Assessment of the Antioxidant and Photoprotective Properties of Cornus mas L. Extracts on HDF, HaCaT and A375 Cells Exposed to UVA Radiation
Abstract
:1. Introduction
2. Results and Discussion
2.1. Quantitative Determination of Components Found in the Extracts from Fruit of C. mas L.
2.2. Determination of Antioxidant Properties
2.2.1. Assessment of Antioxidant Capacity Using ABTS and DPPH Radicals and the FRAP Assay
2.2.2. Determination of Intracellular Levels of Reactive Oxygen Species (ROS)
2.3. Cytotoxicity Analysis and Cell Morphology Assessment
2.4. Assessment of Melanin Formation and Tyrosinase Activity Inhibition
3. Methods and Materials
3.1. Reagents
3.2. Plant Material and Extraction Procedure
3.3. Determination of Biologically Active Compounds
3.4. Determination of Antioxidant Properties
3.4.1. ABTS Scavenging Assay
3.4.2. DPPH (1,1-Diphenyl-2-picrylhydrazyl) Radical Scavenging Assay
3.4.3. Determination of Ferric Reducing Antioxidant Power (FRAP Assay)
3.4.4. Determination of Intracellular Levels of Reactive Oxygen Species (ROS)
3.5. Cytotoxicity Analysis
3.5.1. Cell Culture
3.5.2. Alamar Blue Assay
3.5.3. Neutral Red Uptake Assay
3.5.4. Cell Morphology Assessment
3.6. Evaluation of Inhibition of Melanin Formation
3.7. Evaluation of Cellular Tyrosinase Activity in Melanoma Cells
3.8. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- El Ghissassi, F.; Baan, R.; Straif, K.; Grosse, Y.; Secretan, B.; Bouvard, V.; Benbrahim-Tallaa, L.; Guha, N.; Freeman, C.; Galichet, L.; et al. A Review of Human Carcinogens—Part D: Radiation. Lancet Oncol. 2009, 10, 751–752. [Google Scholar] [CrossRef] [PubMed]
- Gromkowska-Kępka, K.J.; Puścion-Jakubik, A.; Markiewicz-Żukowska, R.; Socha, K. The Impact of Ultraviolet Radiation on Skin Photoaging—Review of in Vitro Studies. J. Cosmet. Dermatol. 2021, 20, 3427–3431. [Google Scholar] [CrossRef] [PubMed]
- Jin, S.-G.; Padron, F.; Pfeifer, G.P. UVA Radiation, DNA Damage, and Melanoma. ACS Omega 2022, 7, 32936. [Google Scholar] [CrossRef] [PubMed]
- Rinnerthaler, M.; Bischof, J.; Streubel, M.K.; Trost, A.; Richter, K. Oxidative Stress in Aging Human Skin. Biomolecules 2015, 5, 545. [Google Scholar] [CrossRef] [PubMed]
- Dong, K.K.; Damaghi, N.; Picart, S.D.; Markova, N.G.; Obayashi, K.; Okano, Y.; Masaki, H.; Grether-Beck, S.; Krutmann, J.; Smiles, K.A.; et al. UV-induced DNA Damage Initiates Release of MMP-1 in Human Skin. Exp. Dermatol. 2008, 17, 1037–1044. [Google Scholar] [CrossRef]
- Zheng, Y.; Lai, W.; Wan, M.; Maibach, H. Expression of Cathepsins in Human Skin Photoaging. Ski. Pharmacol. Physiol. 2011, 24, 10–21. [Google Scholar] [CrossRef]
- Zheng, Y.; Chen, H.; Lai, W.; Xu, Q.; Liu, C.; Wu, L.; Maibach, H.I. Cathepsin D Repairing Role in Photodamaged Skin Barrier. Ski. Pharmacol. Physiol. 2015, 28, 97–102. [Google Scholar] [CrossRef]
- Abdel-Malek, Z.; Swope, V.; Smalara, D.; Babcock, G.; Dawes, S.; Nordlund, J. Analysis of the UV-Induced Melanogenesis and Growth Arrest of Human Melanocytes. Pigment. Cell Res. 1994, 7, 326–332. [Google Scholar] [CrossRef]
- Schuch, A.P.; Moreno, N.C.; Schuch, N.J.; Menck, C.F.M.; Garcia, C.C.M. Sunlight Damage to Cellular DNA: Focus on Oxidatively Generated Lesions. Free. Radic. Biol. Med. 2017, 107, 110–124. [Google Scholar] [CrossRef]
- Young, A.R. Chromophores in Human Skin. Phys. Med. Biol. 1997, 42, 789–802. [Google Scholar] [CrossRef]
- Baier, J.; Maisch, T.; Maier, M.; Engel, E.; Landthaler, M.; Bäumler, W. Singlet Oxygen Generation by UVA Light Exposure of Endogenous Photosensitizers. Biophys. J. 2006, 91, 1452–1459. [Google Scholar] [CrossRef] [PubMed]
- Battie, C.; Jitsukawa, S.; Bernerd, F.; Del Bino, S.; Marionnet, C.; Verschoore, M. New Insights in Photoaging, UVA Induced Damage and Skin Types. Exp. Dermatol. 2014, 23 (Suppl. S1), 7–12. [Google Scholar] [CrossRef] [PubMed]
- Cavinato, M.; Jansen-Dürr, P. Molecular Mechanisms of UVB-Induced Senescence of Dermal Fibroblasts and Its Relevance for Photoaging of the Human Skin. Exp. Gerontol. 2017, 94, 78–82. [Google Scholar] [CrossRef]
- Gilhar, A.; Ullmann, Y.; Karry, R.; Shalaginov, R.; Assy, B.; Serafimovich, S.; Kalish, R.S. Aging of Human Epidermis: Reversal of Aging Changes Correlates with Reversal of Keratinocyte Fas Expression and Apoptosis. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2004, 59, 411–415. [Google Scholar] [CrossRef] [PubMed]
- Valerio, H.P.; Ravagnani, F.G.; Ronsein, G.E.; Di Mascio, P. A Single Dose of Ultraviolet-A Induces Proteome Remodeling and Senescence in Primary Human Keratinocytes. Sci. Rep. 2021, 11, 23355. [Google Scholar] [CrossRef]
- Chanchal, D.; Swarnlata, S. Herbal Photoprotective Formulations and their Evaluation. Open Nat. Prod. J. 2009, 2, 71–76. [Google Scholar] [CrossRef]
- Napagoda, M.T.; Malkanthi, B.M.A.S.; Abayawardana, S.A.K.; Qader, M.M.; Jayasinghe, L. Photoprotective Potential in Some Medicinal Plants Used to Treat Skin Diseases in Sri Lanka. BMC Complement. Altern. Med. 2016, 16, 479. [Google Scholar] [CrossRef]
- Petruk, G.; Del Giudice, R.; Rigano, M.M.; Monti, D.M. Antioxidants from Plants Protect against Skin Photoaging. Oxidative Med. Cell. Longev. 2018, 2018, 1454936. [Google Scholar] [CrossRef]
- Baliga, M.S.; Katiyar, S.K. Chemoprevention of Photocarcinogenesis by Selected Dietary Botanicals. Photochem. Photobiol. Sci. 2006, 5, 243–253. [Google Scholar] [CrossRef]
- Korać, R.R.; Khambholja, K.M. Potential of Herbs in Skin Protection from Ultraviolet Radiation. Pharmacogn. Rev. 2011, 5, 164–173. [Google Scholar] [CrossRef]
- Li, L.; Chong, L.; Huang, T.; Ma, Y.; Li, Y.; Ding, H. Natural Products and Extracts from Plants as Natural UV Filters for sunscreens: A Review. Anim. Model. Exp. Med. 2023, 6, 183–195. [Google Scholar] [CrossRef] [PubMed]
- Nascimento, L.B.d.S.; Gori, A.; Raffaelli, A.; Ferrini, F.; Brunetti, C. Phenolic Compounds from Leaves and Flowers of Hibiscus roseus: Potential Skin Cosmetic Applications of an Under-Investigated Species. Plants 2021, 10, 522. [Google Scholar] [CrossRef] [PubMed]
- Dzydzan, O.; Brodyak, I.; Strugała-Danak, P.; Strach, A.; Kucharska, A.Z.; Gabrielska, J.; Sybirna, N. Biological Activity of Extracts of Red and Yellow Fruits of Cornus mas L.—An In Vitro Evaluation of Antioxidant Activity, Inhibitory Activity against α-Glucosidase, Acetylcholinesterase, and Binding Capacity to Human Serum Albumin. Molecules 2022, 27, 2244. [Google Scholar] [CrossRef] [PubMed]
- Zagórska-Dziok, M.; Ziemlewska, A.; Mokrzyńska, A.; Nizioł-Łukaszewska, Z.; Wójciak, M.; Sowa, I. Evaluation of the bio-logical Activity of Hydrogel with Cornus mas L. Extract and Its Potential Use in Dermatology and Cosmetology. Molecules 2023, 28, 7384. [Google Scholar] [CrossRef]
- Aurori, M.; Niculae, M.; Hanganu, D.; Pall, E.; Cenariu, M.; Vodnar, D.C.; Bunea, A.; Fiţ, N.; Andrei, S. Phytochemical Profile, Antioxidant, Antimicrobial and Cytoprotective Effects of Cornelian Cherry (Cornus mas L.) Fruit Extracts. Pharmaceuticals 2023, 16, 420. [Google Scholar] [CrossRef]
- Zagórska-Dziok, M.; Nowak, A.; Muzykiewicz-Szymańska, A.; Ziemlewska, A.; Nizioł-Łukaszewska, Z.; Mokrzyńska, A.; Wójciak, M.; Sowa, I. Investigating the Anti-Inflammatory Properties and Skin Penetration Ability of Cornelian Cherry (Cornus mas L.) Extracts. Int. J. Mol. Sci. 2024, 25, 4763. [Google Scholar] [CrossRef]
- Wójciak, M.; Zagórska-Dziok, M.; Nizioł-Łukaszewska, Z.; Ziemlewska, A.; Furman-Toczek, D.; Szczepanek, D.; Sowa, I. In Vitro Evaluation of Anti-Inflammatory and Protective Potential of an Extract from Cornus mas L. Fruit against H2O2-Induced Oxidative Stress in Human Skin Keratinocytes and Fibroblasts. Int. J. Mol. Sci. 2022, 23, 13755. [Google Scholar] [CrossRef]
- Moldovan, B.; Filip, A.; Clichici, S.; Suharoschi, R.; Bolfa, P.; David, L. Antioxidant Activity of Cornelian cherry (Cornus mas L.) Fruits Extract and the In Vivo Evaluation of Its Anti-Inflammatory Effects. J. Funct. Foods 2016, 26, 77–87. [Google Scholar] [CrossRef]
- Machała, P.; Liudvytska, O.; Kicel, A.; Dziedzic, A.; Olszewska, M.A.; Żbikowska, H.M. Valorization of the Photo-Protective Potential of the Phytochemically Standardized Olive (Olea europaea L.) Leaf Extract in UVA-Irradiated Human Skin Fibroblasts. Molecules 2022, 27, 5144. [Google Scholar] [CrossRef]
- Hu, S.; Zhang, X.; Chen, F.; Wang, M. Dietary Polyphenols as Photoprotective Agents against UV Radiation. J. Funct. Foods 2017, 30, 108–118. [Google Scholar] [CrossRef]
- Solano, F. Photoprotection and Skin Pigmentation: Melanin-Related Molecules and Some Other New Agents Obtained from Natural Sources. Molecules 2020, 25, 1537. [Google Scholar] [CrossRef] [PubMed]
- Pizano-Andrade, J.C.; Vargas-Guerrero, B.; Gurrola-Díaz, C.M.; Vargas-Radillo, J.J.; A Ruiz-López, M. Natural Products and Their Mechanisms in Potential Photoprotection of the Skin. J. Biosci. 2022, 47, 77. [Google Scholar] [CrossRef]
- Efenberger-Szmechtyk, M.; Nowak, A.; Czyżowska, A.; Kucharska, A.Z.; Fecka, I. Composition and Antibacterial Activity of Aronia melanocarpa (Michx.) Elliot, Cornus mas L. and Chaenomeles superba Lindl. Leaf Extracts. Molecules 2020, 25, 2011. [Google Scholar] [CrossRef] [PubMed]
- Kucharska, A.Z.; Szumny, A.; Sokół-Łętowska, A.; Piórecki, N.; Klymenko, S.V. Iridoids and Anthocyanins in Cornelian Cherry (Cornus mas L.) Cultivars. J. Food Compos. Anal. 2015, 40, 95–102. [Google Scholar] [CrossRef]
- Pasrija, D.; Anandharamakrishnan, C. Techniques for Extraction of Green Tea Polyphenols: A Review. Food Bioprocess Technol. 2015, 8, 935–950. [Google Scholar] [CrossRef]
- Ajila, C.; Brar, S.; Verma, M.; Tyagi, R.; Godbout, S.; Valéro, J. Extraction and Analysis of Polyphenols: Recent trends. Crit. Rev. Biotechnol. 2011, 31, 227–249. [Google Scholar] [CrossRef]
- Brglez Mojzer, E.; Knez Hrnčič, M.; Škerget, M.; Knez, Ž.; Bren, U. Polyphenols: Extraction Methods, Antioxidative Action, Bioavailability and Anticarcinogenic Effects. Molecules 2016, 21, 901. [Google Scholar] [CrossRef]
- Palaiogiannis, D.; Chatzimitakos, T.; Athanasiadis, V.; Bozinou, E.; Makris, D.P.; Lalas, S.I. Successive Solvent Extraction of Polyphenols and Flavonoids from Cistus creticus L. Leaves. Oxygen 2023, 3, 274–286. [Google Scholar] [CrossRef]
- Klymenko, S.; Kucharska, A.Z.; Sokół-Łętowska, A.; Piórecki, N.; Przybylska, D.; Grygorieva, O. Iridoids, Flavonoids, and Antioxidant Capacity of Cornus mas, C. officinalis, and C. mas × C. officinalis Fruits. Biomolecules 2021, 11, 776. [Google Scholar] [CrossRef]
- Sun, Y.; Yang, C.; Tsao, R. Nomenclature and General Classification of Antioxidant Activity/Capacity Assays. Meas. Antioxid. Act. Capacit. Recent Trends Appl. 2017, 1–19. [Google Scholar] [CrossRef]
- Lee, J.H.; Park, J.; Shin, D.W. The Molecular Mechanism of Polyphenols with Anti-Aging Activity in Aged Human Dermal Fibroblasts. Molecules 2022, 27, 4351. [Google Scholar] [CrossRef] [PubMed]
- Pham-Huy, L.A.; He, H.; Pham-Huyc, C. Free Radicals, Antioxidants in Disease and Health. Int. J. Biomed. Sci. 2008, 4, 89–96. [Google Scholar] [CrossRef] [PubMed]
- Kancheva, V.D.; Kasaikina, O.T. Bio-Antioxidants—A Chemical Base of Their Antioxidant Activity and Beneficial Effect on Human Health. Curr. Med. Chem. 2013, 20, 4784–4805. [Google Scholar] [CrossRef] [PubMed]
- Lu, Z.; Nie, G.; Belton, P.S.; Tang, H.; Zhao, B. Structure–Activity Relationship Analysis of Antioxidant Ability and Neuroprotective Effect of Gallic Acid Derivatives. Neurochem. Int. 2006, 48, 263–274. [Google Scholar] [CrossRef] [PubMed]
- Abirami, A.; Sinsinwar, S.; Rajalakshmi, P.; Brindha, P.; Rajesh, Y.B.R.D.; Vadivel, V. Antioxidant and Cytoprotective Properties of Loganic Acid Isolated from Seeds of Strychnos potatorum L. against Heavy Metal Induced Toxicity in PBMC Model. Drug Chem. Toxicol. 2022, 45, 239–249. [Google Scholar] [CrossRef]
- Dzydzan, O.; Brodyak, I.; Sokół-Łętowska, A.; Kucharska, A.Z.; Sybirna, N. Loganic Acid, an Iridoid Glycoside Extracted from Cornus mas L. Fruits, Reduces of Carbonyl/Oxidative Stress Biomarkers in Plasma and Restores Antioxidant Balance in Leukocytes of Rats with Streptozotocin-Induced Diabetes Mellitus. Life 2020, 10, 349. [Google Scholar] [CrossRef]
- Shi, J.-Z.; Zheng, X.-M.; Zhou, Y.-F.; Yun, L.-Y.; Luo, D.-M.; Hao, J.-J.; Liu, P.-F.; Zhang, W.-K.; Xu, J.-K.; Yan, Y.; et al. Cornuside Is a Potential Agent against Alzheimer’s Disease via Orchestration of Reactive Astrocytes. Nutrients 2022, 14, 3179. [Google Scholar] [CrossRef]
- Eren, B.; Fen, Ü.; Dergisi, B.; Ercan, L.; Doğru, M. ntioxidant and Antimicrobial Capacity of Quinic Acid. Bitlis Eren. Üniversitesi Fen. Bilim. Derg. 2022, 11, 1018–1025. [Google Scholar] [CrossRef]
- Cho, J.; Jung, H.; Kang, D.Y.; Sp, N.; Shin, W.; Lee, J.; Park, B.G.; A Kang, Y.; Jang, K.-J.; Bae, S.W. The Skin-Whitening and Antioxidant Effects of Protocatechuic Acid (PCA) Derivatives in Melanoma and Fibroblast Cell Lines. Curr. Issues Mol. Biol. 2023, 45, 2157–2169. [Google Scholar] [CrossRef]
- Newair, E.F.; Mohamed, I.M.; Garcia, F.; Al-Anazi, A. Caftaric Acid Oxidation in the Presence of Cell Signaling Regulator Glutathione: Electrochemical and Chromatographic Analyses. Microchem. J. 2023, 193, 109045. [Google Scholar] [CrossRef]
- Wang, L.; Pan, X.; Jiang, L.; Chu, Y.; Gao, S.; Jiang, X.; Zhang, Y.; Chen, Y.; Luo, S.; Peng, C. The Biological Activity Mechanism of Chlorogenic Acid and Its Applications in Food Industry: A Review. Front. Nutr. 2022, 9, 943911. [Google Scholar] [CrossRef] [PubMed]
- Lidiková, J.; Čeryová, N.; Grygorieva, O.; Bobková, A.; Bobko, M.; Árvay, J.; Šnirc, M.; Brindza, J.; Ňorbová, M.; Harangozo, Ň.; et al. Cornelian cherry (Cornus mas L.) as a Promising Source of Antioxidant Phenolic Substances and Minerals. Eur. Food Res. Technol. 2024, 250, 1745–1754. [Google Scholar] [CrossRef]
- Zeb, A. Concept, Mechanism, and Applications of Phenolic Antioxidants in Foods. J. Food Biochem. 2020, 44, e13394. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Tsao, R. Dietary Polyphenols, Oxidative Stress and Antioxidant and Anti-Inflammatory Effects. Curr. Opin. Food Sci. 2016, 8, 33–42. [Google Scholar] [CrossRef]
- Lee, C.Y.; Sharma, A.; Semenya, J.; Anamoah, C.; Chapman, K.N.; Barone, V. Computational Study of Ortho-Substituent Effects on Antioxidant Activities of Phenolic Dendritic Antioxidants. Antioxidants 2020, 9, 189. [Google Scholar] [CrossRef]
- Perron, N.R.; Brumaghim, J.L. A Review of the Antioxidant Mechanisms of Polyphenol Compounds Related to Iron Binding. Cell Biochem. Biophys. 2009, 53, 75–100. [Google Scholar] [CrossRef]
- Van Acker, S.A.B.E.; Van Den Berg, D.-J.; Tromp, M.N.J.L.; Griffioen, D.H.; Van Bennekom, W.P.; Van Der Vijgh, W.J.F.; Bast, A. Structural Aspects of Antioxidant Activity of Flavonoids. Free Radic. Biol. Med. 1996, 20, 331–342. [Google Scholar] [CrossRef]
- Mathew, S.; Abraham, T.E.; Zakaria, Z.A. Reactivity of Phenolic Compounds towards Free Radicals under In Vitro Conditions. J. Food Sci. Technol. 2015, 52, 5790. [Google Scholar] [CrossRef]
- Wang, D.; Hou, J.; Wan, J.; Yang, Y.; Liu, S.; Li, X.; Li, W.; Dai, X.; Zhou, P.; Liu, W.; et al. Dietary Chlorogenic Acid Ameliorates Oxidative Stress and Improves Endothelial Function in Diabetic Mice via Nrf2 Activation. J. Int. Med. Res. 2021, 49, 1–14. [Google Scholar] [CrossRef]
- Liang, N.; Kitts, D.D. Amelioration of Oxidative Stress in Caco-2 Cells Treated with Pro-inflammatory Proteins by Chlorogenic Acid Isomers via Activation of the Nrf2–Keap1–ARE-Signaling Pathway. J. Agric. Food Chem. 2018, 66, 11008–11017. [Google Scholar] [CrossRef]
- Mehta, S.K.; Gowder, S.J.T.; Mehta, S.K.; Gowder, S.J.T.; Members of Antioxidant Machinery and Their Functions. Basic Principles and Clinical Significance of Oxidative Stress. Available online: https://www.intechopen.com/books/4597 (accessed on 22 July 2024).
- Tena, N.; Martín, J.; Asuero, A.G. State of the Art of Anthocyanins: Antioxidant Activity, Sources, Bioavailability, and Therapeutic Effect in Human Health. Antioxidants 2020, 9, 451. [Google Scholar] [CrossRef] [PubMed]
- Azima, A.; Noriham, A.; Manshoor, N. Anthocyanin Content in Relation to the Antioxidant Activity and Colour Properties of Garcinia Mangostana Peel, Syzigium Cumini and Clitoria Ternatea Extracts. Int. Food Res. J. 2014, 21, 2369–2375. [Google Scholar]
- Félix, R.; Valentão, P.; Andrade, P.B.; Félix, C.; Novais, S.C.; Lemos, M.F.L. Evaluating the In Vitro Potential of Natural Extracts to Protect Lipids from Oxidative Damage. Antioxidants 2020, 9, 231. [Google Scholar] [CrossRef]
- Garcia, C.; Blesso, C.N. Antioxidant Properties of Anthocyanins and Their Mechanism of Action in Atherosclerosis. Free. Radic. Biol. Med. 2021, 172, 152–166. [Google Scholar] [CrossRef]
- Reis, J.F.; Monteiro, V.V.S.; De Souza Gomes, R.; Do Carmo, M.M.; Da Costa, G.V.; Ribera, P.C.; Monteiro, M.C. Action Mechanism and Cardiovascular Effect of Anthocyanins: A Systematic Review of Animal and Human Studies. J. Transl. Med. 2016, 14, 316. [Google Scholar] [CrossRef]
- Dudek, A.; Spiegel, M.; Strugała-Danak, P.; Gabrielska, J. Analytical and Theoretical Studies of Antioxidant Properties of Chosen Anthocyanins; A Structure-Dependent Relationships. Int. J. Mol. Sci. 2022, 23, 5432. [Google Scholar] [CrossRef]
- Pagano, P.J.; Chanock, S.J.; Siwik, D.A.; Colucci, W.S.; Clark, J.K. Angiotensin II Induces p67 phox mRNA Expression and NADPH Oxidase Superoxide Generation in Rabbit Aortic Adventitial Fibroblasts. Hypertension 1998, 32, 331–337. [Google Scholar] [CrossRef]
- Griendling, K.K.; Minieri, C.A.; Ollerenshaw, J.D.; Alexander, R.W. Angiotensin II Stimulates NADH and NADPH Oxidase Activity in Cultured Vascular Smooth Muscle Cells. Circ. Res. 1994, 74, 1141–1148. [Google Scholar] [CrossRef]
- Prochazkova, D.; Bousova, I.; Wilhelmova, N. Antioxidant and Prooxidant Properties of Flavonoids. Fitoterapia 2011, 82, 513–523. [Google Scholar] [CrossRef]
- Malesev, D.; Kuntic, V. Investigation of Metal-Flavonoid Chelates and the Determination of Flavonoids via Metal-Flavonoid Complexing Reactions. J. Serbian Chem. Soc. 2007, 72, 921–939. [Google Scholar] [CrossRef]
- Banjarnahor, S.D.S.; Artanti, N. Antioxidant Properties of Flavonoids. Med. J. Indones. 2014, 23, 239–244. [Google Scholar] [CrossRef]
- Bubols, G.B.; Vianna, D.d.R.; Medina-Remon, A.; von Poser, G.; Lamuela-Raventos, R.M.; Eifler-Lima, V.L.; Garcia, S.C. The Antioxidant Activity of Coumarins and Flavonoids. Mini-Rev. Med. Chem. 2013, 13, 318–334. [Google Scholar] [CrossRef] [PubMed]
- Dugas, A.J.; Castañeda-Acosta, J.; Bonin, G.C.; Price, K.L.; Fischer, N.H.; Winston, G.W. Evaluation of the Total Peroxyl Radical-Scavenging Capacity of Flavonoids: Structure−Activity Relationships. J. Nat. Prod. 2000, 63, 327–331. [Google Scholar] [CrossRef] [PubMed]
- Hajam, Y.A.; Rani, R.; Ganie, S.Y.; Sheikh, T.A.; Javaid, D.; Qadri, S.S.; Pramodh, S.; Alsulimani, A.; Alkhanani, M.F.; Harakeh, S.; et al. Oxidative Stress in Human Pathology and Aging: Molecular Mechanisms and Perspectives. Cells 2022, 11, 552. [Google Scholar] [CrossRef]
- Nwozo, O.S.; Effiong, E.M.; Aja, P.M.; Awuchi, C.G. Antioxidant, Phytochemical, and Therapeutic Properties of Medicinal Plants: A Review. Int. J. Food Prop. 2023, 26, 359–388. [Google Scholar] [CrossRef]
- Papaccio, F.; D′Arino, A.; Caputo, S.; Bellei, B. Focus on the Contribution of Oxidative Stress in Skin Aging. Antioxidants 2022, 11, 1121. [Google Scholar] [CrossRef]
- Kamiński, K.; Kazimierczak, U.; Kolenda, T. Oxidative Stress in Melanogenesis and Melanoma Development. Contemp. Oncol. 2022, 26, 1–7. [Google Scholar] [CrossRef]
- Jenkins, N.C.; Grossman, D. Role of Melanin in Melanocyte Dysregulation of Reactive Oxygen Species. BioMed Res. Int. 2013, 2013, 908797. [Google Scholar] [CrossRef]
- Gomes, A.; Fernandes, E.; Lima, J.L.F.C. Fluorescence Probes Used for Detection of Reactive Oxygen Species. J. Biochem. Biophys. Methods 2005, 65, 45–80. [Google Scholar] [CrossRef]
- Ortega-Villasante, C.; Burén, S.; Blázquez-Castro, A.; Barón-Sola, Ó.; Hernández, L.E. Fluorescent in Vivo Imaging of Reactive Oxygen Species and Redox Potential in Plants. Free. Radic. Biol. Med. 2018, 122, 202–220. [Google Scholar] [CrossRef]
- Chen, X.; Zhong, Z.; Xu, Z.; Chen, L.; Wang, Y. 2′,7′-Dichlorodihydrofluorescein As a Fluorescent Probe for Reactive Oxygen Species Measurement: Forty Years of Application and Controversy. Free Radic. Res. 2010, 44, 587–604. [Google Scholar] [CrossRef] [PubMed]
- Szychowski, K.A.; Rybczyńska-Tkaczyk, K.; Leja, M.L.; Wójtowicz, A.K.; Gmiński, J. Tetrabromobisphenol A (TBBPA)-Stimulated Reactive Oxygen Species (ROS) Production in Cell-Free Model Using the 2′,7′-Dichlorodihydrofluorescein Diacetate (H2DCFDA) Assay—Limitations of Method. Environ. Sci. Pollut. Res. 2016, 23, 12246–12252. [Google Scholar] [CrossRef] [PubMed]
- Tarpey, M.M.; Wink, D.A.; Grisham, M.B. Methods for Detection of Reactive Metabolites of Oxygen and Nitrogen: In Vitro and in Vivo Considerations. Am. J. Physiol. Integr. Comp. Physiol. 2004, 286, R431–R444. [Google Scholar] [CrossRef] [PubMed]
- Lawrence, A.; Jones, C.M.; Wardman, P.; Burkitt, M.J. Evidence for the Role of a Peroxidase Compound I-Type Intermediate in the Oxidation of Glutathione, NADH, Ascorbate, and Dichlorofluorescin by Cytochrome c/H2O2. Implications for Oxidative Stress during Apoptosis. J. Biol. Chem. 2003, 278, 29410–29419. [Google Scholar] [CrossRef] [PubMed]
- Sik, C. A Photochemical Study of Cells Loaded with 2′,7′-Dichlorofluorescin: Implications for the Detection of Reactive Oxygen Species Generated during UVA Irradiation. Free. Radic. Biol. Med. 2003, 34, 1029–1034. [Google Scholar] [CrossRef]
- Jakubowski, W.; Bartosz, G. 2,7-Dichlorofluorescin Oxidation and Reactive Oxygen Species: What does it measure? Cell Biol. Int. 2000, 24, 757–760. [Google Scholar] [CrossRef]
- Rampersad, S.N. Multiple Applications of Alamar Blue as an Indicator of Metabolic Function and Cellular Health in Cell Viability Bioassays. Sensors 2012, 12, 12347–12360. [Google Scholar] [CrossRef]
- Repetto, G.; del Peso, A.; Zurita, J.L. Neutral Red Uptake Assay for the Estimation of Cell Viability/Cytotoxicity. Nat. Protoc. 2008, 3, 1125–1131. [Google Scholar] [CrossRef]
- Gag, O.; Dinu, O.; Manea, H.; Marcovici, I.; Pînzaru, I.; Popovici, R.; Crăiniceanu, Z.; Gyori, Z.; Iovănescu, G.; Chiriac, S. UVA/UVB Irradiation Exerts a Distinct Phototoxic Effect on Human Keratinocytes Compared to Human Malignant Melanoma Cells. Life 2023, 13, 1144. [Google Scholar] [CrossRef]
- Bosch, R.; Philips, N.; Suárez-Pérez, J.A.; Juarranz, A.; Devmurari, A.; Chalensouk-Khaosaat, J.; González, S. Mechanisms of Photoaging and Cutaneous Photocarcinogenesis, and Photoprotective Strategies with Phytochemicals. Antioxidants 2015, 4, 248. [Google Scholar] [CrossRef]
- Pittayapruek, P.; Meephansan, J.; Prapapan, O.; Komine, M.; Ohtsuki, M. Role of Matrix Metalloproteinases in Photoaging and Photocarcinogenesis. Int. J. Mol. Sci. 2016, 17, 868. [Google Scholar] [CrossRef] [PubMed]
- Rabinovich, L.; Kazlouskaya, V. Herbal Sun Protection Agents: Human Studies. Clin. Dermatol. 2018, 36, 369–375. [Google Scholar] [CrossRef] [PubMed]
- Shubayr, N. Phytochemicals Properties of Herbal Extracts for Ultraviolet Protection and Skin Health: A Narrative Review. J. Radiat. Res. Appl. Sci. 2023, 16, 100729. [Google Scholar] [CrossRef]
- Radice, M.; Manfredini, S.; Ziosi, P.; Dissette, V.; Buso, P.; Fallacara, A.; Vertuani, S. Herbal Extracts, Lichens and Biomolecules as Natural Photo-Protection Alternatives to Synthetic UV Filters. A Systematic Review. Fitoterapia 2016, 114, 144–162. [Google Scholar] [CrossRef]
- Chaiprasongsuk, A.; Onkoksoong, T.; Pluemsamran, T.; Limsaengurai, S.; Panich, U. Photoprotection by Dietary Phenolics against Melanogenesis Induced by UVA Through Nrf2-Dependent Antioxidant Responses. Redox Biol. 2016, 8, 79–90. [Google Scholar] [CrossRef]
- Onkoksoong, T.; Jeayeng, S.; Poungvarin, N.; Limsaengurai, S.; Thamsermsang, O.; Tripatara, P.; Akarasereenont, P.; Panich, U. Thai Herbal Antipyretic 22 Formula (APF22) Inhibits UVA-Mediated Melanogenesis through Activation of Nrf2-Regulated Antioxidant Defense. Phytotherapy Res. 2018, 32, 1546–1554. [Google Scholar] [CrossRef]
- George, V.C.; Vijesh, V.V.; Amararathna, D.I.M.; Lakshmi, C.A.; Anbarasu, K.; Kumar, D.R.N.; Ethiraj, K.R.; Kumar, R.A.; Rupasinghe, H.P.V. Mechanism of Action of Flavonoids in Prevention of Inflammation- Associated Skin Cancer. Curr. Med. Chem. 2016, 23, 3697–3716. [Google Scholar] [CrossRef]
- Jirasripongpun, K.; Jirakanjanakit, N.; Pomhong, R.; Inheng, W. Pomegranate Peel Extract Ameliorates UVA Radiation Induced skin Damage in A375 Cells. In Proceedings of the 24th Topical Conference on Radio-Frequency Power in Plasmas, Annapolis, MD, USA, 26–28 September 2022; p. 020003. [Google Scholar]
- Ndongwe, T.; Witika, B.A.; Mncwangi, N.P.; Poka, M.S.; Skosana, P.P.; Demana, P.H.; Summers, B.; Siwe-Noundou, X. Iridoid Derivatives as Anticancer Agents: An Updated Review from 1970–2022. Cancers 2023, 15, 770. [Google Scholar] [CrossRef]
- Yang, Y.; Li, B.; Wang, M.; Pan, S.; Wang, Y.; Gu, J. Effect of Natural Polymer Materials on Skin Healing Based on Internal Wound Microenvironment: A Review. Front. Chem. 2023, 11, 1257915. [Google Scholar] [CrossRef]
- Kreutzer, F.P.; Meinecke, A.; Mitzka, S.; Hunkler, H.J.; Hobuß, L.; Abbas, N.; Geffers, R.; Weusthoff, J.; Xiao, K.; Jonigk, D.D.; et al. Development and Characterization of Anti-Fibrotic Natural Compound Similar with Improved Effectivity. Basic Res. Cardiol. 2022, 117, 1–16. [Google Scholar] [CrossRef]
- Shin, D.; Lee, S.; Huang, Y.-H.; Lim, H.-W.; Lee, Y.; Jang, K.; Cho, Y.; Park, S.J.; Kim, D.-D.; Lim, C.-J. Protective Properties of Geniposide against UV-B-Induced Photooxidative Stress in Human Dermal Fibroblasts. Pharm. Biol. 2018, 56, 176–182. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Ma, Y.; Wu, S.; Chen, T.; He, Y.; Sun, J.; Jiao, R.; Jiang, X.; Huang, Y.; Deng, L.; et al. Protective Effect of Cyanidin-3-O-Glucoside against Ultraviolet B Radiation-Induced Cell Damage in Human HaCaT Keratinocytes. Front. Pharmacol. 2016, 7, 209402. [Google Scholar] [CrossRef] [PubMed]
- Nichols, J.A.; Katiyar, S.K. Skin Photoprotection by Natural Polyphenols: Anti-Inflammatory, Antioxidant and DNA Repair Mechanisms. Arch. Dermatol. Res. 2010, 302, 71–83. [Google Scholar] [CrossRef] [PubMed]
- Afaq, F.; Katiyar, S.K. Polyphenols: Skin Photoprotection and Inhibition of Photocarcinogenesis. Mini-Rev. Med. Chem. 2011, 11, 1200–1215. [Google Scholar] [CrossRef]
- Li, L.-H.; Wu, L.-J.; Zhou, B.; Wu, Z.; Tashiro, S.-I.; Onodera, S.; Uchiumi, F.; Ikejima, T. Silymarin Prevents UV Irradiation-Induced A375-S2 Cell Apoptosis. Biol. Pharm. Bull. 2004, 27, 1031–1036. [Google Scholar] [CrossRef]
- Lewandowski, Ł.; Bednarz-Misa, I.; Kucharska, A.Z.; Kubiak, A.; Kasprzyk, P.; Sozański, T.; Przybylska, D.; Piórecki, N.; Krzystek-Korpacka, M. Cornelian Cherry (Cornus mas L.) Extracts Exert Cytotoxicity in Two Selected Melanoma Cell Lines—A Factorial Analysis of Time-Dependent Alterations in Values Obtained with SRB and MTT Assays. Molecules 2022, 27, 4193. [Google Scholar] [CrossRef]
- Yousefi, B.; Abasi, M.; Abbasi, M.M.; Jahanban-Esfahlan, R. Anti-Proliferative Properties of Cornus mass Fruit in Different Human Cancer Cells. Asian Pac. J. Cancer Prev. 2015, 16, 5727–5731. [Google Scholar] [CrossRef]
- Nawrot, K.; Polak-Szczybyło, E.; Stępień, A.E. Characteristics of the Health-Promoting Properties of Cornus mas. Eur. J. Clin. Exp. Med. 2022, 20, 217–223. [Google Scholar] [CrossRef]
- Niu, C.; Aisa, H.A. Upregulation of Melanogenesis and Tyrosinase Activity: Potential Agents for Vitiligo. Molecules 2017, 22, 1303. [Google Scholar] [CrossRef]
- Feng, D.; Fang, Z.; Zhang, P. The Melanin Inhibitory Effect of Plants and Phytochemicals: A Systematic Review. Phytomedicine 2022, 107, 154449. [Google Scholar] [CrossRef]
- Zeng, H.J.; Li, Q.Y.; Ma, J.; Yang, R.; Qu, L.B. A Comparative Study on the Effects of Resveratrol and Oxyresveratrol against Tyrosinase Activity and Their Inhibitory Mechanism. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2021, 251, 119405. [Google Scholar] [CrossRef] [PubMed]
- Chung, K.W.; Jeong, H.O.; Lee, E.K.; Kim, S.J.; Chun, P.; Chung, H.Y.; Moon, H.R. Evaluation of Antimelanogenic Activity and Mechanism of Galangin in Silico and in Vivo. Biol. Pharm. Bull. 2018, 41, 73–79. [Google Scholar] [CrossRef] [PubMed]
- Chiang, H.-M.; Chien, Y.-C.; Wu, C.-H.; Kuo, Y.-H.; Wu, W.-C.; Pan, Y.-Y.; Su, Y.-H.; Wen, K.-C. Hydroalcoholic Extract of Rhodiola rosea L. (Crassulaceae) and Its Hydrolysate Inhibit Melanogenesis in B16F0 Cells by Regulating the CREB/MITF/Tyrosinase Pathway. Food Chem. Toxicol. 2014, 65, 129–139. [Google Scholar] [CrossRef] [PubMed]
- Imokawa, G.; Ishida, K. Inhibitors of Intracellular Signaling Pathways that Lead to Stimulated Epidermal Pigmentation: Perspective of Anti-Pigmenting Agents. Int. J. Mol. Sci. 2014, 15, 8293–8315. [Google Scholar] [CrossRef]
- Fardiyah, Q.; Ersam, T.; Suyanta; Slamet, A.; Suprapto; Kurniawan, F. New Potential and Characterization of Andrographis paniculata L. Ness Plant Extracts as Photoprotective agent. Arab. J. Chem. 2020, 13, 8888–8897. [Google Scholar] [CrossRef]
- Nizioł-Łukaszewska, Z.; Wasilewski, T.; Bujak, T.; Osika, P. Iridoids from Cornus mas L. and Their Potential As Innovative Ingredients in Cosmetics. PJCT 2017, 19, 122–127. [Google Scholar] [CrossRef]
- El-Nashar, H.A.S.; El-Din, M.I.G.; Hritcu, L.; Eldahshan, O.A. Insights on the Inhibitory Power of Flavonoids on Tyrosinase Activity: A Survey from 2016 to 2021. Molecules 2021, 26, 7546. [Google Scholar] [CrossRef]
- Jacob, V.; Hagai, T.; Soliman, K. Structure-Activity Relationships of Flavonoids. Curr. Org. Chem. 2011, 15, 2641–2657. [Google Scholar] [CrossRef]
- Hu, S.; Zheng, Z.; Chen, F.; Wang, M. The Depigmenting Effect of Natural Resorcinol Type Polyphenols Kuwanon O and Sanggenon T from the Roots of Morus Australis. J. Ethnopharmacol. 2017, 195, 196–203. [Google Scholar] [CrossRef]
- Myint, K.Z.W.; Kido, T.; Kusakari, K.; Devkota, H.P.; Kawahara, T.; Watanabe, T. Rhusflavanone and Mesuaferrone B: Tyrosinase and Elastase Inhibitory Biflavonoids Extracted from the Stamens of Mesua ferrea L. Nat. Prod. Res. 2019, 35, 1024–1028. [Google Scholar] [CrossRef]
- Jakimiuk, K.; Sari, S.; Milewski, R.; Supuran, C.T.; Şöhretoğlu, D.; Tomczyk, M. Flavonoids as Tyrosinase Inhibitors in in Silico and in Vitro Models: Basic Framework of SAR Using a Statistical Modelling Approach. J. Enzym. Inhib. Med. Chem. 2022, 37, 427–436. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.W.; Kim, J.H.; Song, H.; Seok, J.K.; Hong, S.S.; Boo, Y.C. Luteolin 7-Sulfate Attenuates Melanin Synthesis through Inhibition of CREB- and MITF-Mediated Tyrosinase Expression. Antioxidants 2019, 8, 87. [Google Scholar] [CrossRef] [PubMed]
- Lim, J.; Nam, S.; Jeong, J.H.; Kim, M.J.; Yang, Y.; Lee, M.; Lee, H.G.; Ryu, J.; Lim, J. Kazinol U inhibits Melanogenesis through the Inhibition of Tyrosinase-Related Proteins via AMP Kinase Activation. Br. J. Pharmacol. 2018, 176, 737–750. [Google Scholar] [CrossRef]
- Li, H.X.; Park, J.U.; Su, X.D.; Kim, K.T.; Kang, J.S.; Kim, Y.R.; Kim, Y.H.; Yang, S.Y. Identification of Anti-Melanogenesis Constituents from Morus alba L. Leaves. Molecules 2018, 23, 2559. [Google Scholar] [CrossRef]
- Yang, B.; Liu, X.; Gao, Y. Extraction Optimization of Bioactive Compounds (Crocin, Geniposide and Total Phenolic Compounds) from Gardenia (Gardenia jasminoides Ellis) Fruits with Response Surface Methodology. Innov. Food Sci. Emerg. Technol. 2009, 10, 610–615. [Google Scholar] [CrossRef]
- Pomianek, T.; Zagórska-Dziok, M.; Skóra, B.; Ziemlewska, A.; Nizioł-Łukaszewska, Z.; Wójciak, M.; Sowa, I.; Szychowski, K.A. Comparison of the Antioxidant and Cytoprotective Properties of Extracts from Different Cultivars of Cornus mas L. Int. J. Mol. Sci. 2024, 25, 5495. [Google Scholar] [CrossRef]
- Miller, N.J.; Rice-Evans, C.A. Factors Influencing the Antioxidant Activity Determined by the ABTS•+Radical Cation Assay. Free. Radic. Res. 1997, 26, 195–199. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a Free Radical Method to Evaluate Antioxidant Activity. LWT Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Benzie, I.F.F.; Strain, J.J. The Ferric Reducing Ability of Plasma (FRAP) as a Measure of “Antioxidant Power”: The FRAP Assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef]
- Page, B.; Page, M.; Noel, C. A New Fluorometric Assay for Cytotoxicity Measurements In-Vitro. Int. J. Oncol. 1993, 3, 473–476. [Google Scholar] [CrossRef]
- Borenfreund, E.; Puerner, J.A. Toxicity Determined in Vitro by Morphological Alterations and Neutral Red Absorption. Toxicol. Lett. 1985, 24, 119–124. [Google Scholar] [CrossRef] [PubMed]
- Krochmal-Marczak, B.; Zagórska-Dziok, M.; Michalak, M.; Kiełtyka-Dadasiewicz, A. Comparative Assessment of Phenolic Content, Cellular Antioxidant, Antityrosinase and Protective Activities on Skin Cells of Extracts from Three Sweet Potato (Ipomoea batatas (L.) Lam.) Cultivars. J. King Saud Univ.—Sci. 2021, 33, 101532. [Google Scholar] [CrossRef]
- Akaberi, M.; Emami, S.A.; Vatani, M.; Tayarani-Najaran, Z. Evaluation of Antioxidant and Anti-Melanogenic Activity of Different Extracts of Aerial Parts of N. Sintenisii in Murine Melanoma B16F10 Cells. Iran J. Pharm. Res. 2018, 17, 225–235. [Google Scholar] [CrossRef] [PubMed]
Compound | YW | YE30 | YE70 | RW | RE30 | RE70 | DRW | DRE30 | DRE70 |
---|---|---|---|---|---|---|---|---|---|
Gallic acid and derivatives | |||||||||
Galloyl hexoside | 12.22 ± 0.57 a | 7.81 ± 0.40 b | 6.25 ± 0.55 c | 2.70 ± 0.09 d | 1.79 ± 0.05 e | 0.99 ± 0.08 f | 7.94 ± 0.48 b | 4.69 ± 0.60 c | 1.56 ± 0.07 e |
Gallic acid * | 1.65 ± 0.11 b | 2.11 ± 0.11 a | 0.99 ± 0.08 c | 1.04 ± 0.09 c | ND | ND | 1.48 ± 0.13 b | ND | ND |
Galloyl-d-sedoheptulose | 11.32 ± 1.19 b | 6.98 ± 0.40 c | 4.34 ± 0.41 d | 5.42 ± 0.62 d | 4.34 ± 0.48 d | 2.51 ± 0.12 e | 13.99 ± 0.98 a | 10.08 ± 1.12 b | 3.57 ± 0.20 d |
Iridoids | |||||||||
Loganic acid * | 163.9 ± 12.8 c | 278.0 ± 13.4 a | 196.4 ± 10.5 b | 69.25 ± 3.25 e | 81.83 ± 4.94 e | 77.23 ± 3.58 e | 130.6 ± 11.5 d | 151.4 ± 9.1 c | 102.1 ± 3.5 f |
Cornuside * | 3.66 ± 0.18 b | 7.65 ± 0.41 a | 7.32 ± 0.41 a | 1.50 ± 0.11 e | 1.77 ± 0.08 b | 2.88 ± 0.19 c | 2.29 ± 0.19 c,d | 2.13 ± 0.13 d | 2.55 ± 0.14 c |
Cyclohexanecarboxylic and phenolic acids | |||||||||
Quinic acid * | 51.81 ± 2.10 a | 54.33 ± 1.90 a | 53.71 ± 2.34 a | 38.18 ± 1.53 b | 36.53 ± 2.09 b | 35.76 ± 2.50 b | 50.20 ± 2.16 a | 51.08 ± 2.01 a | 50.65 ±1.90 a |
Protocatechuic acid * | 0.09 ± 0.01 b | ND | ND | 0.10 ± 0.01 b | 0.07 ± 0.01 c | 0.05 ± 0.01 c | 0.18 ± 0.02 a | 0.20 ± 0.02 a | 0.13 ± 0.01 b |
Caftaric acids * | 2.32 ± 0.16 b | 3.05 ± 0.21 a | 2.87 ± 0.22 a | 1.55 ± 0.14 d | 1.60 ± 0.09 c,d | 1.68 ± 0.11 c,d | 1.72 ± 0.13 c | 1.84 ± 0.12 c | 1.66 ± 0.14 c,d |
Chlorogenic acid * | 0.90 ± 0.04 c | 1.50 ± 0.10 a | 1.14 ± 0.06 b | 0.49 ± 0.02 d | 0.56 ± 0.03 d | 0.64 ± 0.04 d | 0.82 ± 0.07 c | 1.13 ± 0.16 b | 0.86 ± 0.04 c |
coumaroylquinic acids | 0.39 ± 0.02 c | 0.81 ± 0.06 b | 0.82 ± 0.07 b | 0.29 ± 0.02 d | 0.45 ± 0.05 c | 0.85 ± 0.06 b | 0.44 ± 0.05 c | 1.02 ± 0.10 a | 1.01 ± 0.11 a |
p-coumaric acid | 0.31 ± 0.01 d | 0.66 ± 0.03 b | 0.63 ± 0.04 b | 0.27 ± 0.02 d | 0.30 ± 0.02 b | 0.36 ± 0.02 c,d | 0.40 ± 0.02 c | 0.82 ± 0.04 a | 0.79 ± 0.03 a |
Hydroxybenzoic glucoside | 0.42 ± 0.02 c | 0.82 ± 0.04 b | 1.04 ± 0.11 a | 0.39 ± 0.04 c | 0.25 ± 0.03 d | 0.06 ± 0.00 f | 0.80 ± 0.04 b | 1.01 ± 0.09 a | 0.82 ± 0.09 b |
Anthocyanins | |||||||||
Cyanidin 3-O-galactoside * | ND | ND | ND | 0.71 ± 0.07 f | 1.48 ± 0.10 e | 2.03 ± 0.18 d | 3.97 ± 0.22 c | 10.62 ± 0.97 a | 7.64 ± 0.54 b |
Pelargonidin 3-O-glucoside * | ND | ND | ND | 1.21 ± 0.08 f | 3.74 ± 0.23 d | 4.21 ± 0.41 d | 6.67 ± 0.51 c | 19.14 ± 0.81 a | 11.07 ± 0.91 b |
Flavonoids | |||||||||
Quercetin 3-glucuronide * | 2.32 ± 0.19 e | 9.24 ± 0.45 b | 16.91 ± 1.37 a | 1.87 ± 0.17 e | 2.22 ± 0.19 e | 6.35 ± 0.55 c | 3.28 ± 0.31 d | 7.42 ± 0.66 c | 14.26 ± 0.99 a |
Kaempferol 3-O-galactoside | ND | ND | ND | 0.89 ± 0.06 c | 0.58 ± 0.05 d | 1.06 ± 0.09 c | 3.12 ± 0.14 b | 4.77 ± 0.21 a | 2.96 ± 0.13 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zagórska-Dziok, M.; Mokrzyńska, A.; Ziemlewska, A.; Nizioł-Łukaszewska, Z.; Sowa, I.; Feldo, M.; Wójciak, M. Assessment of the Antioxidant and Photoprotective Properties of Cornus mas L. Extracts on HDF, HaCaT and A375 Cells Exposed to UVA Radiation. Int. J. Mol. Sci. 2024, 25, 10993. https://doi.org/10.3390/ijms252010993
Zagórska-Dziok M, Mokrzyńska A, Ziemlewska A, Nizioł-Łukaszewska Z, Sowa I, Feldo M, Wójciak M. Assessment of the Antioxidant and Photoprotective Properties of Cornus mas L. Extracts on HDF, HaCaT and A375 Cells Exposed to UVA Radiation. International Journal of Molecular Sciences. 2024; 25(20):10993. https://doi.org/10.3390/ijms252010993
Chicago/Turabian StyleZagórska-Dziok, Martyna, Agnieszka Mokrzyńska, Aleksandra Ziemlewska, Zofia Nizioł-Łukaszewska, Ireneusz Sowa, Marcin Feldo, and Magdalena Wójciak. 2024. "Assessment of the Antioxidant and Photoprotective Properties of Cornus mas L. Extracts on HDF, HaCaT and A375 Cells Exposed to UVA Radiation" International Journal of Molecular Sciences 25, no. 20: 10993. https://doi.org/10.3390/ijms252010993
APA StyleZagórska-Dziok, M., Mokrzyńska, A., Ziemlewska, A., Nizioł-Łukaszewska, Z., Sowa, I., Feldo, M., & Wójciak, M. (2024). Assessment of the Antioxidant and Photoprotective Properties of Cornus mas L. Extracts on HDF, HaCaT and A375 Cells Exposed to UVA Radiation. International Journal of Molecular Sciences, 25(20), 10993. https://doi.org/10.3390/ijms252010993