghlan, J.P., Eds.; Academic Press: Cambridge, MA, USA, 1975; pp. 417–424. [Google Scholar] [CrossRef]
- Clarke, P.M.; Barrett, L.; Henzi, S.P. What role do olfactory cues play in chacma baboon mating? Am. J. Primatol. 2009, 71, 493–502. [Google Scholar] [CrossRef] [PubMed]
- Miller, E.A.; Livermore, J.A.; Alberts, S.C.; Tung, J.; Archie, E.A. Ovarian cycling and reproductive state shape the vaginal microbiota in wild baboons. Microbiome 2017, 5, 8. [Google Scholar] [CrossRef]
- Valle, G.R.; Toledo Junior, J.C.; de Figueiredo, C.B. Detection of Simonsiella species in the vagina of a bitch in heat. Vet. Rec. 2006, 159, 156–157. [Google Scholar] [CrossRef]
- Koziol, J.H.; Sheets, T.; Wickware, C.L.; Johnson, T.A. Composition and diversity of the seminal microbiota in bulls and its association with semen parameters. Theriogenology 2022, 182, 17–25. [Google Scholar] [CrossRef]
- Givens, M.D.; Marley, M.S. Pathogens that cause infertility of bulls or transmission via semen. Theriogenology 2008, 70, 504–507. [Google Scholar] [CrossRef]
- Poole, R.K.; Soffa, D.R.; McAnally, B.E.; Smith, M.S.; Hickman-Brown, K.J.; Stockland, E.L. Reproductive Microbiomes in Domestic Livestock: Insights Utilizing 16S rRNA Gene Amplicon Community Sequencing. Animals 2023, 13, 485. [Google Scholar] [CrossRef]
- Sannat, C.; Nair, A.; Sahu, S.B.; Sahasrabudhe, S.A.; Kumar, A.; Gupta, A.K.; Shende, R.K. Effect of species, breed, and age on bacterial load in bovine and bubaline semen. Vet. World 2015, 8, 461–466. [Google Scholar] [CrossRef] [PubMed]
- González-Marín, C.; Roy, R.; López-Fernández, C.; Diez, B.; Carabaño, M.; Fernández, J.L.; Kjelland, M.; Moreno, J.F.; Gosálvez, J. Bacteria in bovine semen can increase sperm DNA fragmentation rates: A kinetic experimental approach. Anim. Reprod. Sci. 2011, 123, 139–148. [Google Scholar] [CrossRef] [PubMed]
- Medo, J.; Ziarovska, J.; Duracka, M.; Tvrda, E.; Banas, S.; Gabor, M.; Kysel, M.; Kacaniova, M. Core Microbiome of Slovak Holstein Friesian Breeding Bulls’ Semen. Animals 2021, 11, 3331. [Google Scholar] [CrossRef] [PubMed]
- del Porto, G.B.; Derrick, F.C., Jr.; Bannister, E.R. Bacterial effect on sperm motility. Urology 1975, 5, 638–639. [Google Scholar] [CrossRef] [PubMed]
- Cagnoli, C.I.; Chiapparrone, M.L.; Cacciato, C.S.; Rodriguez, M.G.; Aller, J.F.; Catena, M.D.C. Effects of Campylobacter fetus on bull sperm quality. Microb. Pathog. 2020, 149, 104486. [Google Scholar] [CrossRef]
- Marchiani, S.; Baccani, I.; Tamburrino, L.; Mattiuz, G.; Nicolo, S.; Bonaiuto, C.; Panico, C.; Vignozzi, L.; Antonelli, A.; Rossolini, G.M.; et al. Effects of common Gram-negative pathogens causing male genitourinary-tract infections on human sperm functions. Sci. Rep. 2021, 11, 19177. [Google Scholar] [CrossRef]
- Eini, F.; Kutenaei, M.A.; Zareei, F.; Dastjerdi, Z.S.; Shirzeyli, M.H.; Salehi, E. Effect of bacterial infection on sperm quality and DNA fragmentation in subfertile men with Leukocytospermia. BMC Mol. Cell Biol. 2021, 22, 42. [Google Scholar] [CrossRef]
- Maretti, C.; Cavallini, G. The association of a probiotic with a prebiotic (Flortec, Bracco) to improve the quality/quantity of spermatozoa in infertile patients with idiopathic oligoasthenoteratospermia: A pilot study. Andrology 2017, 5, 439–444. [Google Scholar] [CrossRef]
- Valcarce, D.G.; Genoves, S.; Riesco, M.F.; Martorell, P.; Herraez, M.P.; Ramon, D.; Robles, V. Probiotic administration improves sperm quality in asthenozoospermic human donors. Benef. Microbes 2017, 8, 193–206. [Google Scholar] [CrossRef]
- Farahani, L.; Tharakan, T.; Yap, T.; Ramsay, J.W.; Jayasena, C.N.; Minhas, S. The semen microbiome and its impact on sperm function and male fertility: A systematic review and meta-analysis. Andrology 2021, 9, 115–144. [Google Scholar] [CrossRef]
- Parker, A.M.; House, J.K.; Hazelton, M.S.; Bosward, K.L.; Sheehy, P.A. Comparison of culture and a multiplex probe PCR for identifying Mycoplasma species in bovine milk, semen and swab samples. PLoS ONE 2017, 12, e0173422. [Google Scholar] [CrossRef] [PubMed]
- Rana, P.; Singh, M.; Dhaka, Y. In vitro antibiogram of bacterial isolates from preputial washings and cow bull semen. Haryana Vet. 2020, 59, 213–215. [Google Scholar]
- LeBlanc, S.J. Postpartum uterine disease and dairy herd reproductive performance: A review. Vet. J. 2008, 176, 102–114. [Google Scholar] [CrossRef]
- El-Khadrawy, H.; Ahmed, W.M.; Zaabal, M.; Hanafi, E.M. Strategies for diagnosis and treatment of uterine infection in bovines. Glob. Vet. 2015, 15, 98–105. [Google Scholar]
- De Seta, F.; Parazzini, F.; De Leo, R.; Banco, R.; Maso, G.P.; De Santo, D.; Sartore, A.; Stabile, G.; Inglese, S.; Tonon, M.; et al. Lactobacillus plantarum P17630 for preventing Candida vaginitis recurrence: A retrospective comparative study. Eur. J. Obs. Gynecol. Reprod. Biol. 2014, 182, 136–139. [Google Scholar] [CrossRef] [PubMed]
- Stapleton, A.E.; Au-Yeung, M.; Hooton, T.M.; Fredricks, D.N.; Roberts, P.L.; Czaja, C.A.; Yarova-Yarovaya, Y.; Fiedler, T.; Cox, M.; Stamm, W.E. Randomized, placebo-controlled phase 2 trial of a Lactobacillus crispatus probiotic given intravaginally for prevention of recurrent urinary tract infection. Clin. Infect. Dis. 2011, 52, 1212–1217. [Google Scholar] [CrossRef] [PubMed]
- Genis, S.; Cerri, R.L.A.; Bach, A.; Silper, B.F.; Baylao, M.; Denis-Robichaud, J.; Aris, A. Pre-calving Intravaginal Administration of Lactic Acid Bacteria Reduces Metritis Prevalence and Regulates Blood Neutrophil Gene Expression after Calving in Dairy Cattle. Front. Vet. Sci. 2018, 5, 135. [Google Scholar] [CrossRef] [PubMed]
- Abdul-Abbas, S.J.; Al-Badran, A.E.; Al-bayyar, A.H.A.; Al-Sherifi, H.R. Isolation and identification of Alocalstrain of probiotic bacterial Actobacillus plantarum and studied the tolerance ability for different levels of pH. Basrah J. Vet. Res. 2016, 15, 329–345. [Google Scholar] [CrossRef]
- Gorzelak, M.A.; Gill, S.K.; Tasnim, N.; Ahmadi-Vand, Z.; Jay, M.; Gibson, D.L. Methods for improving human gut microbiome data by reducing variability through sample processing and storage of stool. PLoS ONE 2015, 10, e0134802. [Google Scholar] [CrossRef]
- Deng, Q.; Odhiambo, J.F.; Farooq, U.; Lam, T.; Dunn, S.M.; Ametaj, B.N. Intravaginal lactic Acid bacteria modulated local and systemic immune responses and lowered the incidence of uterine infections in periparturient dairy cows. PLoS ONE 2014, 10, e0124167. [Google Scholar] [CrossRef]
- Pellegrino, M.; Berardo, N.; Giraudo, J.; Nader-Macías, M.; Bogni, C. Bovine mastitis prevention: Humoral and cellular response of dairy cows inoculated with lactic acid bacteria at the dry-off period. Benef. Microbes 2017, 8, 589–596. [Google Scholar] [CrossRef] [PubMed]
- Madureira, A.M.L.; Burnett, T.A.; Boyd, C.T.; Baylao, M.; Cerri, R.L.A. Use of intravaginal lactic acid bacteria prepartum as an approach for preventing uterine disease and its association with fertility of lactating dairy cows. J. Dairy Sci. 2023, 106, 4860–4873. [Google Scholar] [CrossRef] [PubMed]
- Abbas, A.K.; Lichtman, A.H.; Pillai, S. Cellular and Molecular Immunology; Elsevier: Rio de Janeiro, Brazil, 2007. [Google Scholar]
- Adnane, M.; Whiston, R.; Tasara, T.; Bleul, U.; Chapwanya, A. Harnessing Vaginal Probiotics for Enhanced Management of Uterine Disease and Reproductive Performance in Dairy Cows: A Conceptual Review. Animals 2024, 14, 1073. [Google Scholar] [CrossRef]
- Oliver, S.P.; Murinda, S.E. Antimicrobial resistance of mastitis pathogens. Vet. Clin. N. Am. Food Anim. Pract. 2012, 28, 165–185. [Google Scholar] [CrossRef]
- Mathys, S.; von Ah, U.; Lacroix, C.; Staub, E.; Mini, R.; Cereghetti, T.; Meile, L. Detection of the pediocin gene pedA in strains from human faeces by real-time PCR and characterization of Pediococcus acidilactici UVA1. BMC Biotechnol. 2007, 7, 55. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Ametaj, B.N.; Ambrose, D.J.; Ganzle, M.G. Characterisation of the bacterial microbiota of the vagina of dairy cows and isolation of pediocin-producing Pediococcus acidilactici. BMC Microbiol. 2013, 13, 19. [Google Scholar] [CrossRef]
- Peter, S.; Gartner, M.A.; Michel, G.; Ibrahim, M.; Klopfleisch, R.; Lubke-Becker, A.; Jung, M.; Einspanier, R.; Gabler, C. Influence of intrauterine administration of Lactobacillus buchneri on reproductive performance and pro-inflammatory endometrial mRNA expression of cows with subclinical endometritis. Sci. Rep. 2018, 8, 5473. [Google Scholar] [CrossRef]
- Hossain, M.E.; Kim, G.M.; Lee, S.K.; Yang, C.J. Growth performance, meat yield, oxidative stability, and Fatty Acid composition of meat from broilers fed diets supplemented with a medicinal plant and probiotics. Asian-Australas. J. Anim. Sci. 2012, 25, 1159–1168. [Google Scholar] [CrossRef]
- Niu, C.; Cheng, C.; Liu, Y.; Huang, S.; Fu, Y.; Li, P. Transcriptome Profiling Analysis of Bovine Vaginal Epithelial Cell Response to an Isolated Lactobacillus Strain. mSystems 2019, 4, e00268-19. [Google Scholar] [CrossRef]
- Vieco-Saiz, N.; Belguesmia, Y.; Raspoet, R.; Auclair, E.; Gancel, F.; Kempf, I.; Drider, D. Benefits and inputs from lactic acid bacteria and their bacteriocins as alternatives to antibiotic growth promoters during food-animal production. Front. Microbiol. 2019, 10, 57. [Google Scholar] [CrossRef]
- Genis, S.; Bach, A.; Fabregas, F.; Aris, A. Potential of lactic acid bacteria at regulating Escherichia coli infection and inflammation of bovine endometrium. Theriogenology 2016, 85, 625–637. [Google Scholar] [CrossRef] [PubMed]
- Atshan, S.S.; Shamsudin, M.N.; Lung, L.T.; Sekawi, Z.; Ghaznavi-Rad, E.; Pei, C.P. Comparative characterisation of genotypically different clones of MRSA in the production of biofilms. J. Biomed. Biotechnol. 2012, 2012, 417247. [Google Scholar] [CrossRef] [PubMed]
- Webb, E.M.; Holman, D.B.; Schmidt, K.N.; Pun, B.; Sedivec, K.K.; Hurlbert, J.L.; Bochantin, K.A.; Ward, A.K.; Dahlen, C.R.; Amat, S. Sequencing and culture-based characterization of the vaginal and uterine microbiota in beef cattle that became pregnant or remained open following artificial insemination. Microbiol. Spectr. 2023, 11, e0273223. [Google Scholar] [CrossRef] [PubMed]
- Kero, K.; Hieta, N.; Kallonen, T.; Ahtikoski, A.; Laine, H.K.; Rautava, J.; Munukka, E. Optimal sampling and analysis methods for clinical diagnostics of vaginal microbiome. Eur. J. Clin. Microbiol. Infect. Dis. 2023, 42, 201–208. [Google Scholar] [CrossRef]
- Lyu, R.; Qu, Y.; Divaris, K.; Wu, D. Methodological Considerations in Longitudinal Analyses of Microbiome Data: A Comprehensive Review. Genes 2024, 15, 51. [Google Scholar] [CrossRef]
- de Medeiros Garcia Torres, M.; Lanza, D.C.F. A Standard Pipeline for Analyzing the Endometrial Microbiome. Reprod. Sci. 2024, 31, 2163–2173. [Google Scholar] [CrossRef]
- Koedooder, R.; Mackens, S.; Budding, A.; Fares, D.; Blockeel, C.; Laven, J.; Schoenmakers, S. Identification and evaluation of the microbiome in the female and male reproductive tracts. Hum. Reprod. Update 2019, 25, 298–325. [Google Scholar] [CrossRef]
- Wagener, K.; Grunert, T.; Prunner, I.; Ehling-Schulz, M.; Drillich, M. Dynamics of uterine infections with Escherichia coli, Streptococcus uberis and Trueperella pyogenes in post-partum dairy cows and their association with clinical endometritis. Vet. J. 2014, 202, 527–532. [Google Scholar] [CrossRef]
- Osawa, T. Predisposing factors, diagnostic and therapeutic aspects of persistent endometritis in postpartum cows. J. Reprod. Dev. 2021, 67, 291–299. [Google Scholar] [CrossRef]
- Howe, S.; Liu, Z.; Zuo, B.; Zhao, J. Culturomics: A critical approach in studying the roles of human and animal microbiota. Anim. Nutr. 2024, 1, e6. [Google Scholar] [CrossRef]
- Kleiner, M.; Thorson, E.; Sharp, C.E.; Dong, X.; Liu, D.; Li, C.; Strous, M. Assessing species biomass contributions in microbial communities via metaproteomics. Nat. Commun. 2017, 8, 1558. [Google Scholar] [CrossRef] [PubMed]
- Machado, V.S.; Oikonomou, G.; Bicalho, M.L.; Knauer, W.A.; Gilbert, R.; Bicalho, R.C. Investigation of postpartum dairy cows’ uterine microbial diversity using metagenomic pyrosequencing of the 16S rRNA gene. Vet. Microbiol. 2012, 159, 460–469. [Google Scholar] [CrossRef] [PubMed]
- Winther, A.R.; Narvhus, J.A.; Smistad, M.; da Silva Duarte, V.; Bombelli, A.; Porcellato, D. Longitudinal dynamics of the bovine udder microbiota. Anim. Microbiome 2022, 4, 26. [Google Scholar] [CrossRef] [PubMed]
- Myer, P.R. Bovine Genome-Microbiome Interactions: Metagenomic Frontier for the Selection of Efficient Productivity in Cattle Systems. mSystems 2019, 4, e00103-19. [Google Scholar] [CrossRef]
- Xue, M.Y.; Xie, Y.Y.; Zhong, Y.; Ma, X.J.; Sun, H.Z.; Liu, J.X. Integrated meta-omics reveals new ruminal microbial features associated with feed efficiency in dairy cattle. Microbiome 2022, 10, 32. [Google Scholar] [CrossRef]
- Li, F.; Hitch, T.C.A.; Chen, Y.; Creevey, C.J.; Guan, L.L. Comparative metagenomic and metatranscriptomic analyses reveal the breed effect on the rumen microbiome and its associations with feed efficiency in beef cattle. Microbiome 2019, 7, 6. [Google Scholar] [CrossRef]
- Hess, M.; Sczyrba, A.; Egan, R.; Kim, T.W.; Chokhawala, H.; Schroth, G.; Luo, S.; Clark, D.S.; Chen, F.; Zhang, T.; et al. Metagenomic discovery of biomass-degrading genes and genomes from cow rumen. Science 2011, 331, 463–467. [Google Scholar] [CrossRef]
- Yu, K.; Zhang, T. Metagenomic and metatranscriptomic analysis of microbial community structure and gene expression of activated sludge. PLoS ONE 2012, 7, e38183. [Google Scholar] [CrossRef]
- Pitta, D.W.; Kumar, S.; Vecchiarelli, B.; Shirley, D.J.; Bittinger, K.; Baker, L.D.; Ferguson, J.D.; Thomsen, N. Temporal dynamics in the ruminal microbiome of dairy cows during the transition period. J. Anim. Sci. 2014, 92, 4014–4022. [Google Scholar] [CrossRef]
- Andersen, T.O.; Kunath, B.J.; Hagen, L.H.; Arntzen, M.O.; Pope, P.B. Rumen metaproteomics: Closer to linking rumen microbial function to animal productivity traits. Methods 2021, 186, 42–51. [Google Scholar] [CrossRef]
- Van Den Bossche, T.; Arntzen, M.O.; Becher, D.; Benndorf, D.; Eijsink, V.G.H.; Henry, C.; Jagtap, P.D.; Jehmlich, N.; Juste, C.; Kunath, B.J.; et al. The Metaproteomics Initiative: A coordinated approach for propelling the functional characterization of microbiomes. Microbiome 2021, 9, 243. [Google Scholar] [CrossRef] [PubMed]
- Maron, P.A.; Ranjard, L.; Mougel, C.; Lemanceau, P. Metaproteomics: A new approach for studying functional microbial ecology. Microb. Ecol. 2007, 53, 486–493. [Google Scholar] [CrossRef] [PubMed]
- Salvato, F.; Hettich, R.L.; Kleiner, M. Five key aspects of metaproteomics as a tool to understand functional interactions in host-associated microbiomes. PLoS Pathog. 2021, 17, e1009245. [Google Scholar] [CrossRef] [PubMed]
- Saleem, F.; Ametaj, B.N.; Bouatra, S.; Mandal, R.; Zebeli, Q.; Dunn, S.M.; Wishart, D.S. A metabolomics approach to uncover the effects of grain diets on rumen health in dairy cows. J. Dairy Sci. 2012, 95, 6606–6623. [Google Scholar] [CrossRef] [PubMed]
- Marrella, M.A.; Biase, F.H. A multi-omics analysis identifies molecular features associated with fertility in heifers (Bos taurus). Sci. Rep. 2023, 13, 12664. [Google Scholar] [CrossRef] [PubMed]
- Kamada, N.; Chen, G.Y.; Inohara, N.; Nunez, G. Control of pathogens and pathobionts by the gut microbiota. Nat. Immunol. 2013, 14, 685–690. [Google Scholar] [CrossRef]
- Ma, Z.; Lee, S.; Jeong, K.C. Mitigating antibiotic resistance at the livestock-environment interface: A review. J. Microbiol. Biotechnol. 2019, 29, 1683–1692. [Google Scholar] [CrossRef]
- Hommerich, K.; Ruddat, I.; Hartmann, M.; Werner, N.; Kasbohrer, A.; Kreienbrock, L. Monitoring Antibiotic Usage in German Dairy and Beef Cattle Farms-A Longitudinal Analysis. Front. Vet. Sci. 2019, 6, 244. [Google Scholar] [CrossRef]
- Sommer, F.; Backhed, F. The gut microbiota–masters of host development and physiology. Nat. Rev. Microbiol. 2013, 11, 227–238. [Google Scholar] [CrossRef]
- Mowat, A.M.; Agace, W.W. Regional specialization within the intestinal immune system. Nat. Rev. Immunol. 2014, 14, 667–685. [Google Scholar] [CrossRef]
- Zangirolamo, A.F.; Souza, A.K.; Yokomizo, D.N.; Miguel, A.K.A.; Costa, M.C.D.; Alfieri, A.A.; Seneda, M.M. Updates and Current Challenges in Reproductive Microbiome: A Comparative Analysis between Cows and Women. Animals 2024, 14, 1971. [Google Scholar] [CrossRef] [PubMed]
- Rani, K.; Kaur, G.; Ali, S.A. Probiotic-prebiotic therapeutic potential: A new horizon of microbial biotherapy to reduce female reproductive complications. PharmaNutrition 2023, 24, 100342. [Google Scholar] [CrossRef]
- Reinoso-Pelaez, E.L.; Saura, M.; Gonzalez-Recio, O.; Gonzalez, C.; Fernandez, A.; Peiro-Pastor, R.; Lopez-Garcia, A.; Saborio-Montero, A.; Calvo, J.H.; Ramon, M.; et al. Impact of oestrus synchronization devices on ewes vaginal microbiota and artificial insemination outcome. Front. Microbiol. 2023, 14, 1063807. [Google Scholar] [CrossRef] [PubMed]
Microbial Function | Mechanism | Example Bacteria | Impact on Reproduction |
---|---|---|---|
Communication and signaling | Odor-based signals Production of volatile fatty acids | Staphylococcus | Creates sex-specific odors for communication |
Pathogen aggregation | Binding pathogens | Lactobacillus rhamnosus GG | Prevents pathogen adherence, inhibits Escherichia coli |
Immune modulation | Regulation of immune function | Lactobacilli, Bifidobacteria | Modulates immune response, enhances defense |
Antimicrobial compounds | Production of qhort-chain fatty acids, hydrogen peroxide, bacteriocins | Various Lactobacilli | Inhibits pathogens growth, reduces inflammation |
Inflammation regulation | Cytokine production interference | Lactobacillus | Reduces proinflammatory cytokines induced by Escherichia coli |
Mechanism | Example Bacteria | Impact on Reproduction |
---|---|---|
Normal sperm functions and fertilization | - | Microbiome in the genital tract influences sperm function and fertilization capabilities. |
Inflammatory response | Escherichia coli | Immune response to sperm and pathogens, involving TLRs in endometrial glands; Escherichia coli LPS leads to pseudopregnancy, luteal cysts, and anestrus. |
Pathogen proliferation | Trueperella pyogenes, Bovine gammaherpesvirus 4 (BoHV-4) | Disruption of reproductive hormone secretion and folliculogenesis; pathogens impair fertility by damaging endometrial epithelial cells. |
Oxidative stress protection | Lactobacillus | Enhances oocyte competency and fertilization; Lactobacillus produces phenolics, protects oocytes from oxidative stress, and suppresses eicosanoid production. |
Pregnancy and microbiome diversity | Firmicutes, Bacteroidetes | Low diversity and abundance of microbiomes during pregnancy reduce dysbiosis and abortion risk; beneficial presence of Lactobacillus for successful pregnancy. |
Disorder | Causal Bacteria | Mechanism | Impact on Reproduction |
---|---|---|---|
Retained fetal membranes (RFM) | Escherichia coli, Staphylococcus aureus | Persistence of placental tissue creates a favorable environment for pathogen growth. | Leads to subfertility and increases the risk of uterine diseases like metritis and endometritis. |
Metritis | Fusobacterium, Bacteroides, Escherichia coli | Deep inflammation of endometrium and myometrium; dominated by pathogenic bacteria. | Less diverse microbiome, symptoms linked to virulence factors, and symbiotic relationship between Escherichia coli, Trueperella pyogenes, and Fusobacterium necrophorum facilitates colonization and immune evasion. |
Endometritis | Bacteroides, Fusobacterium, Trueperella | Superficial inflammation of the endometrium; lower microbial diversity. | Reduced abundance of beneficial bacteria like Lactobacillus; interactions between pathogens and Damage-associated molecular patterns (DAMP) lead to inflammatory responses; higher levels of Anaerococcus, Corynebacterium, and Staphylococcus increase risk. |
Probiotic Strain | Adherence Level | Biofilm Formation Ability | References |
---|---|---|---|
Lactobacillus. sakei, Lactobacillus reuteri | Low adherence | Low | [168] |
Pediococcus acidilactici | Moderate to strong | High | [169] |
Lactobacillus rhamnosus | [168] |
Technique | Description | Application in Reproductive Microbiome Studies | Advantages | Limitations |
---|---|---|---|---|
High-Throughput Sequencing (HTS) | Sequencing of 16S rRNA genes to identify microbial communities. | Characterizes microbial diversity, richness, and shifts during reproductive stages. | Provides comprehensive microbial diversity analysis. | Limited functional information; identifies only DNA. |
Shotgun Metagenomics | Sequencing entire genomes to study functional capabilities of microbial communities. | Investigates functional genes in reproductive tract microbes, such as metabolic potential. | Provides detailed gene-level insights. | Expensive and requires complex bioinformatics analysis. |
Transcriptomics | Sequencing RNA to analyze active genes in microbial populations. | Identifies actively expressed genes within reproductive microbial communities. | Offers insights into microbial activity and response. | RNA is less stable and difficult to preserve. |
Proteomics | Identification and quantification of microbial proteins. | Analyzes proteins produced by microbiome that impact reproductive health. | Provides functional understanding of microbial roles. | Requires sophisticated equipment and expertise. |
Metabolomics | Analysis of small molecules and metabolites produced by microbes. | Studies metabolites influencing host–microbe interactions in the reproductive tract. | Identifies metabolites relevant to fertility and health. | Challenging to interpret in the context of host–microbe interactions. |
Culture-Dependent Techniques | Isolation and cultivation of microorganisms from samples using growth media. | Studies viable and culturable bacteria in the reproductive tract, like E. coli and Fusobacterium. | Allows for testing microbial physiology and virulence. | Limited to culturable species; many microbes are unculturable. |
MALDI-TOF MS | Mass spectrometry technique for rapid bacterial identification. | Identifies bacterial species from cultured samples. | Quick and precise identification of cultured bacteria. | Limited to organisms that can be cultured. |
Custom Culture Media | Specialized media designed to mimic the reproductive tract environment. | Enhances the cultivation of fastidious and anaerobic microbes present in reproductive samples. | Allows for cultivation of previously unculturable microbes. | Still limited to microbes that can grow in artificial media. |
Bioinformatics Pipelines (QIIME 2, DADA2, Mothur) | Software tools for analyzing sequencing data. | Analyzes sequencing data to determine microbial diversity, taxonomy, and functional pathways. | Automates large-scale data processing. | Requires bioinformatics expertise. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adnane, M.; Chapwanya, A. Microbial Gatekeepers of Fertility in the Female Reproductive Microbiome of Cattle. Int. J. Mol. Sci. 2024, 25, 10923. https://doi.org/10.3390/ijms252010923
Adnane M, Chapwanya A. Microbial Gatekeepers of Fertility in the Female Reproductive Microbiome of Cattle. International Journal of Molecular Sciences. 2024; 25(20):10923. https://doi.org/10.3390/ijms252010923
Chicago/Turabian StyleAdnane, Mounir, and Aspinas Chapwanya. 2024. "Microbial Gatekeepers of Fertility in the Female Reproductive Microbiome of Cattle" International Journal of Molecular Sciences 25, no. 20: 10923. https://doi.org/10.3390/ijms252010923
APA StyleAdnane, M., & Chapwanya, A. (2024). Microbial Gatekeepers of Fertility in the Female Reproductive Microbiome of Cattle. International Journal of Molecular Sciences, 25(20), 10923. https://doi.org/10.3390/ijms252010923