Advances in microRNAs as Emerging Biomarkers for Colorectal Cancer Early Detection and Diagnosis
Abstract
:1. Introduction
2. Current CRC Diagnostic Techniques
3. miRNAs in Diagnosis of CRC
3.1. Pathogenesis of CRC and miRNA
Molecular Classification of CRC
3.2. miRNAs in the Detection of Precancerous Lesions
3.3. miRNAs in the Detection of CRC
3.4. Comprehensive Analysis of Selected miRNAs as Promising Biomarkers for CRC
3.4.1. miR-15b
3.4.2. miR-21
3.4.3. miR-31
3.4.4. miR-146a
4. Discussion
5. Conclusions and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bray, F.; Laversanne, M.; Sung, H.; Ferlay, J.; Siegel, R.L.; Soerjomataram, I.; Jemal, A. Global Cancer Statistics 2022: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2024, 74, 229–263. [Google Scholar] [CrossRef] [PubMed]
- AICR; WCRF. Diet, Nutrition, Physical Activity and Colorectal Cancer; AICR: Washington, DC, USA; WCRF: London, UK, 2018. [Google Scholar]
- Kanth, P.; Grimmett, J.; Champine, M.; Burt, R.; Samadder, J.N. Hereditary Colorectal Polyposis and Cancer Syndromes: A Primer on Diagnosis and Management. Am. J. Gastroenterol. 2017, 112, 1509–1525. [Google Scholar] [CrossRef] [PubMed]
- Dekker, E.; Tanis, P.J.; Vleugels, J.L.A.; Kasi, P.M.; Wallace, M.B. Colorectal Cancer. Lancet 2019, 394, 1467–1480. [Google Scholar] [CrossRef] [PubMed]
- Dunne, P.D.; Arends, M.J. Molecular Pathological Classification of Colorectal Cancer—An Update. Virchows Arch. 2024, 484, 273–285. [Google Scholar] [CrossRef] [PubMed]
- Gutierrez, M.E.; Price, K.S.; Lanman, R.B.; Nagy, R.J.; Shah, I.; Mathura, S.; Mulcahy, M.; Norden, A.D.; Goldberg, S.L. Genomic Profiling for KRAS, NRAS, BRAF, Microsatellite Instability, and Mismatch Repair Deficiency among Patients with Metastatic Colon Cancer. JCO Precis. Oncol. 2019, 3, 1–9. [Google Scholar] [CrossRef]
- Therkildsen, C.; Bergmann, T.K.; Henrichsen-Schnack, T.; Ladelund, S.; Nilbert, M. The Predictive Value of KRAS, NRAS, BRAF, PIK3CA and PTEN for Anti-EGFR Treatment in Metastatic Colorectal Cancer: A Systematic Review and Meta-Analysis. Acta Oncol. 2014, 53, 852–864. [Google Scholar] [CrossRef]
- Cervantes, A.; Adam, R.; Roselló, S.; Arnold, D.; Normanno, N.; Taïeb, J.; Seligmann, J.; De Baere, T.; Osterlund, P.; Yoshino, T.; et al. Metastatic Colorectal Cancer: ESMO Clinical Practice Guideline for Diagnosis, Treatment and Follow-Up. Ann. Oncol. 2023, 34, 10–32. [Google Scholar] [CrossRef]
- Bartel, D.P. Metazoan MicroRNAs. Cell 2018, 173, 20–51. [Google Scholar] [CrossRef]
- Di Leva, G.; Garofalo, M.; Croce, C.M. MicroRNAs in Cancer. Annu. Rev. Pathol. Mech. Dis. 2014, 9, 287–314. [Google Scholar] [CrossRef]
- Ali Syeda, Z.; Langden, S.S.S.; Munkhzul, C.; Lee, M.; Song, S.J. Regulatory Mechanism of MicroRNA Expression in Cancer. Int. J. Mol. Sci. 2020, 21, 1723. [Google Scholar] [CrossRef]
- Li, W.; Lu, Y.; Ye, C.; Ouyang, M. The Regulatory Network of MicroRNA in the Metabolism of Colorectal Cancer. J. Cancer 2021, 12, 7454–7464. [Google Scholar] [CrossRef] [PubMed]
- Loh, H.-Y.; Norman, B.P.; Lai, K.-S.; Rahman, N.M.A.N.A.; Alitheen, N.B.M.; Osman, M.A. The Regulatory Role of MicroRNAs in Breast Cancer. Int. J. Mol. Sci. 2019, 20, 4940. [Google Scholar] [CrossRef]
- Hussen, B.M.; Hidayat, H.J.; Salihi, A.; Sabir, D.K.; Taheri, M.; Ghafouri-Fard, S. MicroRNA: A Signature for Cancer Progression. Biomed. Pharmacother. 2021, 138, 111528. [Google Scholar] [CrossRef]
- Calin, G.A.; Croce, C.M. MicroRNA Signatures in Human Cancers. Nat. Rev. Cancer 2006, 6, 857–866. [Google Scholar] [CrossRef]
- Pozniak, T.; Shcharbin, D.; Bryszewska, M. Circulating MicroRNAs in Medicine. Int. J. Mol. Sci. 2022, 23, 3996. [Google Scholar] [CrossRef]
- O’Brien, J.; Hayder, H.; Zayed, Y.; Peng, C. Overview of MicroRNA Biogenesis, Mechanisms of Actions, and Circulation. Front. Endocrinol. 2018, 9, 402. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, P.S.; Parkin, R.K.; Kroh, E.M.; Fritz, B.R.; Wyman, S.K.; Pogosova-Agadjanyan, E.L.; Peterson, A.; Noteboom, J.; O’Briant, K.C.; Allen, A.; et al. Circulating MicroRNAs as Stable Blood-Based Markers for Cancer Detection. Proc. Natl. Acad. Sci. USA 2008, 105, 10513–10518. [Google Scholar] [CrossRef] [PubMed]
- Sandau, U.S.; Wiedrick, J.T.; McFarland, T.J.; Galasko, D.R.; Fanning, Z.; Quinn, J.F.; Saugstad, J.A. Analysis of the Longitudinal Stability of Human Plasma MiRNAs and Implications for Disease Biomarkers. Sci. Rep. 2024, 14, 2148. [Google Scholar] [CrossRef]
- Vaghf, A.; Khansarinejad, B.; Ghaznavi-Rad, E.; Mondanizadeh, M. The Role of MicroRNAs in Diseases and Related Signaling Pathways. Mol. Biol. Rep. 2022, 49, 6789–6801. [Google Scholar] [CrossRef]
- Chakrabortty, A.; Patton, D.J.; Smith, B.F.; Agarwal, P. MiRNAs: Potential as Biomarkers and Therapeutic Targets for Cancer. Genes 2023, 14, 1375. [Google Scholar] [CrossRef]
- Santos, D.A.R.; Gaiteiro, C.; Santos, M.; Santos, L.; Dinis-Ribeiro, M.; Lima, L. MicroRNA Biomarkers as Promising Tools for Early Colorectal Cancer Screening—A Comprehensive Review. Int. J. Mol. Sci. 2023, 24, 11023. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Zhu, A.; Bhardwaj, M.; Schrotz-King, P.; Brenner, H. Fecal MicroRNAs, Fecal MicroRNA Panels, or Combinations of Fecal MicroRNAs with Fecal Hemoglobin for Early Detection of Colorectal Cancer and Its Precursors: A Systematic Review. Cancers 2021, 14, 65. [Google Scholar] [CrossRef]
- Iwasaki, H.; Shimura, T.; Kitagawa, M.; Yamada, T.; Nishigaki, R.; Fukusada, S.; Okuda, Y.; Katano, T.; Horike, S.; Kataoka, H. A Novel Urinary MiRNA Biomarker for Early Detection of Colorectal Cancer. Cancers 2022, 14, 461. [Google Scholar] [CrossRef]
- Jain, S.; Maque, J.; Galoosian, A.; Osuna-Garcia, A.; May, F.P. Optimal Strategies for Colorectal Cancer Screening. Curr. Treat. Options Oncol. 2022, 23, 474–493. [Google Scholar] [CrossRef]
- Shaukat, A.; Kahi, C.J.; Burke, C.A.; Rabeneck, L.; Sauer, B.G.; Rex, D.K. ACG Clinical Guidelines: Colorectal Cancer Screening 2021. Am. J. Gastroenterol. 2021, 116, 458–479. [Google Scholar] [CrossRef] [PubMed]
- Grobbee, E.J.; Wisse, P.H.; Schreuders, E.H.; van Roon, A.; van Dam, L.; Zauber, A.G.; Lansdorp-Vogelaar, I.; Bramer, W.; Berhane, S.; Deeks, J.J.; et al. Guaiac-Based Faecal Occult Blood Tests versus Faecal Immunochemical Tests for Colorectal Cancer Screening in Average-Risk Individuals. Cochrane Database Syst. Rev. 2022, 2022, CD009276. [Google Scholar] [CrossRef]
- Lin, J.S.; Perdue, L.A.; Henrikson, N.B.; Bean, S.I.; Blasi, P.R. Screening for Colorectal Cancer. JAMA 2021, 325, 1978–1997. [Google Scholar] [CrossRef]
- Zauber, A.G.; Winawer, S.J.; O’Brien, M.J.; Lansdorp-Vogelaar, I.; van Ballegooijen, M.; Hankey, B.F.; Shi, W.; Bond, J.H.; Schapiro, M.; Panish, J.F.; et al. Colonoscopic Polypectomy and Long-Term Prevention of Colorectal-Cancer Deaths. N. Engl. J. Med. 2012, 366, 687–696. [Google Scholar] [CrossRef]
- Castells, A.; Bessa, X.; Quintero, E.; Bujanda, L.; Cubiella, J.; Salas, D.; Lanas, Á.; Carballo, F.; Morillas, J.D.; Hernández, C.; et al. Risk of Advanced Proximal Neoplasms according to Distal Colorectal Findings: Comparison of Sigmoidoscopy-Based Strategies. J. Natl. Cancer Inst. 2013, 105, 878–886. [Google Scholar] [CrossRef]
- Tepus, M.; Yau, T.O. Non-Invasive Colorectal Cancer Screening: An Overview. Gastrointest. Tumors 2020, 7, 62–73. [Google Scholar] [CrossRef] [PubMed]
- Areia, M.; Fuccio, L.; Hassan, C.; Dekker, E.; Dias-Pereira, A.; Dinis-Ribeiro, M. Cost-utility Analysis of Colonoscopy or Faecal Immunochemical Test for Population-based Organised Colorectal Cancer Screening. United Eur. Gastroenterol. J. 2019, 7, 105–113. [Google Scholar] [CrossRef] [PubMed]
- Winawer, S.J. Colorectal Cancer Screening. Best Pract. Res. Clin. Gastroenterol. 2007, 21, 1031–1048. [Google Scholar] [CrossRef] [PubMed]
- Pickhardt, P.J.; Hassan, C.; Halligan, S.; Marmo, R. Colorectal Cancer: CT Colonography and Colonoscopy for Detection—Systematic Review and Meta-Analysis. Radiology 2011, 259, 393–405. [Google Scholar] [CrossRef] [PubMed]
- Ren, G.; Li, R.; Zheng, G.; Du, K.; Dan, H.; Wu, H.; Dou, X.; Duan, L.; Xie, Z.; Niu, L.; et al. Prognostic Value of Normal Levels of Preoperative Tumor Markers in Colorectal Cancer. Sci. Rep. 2023, 13, 22830. [Google Scholar] [CrossRef]
- Fearon, E.R.; Vogelstein, B. A Genetic Model for Colorectal Tumorigenesis. Cell 1990, 61, 759–767. [Google Scholar] [CrossRef]
- Malki, A.; ElRuz, R.A.; Gupta, I.; Allouch, A.; Vranic, S.; Al Moustafa, A.-E. Molecular Mechanisms of Colon Cancer Progression and Metastasis: Recent Insights and Advancements. Int. J. Mol. Sci. 2020, 22, 130. [Google Scholar] [CrossRef]
- Michas, A.; Michas, V.; Anagnostou, E.; Galanopoulos, M.; Tolia, M.; Tsoukalas, N. The Clinical Significance of MicroRNAs in Colorectal Cancer Signaling Pathways: A Review. Glob. Med. Genet. 2023, 10, 315–323. [Google Scholar] [CrossRef]
- Ahadi, A. The Significance of MicroRNA Deregulation in Colorectal Cancer Development and the Clinical Uses as a Diagnostic and Prognostic Biomarker and Therapeutic Agent. Noncoding RNA Res. 2020, 5, 125–134. [Google Scholar] [CrossRef]
- Nagel, R.; le Sage, C.; Diosdado, B.; van der Waal, M.; Oude Vrielink, J.A.F.; Bolijn, A.; Meijer, G.A.; Agami, R. Regulation of the Adenomatous Polyposis Coli Gene by the MiR-135 Family in Colorectal Cancer. Cancer Res. 2008, 68, 5795–5802. [Google Scholar] [CrossRef]
- Valeri, N.; Braconi, C.; Gasparini, P.; Murgia, C.; Lampis, A.; Paulus-Hock, V.; Hart, J.R.; Ueno, L.; Grivennikov, S.I.; Lovat, F.; et al. MicroRNA-135b Promotes Cancer Progression by Acting as a Downstream Effector of Oncogenic Pathways in Colon Cancer. Cancer Cell 2014, 25, 469–483. [Google Scholar] [CrossRef]
- Wu, X.; Li, Z.; Huang, N.; Li, X.; Chen, R. Study of KRAS-Related MiRNA Expression in Colorectal Cancer. Cancer Manag. Res. 2022, 14, 2987–3008. [Google Scholar] [CrossRef] [PubMed]
- Feng, Z.; Zhang, C.; Wu, R.; Hu, W. Tumor Suppressor P53 Meets MicroRNAs. J. Mol. Cell Biol. 2011, 3, 44–50. [Google Scholar] [CrossRef]
- Shi, L.; Jackstadt, R.; Siemens, H.; Li, H.; Kirchner, T.; Hermeking, H. P53-Induced MiR-15a/16-1 and AP4 Form a Double-Negative Feedback Loop to Regulate Epithelial–Mesenchymal Transition and Metastasis in Colorectal Cancer. Cancer Res. 2014, 74, 532–542. [Google Scholar] [CrossRef]
- Cerretelli, G.; Ager, A.; Arends, M.J.; Frayling, I.M. Molecular Pathology of Lynch Syndrome. J. Pathol. 2020, 250, 518–531. [Google Scholar] [CrossRef] [PubMed]
- Nazemalhosseini Mojarad, E.; Kuppen, P.J.; Aghdaei, H.A.; Zali, M.R. The CpG Island Methylator Phenotype (CIMP) in Colorectal Cancer. Gastroenterol. Hepatol. Bed Bench 2013, 6, 120–128. [Google Scholar]
- Guinney, J.; Dienstmann, R.; Wang, X.; de Reyniès, A.; Schlicker, A.; Soneson, C.; Marisa, L.; Roepman, P.; Nyamundanda, G.; Angelino, P.; et al. The Consensus Molecular Subtypes of Colorectal Cancer. Nat. Med. 2015, 21, 1350–1356. [Google Scholar] [CrossRef] [PubMed]
- Conteduca, V.; Sansonno, D.; Russi, S.; Dammacco, F. Precancerous Colorectal Lesions (Review). Int. J. Oncol. 2013, 43, 973–984. [Google Scholar] [CrossRef]
- Kuo, E.; Wang, K.; Liu, X. A Focused Review on Advances in Risk Stratification of Malignant Polyps. Gastroenterol. Res. 2020, 13, 163–183. [Google Scholar] [CrossRef]
- Participants in the Paris Workshop. The Paris Endoscopic Classification of Superficial Neoplastic Lesions: Esophagus, Stomach, and Colon. Gastrointest. Endosc. 2003, 58, S3–S43. [Google Scholar] [CrossRef]
- Moss, A.; Bourke, M.J.; Williams, S.J.; Hourigan, L.F.; Brown, G.; Tam, W.; Singh, R.; Zanati, S.; Chen, R.Y.; Byth, K. Endoscopic Mucosal Resection Outcomes and Prediction of Submucosal Cancer From Advanced Colonic Mucosal Neoplasia. Gastroenterology 2011, 140, 1909–1918. [Google Scholar] [CrossRef]
- Loeve, F.; Boer, R.; Zauber, A.G.; van Ballegooijen, M.; van Oortmarssen, G.J.; Winawer, S.J.; Habbema, J.D.F. National Polyp Study Data: Evidence for Regression of Adenomas. Int. J. Cancer 2004, 111, 633–639. [Google Scholar] [CrossRef] [PubMed]
- Tejpar, S.; Cutsem, E. Van Molecular and Genetic Defects in Colorectal Tumorigenesis. Best Pract. Res. Clin. Gastroenterol. 2002, 16, 171–185. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.; Huang, D.; Ni, S.; Peng, Z.; Sheng, W.; Du, X. Plasma MicroRNAs Are Promising Novel Biomarkers for Early Detection of Colorectal Cancer. Int. J. Cancer 2010, 127, 118–126. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Huang, Z.; Ni, S.; Xiao, X.; Xu, Q.; Wang, L.; Huang, D.; Tan, C.; Sheng, W.; Du, X. Plasma MiR-601 and MiR-760 Are Novel Biomarkers for the Early Detection of Colorectal Cancer. PLoS ONE 2012, 7, e44398. [Google Scholar] [CrossRef] [PubMed]
- Kanaan, Z.; Roberts, H.; Eichenberger, M.R.; Billeter, A.; Ocheretner, G.; Pan, J.; Rai, S.N.; Jorden, J.; Williford, A.; Galandiuk, S. A Plasma MicroRNA Panel for Detection of Colorectal Adenomas. Ann. Surg. 2013, 258, 400–408. [Google Scholar] [CrossRef]
- Giráldez, M.D.; Lozano, J.J.; Ramírez, G.; Hijona, E.; Bujanda, L.; Castells, A.; Gironella, M. Circulating MicroRNAs as Biomarkers of Colorectal Cancer: Results from a Genome-Wide Profiling and Validation Study. Clin. Gastroenterol. Hepatol. 2013, 11, 681–688.e3. [Google Scholar] [CrossRef]
- Toiyama, Y.; Takahashi, M.; Hur, K.; Nagasaka, T.; Tanaka, K.; Inoue, Y.; Kusunoki, M.; Boland, C.R.; Goel, A. Serum MiR-21 as a Diagnostic and Prognostic Biomarker in Colorectal Cancer. J. Natl. Cancer Inst. 2013, 105, 849–859. [Google Scholar] [CrossRef]
- Liu, G.H.; Zhou, Z.G.; Chen, R.; Wang, M.J.; Zhou, B.; Li, Y.; Sun, X.F. Serum MiR-21 and MiR-92a as Biomarkers in the Diagnosis and Prognosis of Colorectal Cancer. Tumor Biol. 2013, 34, 2175–2181. [Google Scholar] [CrossRef]
- Adams, S.V.; Newcomb, P.A.; Burnett-Hartman, A.N.; Wurscher, M.A.; Mandelson, M.; Upton, M.P.; Zhu, L.-C.; Potter, J.D.; Makar, K.W. Rare Circulating MicroRNAs as Biomarkers of Colorectal Neoplasia. PLoS ONE 2014, 9, e108668. [Google Scholar] [CrossRef]
- Ito, M.; Mitsuhashi, K.; Igarashi, H.; Nosho, K.; Naito, T.; Yoshii, S.; Takahashi, H.; Fujita, M.; Sukawa, Y.; Yamamoto, E.; et al. MicroRNA-31 Expression in Relation to BRAF Mutation, CpG Island Methylation and Colorectal Continuum in Serrated Lesions. Int. J. Cancer 2014, 135, 2507–2515. [Google Scholar] [CrossRef]
- Tsikitis, V.L.; White, I.; Mori, M.; Potter, A.; Bhattcharyya, A.; Hamilton, S.R.; Buckmeier, J.; Lance, P.; Thompson, P. Differential Expression of MicroRNA-320a, -145, and -192 along the Continuum of Normal Mucosa to High-Grade Dysplastic Adenomas of the Colorectum. Am. J. Surg. 2014, 207, 717–722. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.-H.; Ren, L.-L.; Zheng, P.; Zheng, H.-M.; Yu, Y.-N.; Wang, J.-L.; Lin, Y.-W.; Chen, Y.-X.; Ge, Z.-Z.; Chen, X.-Y.; et al. MiR-194 as a Predictor for Adenoma Recurrence in Patients with Advanced Colorectal Adenoma after Polypectomy. Cancer Prev. Res. 2014, 7, 607–616. [Google Scholar] [CrossRef] [PubMed]
- Fang, Z.; Tang, J.; Bai, Y.; Lin, H.; You, H.; Jin, H.; Lin, L.; You, P.; Li, J.; Dai, Z.; et al. Plasma Levels of MicroRNA-24, MicroRNA-320a, and MicroRNA-423-5p Are Potential Biomarkers for Colorectal Carcinoma. J. Exp. Clin. Cancer Res. 2015, 34, 86. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.W.; Ng, S.C.; Dong, Y.; Tian, L.; Ng, S.S.M.; Leung, W.W.; Law, W.T.; Yau, T.O.; Chan, F.K.L.; Sung, J.J.Y.; et al. Identification of MicroRNA-135b in Stool as a Potential Noninvasive Biomarker for Colorectal Cancer and Adenoma. Clin. Cancer Res. 2014, 20, 2994–3002. [Google Scholar] [CrossRef] [PubMed]
- Aslam, M.I.; Hussein, S.; West, K.; Singh, B.; Jameson, J.S.; Pringle, J.H. MicroRNAs Associated with Initiation and Progression of Colonic Polyp: A Feasibility Study. Int. J. Surg. 2015, 13, 272–279. [Google Scholar] [CrossRef]
- Slattery, M.L.; Herrick, J.S.; Pellatt, D.F.; Stevens, J.R.; Mullany, L.E.; Wolff, E.; Hoffman, M.D.; Samowitz, W.S.; Wolff, R.K. MicroRNA Profiles in Colorectal Carcinomas, Adenomas and Normal Colonic Mucosa: Variations in MiRNA Expression and Disease Progression. Carcinogenesis 2016, 37, 245–261. [Google Scholar] [CrossRef]
- Tadano, T.; Kakuta, Y.; Hamada, S.; Shimodaira, Y.; Kuroha, M.; Kawakami, Y.; Kimura, T.; Shiga, H.; Endo, K.; Masamune, A.; et al. MicroRNA-320 Family Is Downregulated in Colorectal Adenoma and Affects Tumor Proliferation by Targeting CDK6. World J. Gastrointest. Oncol. 2016, 8, 532–542. [Google Scholar] [CrossRef]
- Tsikitis, V.L.; Potter, A.; Mori, M.; Buckmeier, J.A.; Preece, C.R.; Harrington, C.A.; Bartley, A.N.; Bhattacharyya, A.K.; Hamilton, S.R.; Lance, M.P.; et al. MicroRNA Signatures of Colonic Polyps on Screening and Histology. Cancer Prev. Res. 2016, 9, 942–949. [Google Scholar] [CrossRef]
- Uratani, R.; Toiyama, Y.; Kitajima, T.; Kawamura, M.; Hiro, J.; Kobayashi, M.; Tanaka, K.; Inoue, Y.; Mohri, Y.; Mori, T.; et al. Diagnostic Potential of Cell-Free and Exosomal MicroRNAs in the Identification of Patients with High-Risk Colorectal Adenomas. PLoS ONE 2016, 11, e0160722. [Google Scholar] [CrossRef]
- Slattery, M.L.; Herrick, J.S.; Wolff, R.K.; Mullany, L.E.; Stevens, J.R.; Samowitz, W. The MiRNA Landscape of Colorectal Polyps. Genes Chromosomes Cancer 2017, 56, 347–353. [Google Scholar] [CrossRef]
- Stachowiak, M.; Flisikowska, T.; Bauersachs, S.; Perleberg, C.; Pausch, H.; Switonski, M.; Kind, A.; Saur, D.; Schnieke, A.; Flisikowski, K. Altered MicroRNA Profiles during Early Colon Adenoma Progression in a Porcine Model of Familial Adenomatous Polyposis. Oncotarget 2017, 8, 96154–96160. [Google Scholar] [CrossRef] [PubMed]
- Roberts, B.S.; Hardigan, A.A.; Moore, D.E.; Ramaker, R.C.; Jones, A.L.; Fitz-Gerald, M.B.; Cooper, G.M.; Wilcox, C.M.; Kimberly, R.P.; Myers, R.M. Discovery and Validation of Circulating Biomarkers of Colorectal Adenoma by High-Depth Small RNA Sequencing. Clin. Cancer Res. 2018, 24, 2092–2099. [Google Scholar] [CrossRef] [PubMed]
- Kanth, P.; Hazel, M.W.; Boucher, K.M.; Yang, Z.; Wang, L.; Bronner, M.P.; Boylan, K.E.; Burt, R.W.; Westover, M.; Neklason, D.W.; et al. Small RNA Sequencing of Sessile Serrated Polyps Identifies MicroRNA Profile Associated with Colon Cancer. Genes Chromosomes Cancer 2019, 58, 23–33. [Google Scholar] [CrossRef]
- Marcuello, M.; Duran-Sanchon, S.; Moreno, L.; Lozano, J.J.; Bujanda, L.; Castells, A.; Gironella, M. Analysis of A 6-Mirna Signature in Serum from Colorectal Cancer Screening Participants as Non-Invasive Biomarkers for Advanced Adenoma and Colorectal Cancer Detection. Cancers 2019, 11, 1542. [Google Scholar] [CrossRef]
- Žlajpah, M.; Boštjančič, E.; Tepeš, B.; Zidar, N. Expression of Extracellular Matrix-Related Genes and Their Regulatory MicroRNAs in Problematic Colorectal Polyps. Cancers 2020, 12, 3715. [Google Scholar] [CrossRef]
- Nagy, Z.B.; Wichmann, B.; Kalmár, A.; Galamb, O.; Barták, B.K.; Spisák, S.; Tulassay, Z.; Molnár, B. Colorectal Adenoma and Carcinoma Specific MiRNA Profiles in Biopsy and Their Expression in Plasma Specimens. Clin. Epigenetics 2017, 9, 22. [Google Scholar] [CrossRef]
- You, Y.N.; Lee, L.D.; Deschner, B.W.; Shibata, D. Colorectal Cancer in the Adolescent and Young Adult Population. JCO Oncol. Pract. 2020, 16, 19–27. [Google Scholar] [CrossRef] [PubMed]
- Herreros-Villanueva, M.; Duran-Sanchon, S.; Martín, A.C.; Pérez-Palacios, R.; Vila-Navarro, E.; Marcuello, M.; Diaz-Centeno, M.; Cubiella, J.; Diez, M.S.; Bujanda, L.; et al. Plasma MicroRNA Signature Validation for Early Detection of Colorectal Cancer. Clin. Transl. Gastroenterol. 2019, 10, e00003. [Google Scholar] [CrossRef]
- Birkeland, E.; Ferrero, G.; Pardini, B.; Umu, S.U.; Tarallo, S.; Bulfamante, S.; Hoff, G.; Senore, C.; Rounge, T.B.; Naccarati, A. Profiling Small RNAs in Fecal Immunochemical Tests: Is It Possible? Mol. Cancer 2023, 22, 161. [Google Scholar] [CrossRef]
- Wallace, L.; Aikhionbare, K.; Banerjee, S.; Peagler, K.; Pitts, M.; Yao, X.; Aikhionbare, F. Differential Expression Profiles of Mitogenome Associated MicroRNAs among Colorectal Adenomatous Polyps. Cancer Res. J. 2021, 9, 23–33. [Google Scholar] [CrossRef]
- Ng, E.K.O.; Chong, W.W.S.; Jin, H.; Lam, E.K.Y.; Shin, V.Y.; Yu, J.; Poon, T.C.W.; Ng, S.S.M.; Sung, J.J.Y. Differential Expression of MicroRNAs in Plasma of Patients with Colorectal Cancer: A Potential Marker for Colorectal Cancer Screening. Gut 2009, 58, 1375–1381. [Google Scholar] [CrossRef] [PubMed]
- Pu, X.; Huang, G.; Guo, H.; Guo, C.; Li, H.; Ye, S.; Ling, S.; Jiang, L.; Tian, Y.; Lin, T. Circulating MiR-221 Directly Amplified from Plasma Is a Potential Diagnostic and Prognostic Marker of Colorectal Cancer and Is Correlated with P53 Expression. J. Gastroenterol. Hepatol. 2010, 25, 1674–1680. [Google Scholar] [CrossRef] [PubMed]
- Kanaan, Z.; Rai, S.N.; Eichenberger, M.R.; Roberts, H.; Keskey, B.; Pan, J.; Galandiuk, S. Plasma MiR-21. Ann. Surg. 2012, 256, 544–551. [Google Scholar] [CrossRef] [PubMed]
- Luo, X.; Stock, C.; Burwinkel, B.; Brenner, H. Identification and Evaluation of Plasma MicroRNAs for Early Detection of Colorectal Cancer. PLoS ONE 2013, 8, e62880. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Xiang, J.; Li, Z.; Lu, S.; Hu, J.; Gao, X.; Yu, L.; Wang, L.; Wang, J.; Wu, Y.; et al. A Plasma MicroRNA Panel for Early Detection of Colorectal Cancer. Int. J. Cancer 2015, 136, 152–161. [Google Scholar] [CrossRef]
- Xu, L.; Li, M.; Wang, M.; Yan, D.; Feng, G.; An, G. The Expression of MicroRNA-375 in Plasma and Tissue Is Matched in Human Colorectal Cancer. BMC Cancer 2014, 14, 714. [Google Scholar] [CrossRef]
- Chen, W.-Y.; Zhao, X.-J.; Yu, Z.-F.; Hu, F.-L.; Liu, Y.-P.; Cui, B.-B.; Dong, X.-S.; Zhao, Y.-S. The Potential of Plasma MiRNAs for Diagnosis and Risk Estimation of Colorectal Cancer. Int. J. Clin. Exp. Pathol. 2015, 8, 7092–7101. [Google Scholar]
- Ghanbari, R.; Mosakhani, N.; Asadi, J.; Nouraee, N.; Mowla, S.J.; Yazdani, Y.; Mohamadkhani, A.; Poustchi, H.; Knuutila, S.; Malekzadeh, R. Downregulation of Plasma MiR-142-3p and MiR-26a-5p in Patients with Colorectal Carcinoma. Iran. J. Cancer Prev. 2015, 8, e2329. [Google Scholar] [CrossRef]
- Sun, Y.; Liu, Y.; Cogdell, D.; Calin, G.A.; Sun, B.; Kopetz, S.; Hamilton, S.R.; Zhang, W. Examining Plasma MicroRNA Markers for Colorectal Cancer at Different Stages. Oncotarget 2016, 7, 11434–11449. [Google Scholar] [CrossRef]
- Chang, P.-Y.; Chen, C.-C.; Chang, Y.-S.; Tsai, W.-S.; You, J.-F.; Lin, G.-P.; Chen, T.-W.; Chen, J.-S.; Chan, E.-C. MicroRNA-223 and MicroRNA-92a in Stool and Plasma Samples Act as Complementary Biomarkers to Increase Colorectal Cancer Detection. Oncotarget 2016, 7, 10663–10675. [Google Scholar] [CrossRef]
- Li, L.; Guo, Y.; Chen, Y.; Wang, J.; Zhen, L.; Guo, X.; Liu, J.; Jing, C. The Diagnostic Efficacy and Biological Effects of MicroRNA-29b for Colon Cancer. Technol. Cancer Res. Treat. 2016, 15, 772–779. [Google Scholar] [CrossRef] [PubMed]
- Sazanov, A.A.; Kiselyova, E.V.; Zakharenko, A.A.; Romanov, M.N.; Zaraysky, M.I. Plasma and Saliva MiR-21 Expression in Colorectal Cancer Patients. J. Appl. Genet. 2017, 58, 231–237. [Google Scholar] [CrossRef] [PubMed]
- Krawczyk, P.; Powrózek, T.; Olesiński, T.; Dmitruk, A.; Dziwota, J.; Kowalski, D.; Milanowski, J. Evaluation of MiR-506 and MiR-4316 Expression in Early and Non-Invasive Diagnosis of Colorectal Cancer. Int. J. Color. Dis. 2017, 32, 1057–1060. [Google Scholar] [CrossRef] [PubMed]
- Wikberg, M.L.; Myte, R.; Palmqvist, R.; van Guelpen, B.; Ljuslinder, I. Plasma MiRNA Can Detect Colorectal Cancer, but How Early? Cancer Med. 2018, 7, 1697–1705. [Google Scholar] [CrossRef]
- Liu, X.; Xu, T.; Hu, X.; Chen, X.; Zeng, K.; Sun, L.; Wang, S. Elevated Circulating MiR-182 Acts as a Diagnostic Biomarker for Early Colorectal Cancer. Cancer Manag. Res. 2018, 10, 857–865. [Google Scholar] [CrossRef]
- Tan, Y.; Lin, J.-J.; Yang, X.; Gou, D.-M.; Fu, L.; Li, F.-R.; Yu, X.-F. A Panel of Three Plasma MicroRNAs for Colorectal Cancer Diagnosis. Cancer Epidemiol. 2019, 60, 67–76. [Google Scholar] [CrossRef]
- Radwan, E.; Shaltout, A.S.; Mansor, S.G.; Shafik, E.A.; Abbas, W.A.; Shehata, M.R.; Ali, M. Evaluation of Circulating MicroRNAs-211 and 25 as Diagnostic Biomarkers of Colorectal Cancer. Mol. Biol. Rep. 2021, 48, 4601–4610. [Google Scholar] [CrossRef]
- Hassan, R.; Omar, M.; Shehata, M.; Raafat, M.; Hamdy, A.; Zedan, A.; Jabir, M. Role of Serum MiR-21 and MiR-92a in Colorectal Cancer Diagnosis as Novel Molecular Biomarkers. Int. J. Cancer Biomed. Res. 2021, 5, 95–104. [Google Scholar] [CrossRef]
- Zaki, A.; Fawzy, A.; Akel, S.; Gamal, H.; Elshimy, R.A. Evaluation of MicroRNA 92a Expression and Its Target Protein Bim in Colorectal Cancer. Asian Pac. J. Cancer Prev. 2022, 23, 723–730. [Google Scholar] [CrossRef]
- Zhang, H.; Zhu, M.; Shan, X.; Zhou, X.; Wang, T.; Zhang, J.; Tao, J.; Cheng, W.; Chen, G.; Li, J.; et al. A Panel of Seven-MiRNA Signature in Plasma as Potential Biomarker for Colorectal Cancer Diagnosis. Gene 2019, 687, 246–254. [Google Scholar] [CrossRef]
- Wang, B.; Zhang, Q. The Expression and Clinical Significance of Circulating MicroRNA-21 in Serum of Five Solid Tumors. J. Cancer Res. Clin. Oncol. 2012, 138, 1659–1666. [Google Scholar] [CrossRef] [PubMed]
- Basati, G.; Emami Razavi, A.; Abdi, S.; Mirzaei, A. Elevated Level of MicroRNA-21 in the Serum of Patients with Colorectal Cancer. Med. Oncol. 2014, 31, 205. [Google Scholar] [CrossRef] [PubMed]
- Lv, Z.; Fan, Y.; Chen, H.; Zhao, D. Investigation of MicroRNA-155 as a Serum Diagnostic and Prognostic Biomarker for Colorectal Cancer. Tumor Biol. 2015, 36, 1619–1625. [Google Scholar] [CrossRef] [PubMed]
- Zheng, G.; Du, L.; Yang, X.; Zhang, X.; Wang, L.; Yang, Y.; Li, J.; Wang, C. Serum MicroRNA Panel as Biomarkers for Early Diagnosis of Colorectal Adenocarcinoma. Br. J. Cancer 2014, 111, 1985–1992. [Google Scholar] [CrossRef]
- Basati, G.; Razavi, A.E.; Pakzad, I.; Malayeri, F.A. Circulating Levels of the MiRNAs, MiR-194, and MiR-29b, as Clinically Useful Biomarkers for Colorectal Cancer. Tumor Biol. 2016, 37, 1781–1788. [Google Scholar] [CrossRef]
- Nonaka, R.; Miyake, Y.; Hata, T.; Kagawa, Y.; Kato, T.; Osawa, H.; Nishimura, J.; Ikenaga, M.; Murata, K.; Uemura, M.; et al. Circulating MiR-103 and MiR-720 as Novel Serum Biomarkers for Patients with Colorectal Cancer. Int. J. Oncol. 2015, 47, 1097–1102. [Google Scholar] [CrossRef]
- Zekri, A.-R.N.; Youssef, A.S.E.-D.; Lotfy, M.M.; Gabr, R.; Ahmed, O.S.; Nassar, A.; Hussein, N.; Omran, D.; Medhat, E.; Eid, S.; et al. Circulating Serum MiRNAs as Diagnostic Markers for Colorectal Cancer. PLoS ONE 2016, 11, e0154130. [Google Scholar] [CrossRef]
- Vychytilova-Faltejskova, P.; Radova, L.; Sachlova, M.; Kosarova, Z.; Slaba, K.; Fabian, P.; Grolich, T.; Prochazka, V.; Kala, Z.; Svoboda, M.; et al. Serum-Based MicroRNA Signatures in Early Diagnosis and Prognosis Prediction of Colon Cancer. Carcinogenesis 2016, 37, 941–950. [Google Scholar] [CrossRef] [PubMed]
- Imaoka, H.; Toiyama, Y.; Fujikawa, H.; Hiro, J.; Saigusa, S.; Tanaka, K.; Inoue, Y.; Mohri, Y.; Mori, T.; Kato, T.; et al. Circulating MicroRNA-1290 as a Novel Diagnostic and Prognostic Biomarker in Human Colorectal Cancer. Ann. Oncol. 2016, 27, 1879–1886. [Google Scholar] [CrossRef]
- Bastaminejad, S.; Taherikalani, M.; Ghanbari, R.; Akbari, A.; Shabab, N.; Saidijam, M. Investigation of MicroRNA-21 Expression Levels in Serum and Stool as a Potential Non-Invasive Biomarker for Diagnosis of Colorectal Cancer. Iran. Biomed. J. 2017, 21, 106–113. [Google Scholar] [CrossRef]
- Ng, L.; Wan, T.M.-H.; Man, J.H.-W.; Chow, A.K.-M.; Iyer, D.; Chen, G.; Yau, T.C.-C.; Lo, O.S.-H.; Foo, D.C.-C.; Poon, J.T.-C.; et al. Identification of Serum MiR-139-3p as a Non-Invasive Biomarker for Colorectal Cancer. Oncotarget 2017, 8, 27393–27400. [Google Scholar] [CrossRef]
- Liu, X.; Zheng, W.; Zhang, X.; Dong, M.; Sun, G. The Diagnostic and Prognostic Value of Serum MiR-206 in Colorectal Cancer. Int. J. Clin. Exp. Pathol. 2017, 10, 7528–7533. [Google Scholar]
- Elshafei, A.; Shaker, O.; Abd El-motaal, O.; Salman, T. The Expression Profiling of Serum MiR-92a, MiR-375, and MiR-760 in Colorectal Cancer: An Egyptian Study. Tumor Biol. 2017, 39, 101042831770576. [Google Scholar] [CrossRef]
- Zhu, M.; Huang, Z.; Zhu, D.; Zhou, X.; Shan, X.; Qi, L.; Wu, L.; Cheng, W.; Zhu, J.; Zhang, L.; et al. A Panel of MicroRNA Signature in Serum for Colorectal Cancer Diagnosis. Oncotarget 2017, 8, 17081–17091. [Google Scholar] [CrossRef]
- Xu, C.; Gu, L. The Diagnostic Effect of Serum MiR-196b as Biomarker in Colorectal Cancer. Biomed. Rep. 2017, 6, 39–45. [Google Scholar] [CrossRef]
- Guo, S.; Zhang, J.; Wang, B.; Zhang, B.; Wang, X.; Huang, L.; Liu, H.; Jia, B. A 5-Serum MiRNA Panel for the Early Detection of Colorectal Cancer. Onco Targets Ther. 2018, 11, 2603–2614. [Google Scholar] [CrossRef]
- Yang, Q.; Wang, S.; Huang, J.; Xia, C.; Jin, H.; Fan, Y. Serum MiR-20a and MiR-486 Are Potential Biomarkers for Discriminating Colorectal Neoplasia: A Pilot Study. J. Cancer Res. Ther. 2018, 14, 1572–1577. [Google Scholar] [CrossRef]
- Sabry, D.; El-Deek, S.E.M.; Maher, M.; El-Baz, M.A.H.; El-Bader, H.M.; Amer, E.; Hassan, E.A.; Fathy, W.; El-Deek, H.E.M. Role of MiRNA-210, MiRNA-21 and MiRNA-126 as Diagnostic Biomarkers in Colorectal Carcinoma: Impact of HIF-1α-VEGF Signaling Pathway. Mol. Cell. Biochem. 2019, 454, 177–189. [Google Scholar] [CrossRef]
- Shi, Y.; Liu, Z. Serum MiR-92a-1 Is a Novel Diagnostic Biomarker for Colorectal Cancer. J. Cell. Mol. Med. 2020, 24, 8363–8367. [Google Scholar] [CrossRef]
- Wang, X.; Li, Z.; Fu, J.; Xu, W.; Li, Z. Diagnostic Value and Prognostic Significance of LI cadherin and MiR 378e in Colorectal Cancer. Oncol. Lett. 2020, 20, 2456–2464. [Google Scholar] [CrossRef]
- Peng, X.; Wang, J.; Zhang, C.; Liu, K.; Zhao, L.; Chen, X.; Huang, G.; Lai, Y. A Three-MiRNA Panel in Serum as a Noninvasive Biomarker for Colorectal Cancer Detection. Int. J. Biol. Markers 2020, 35, 74–82. [Google Scholar] [CrossRef]
- Shiosaki, J.; Tiirikainen, M.; Peplowska, K.; Shaeffer, D.; Machida, M.; Sakamoto, K.; Takahashi, M.; Kojima, K.; Machi, J.; Bryant-Greenwood, P.; et al. Serum Micro-RNA Identifies Early Stage Colorectal Cancer in a Multi-Ethnic Population. Asian Pac. J. Cancer Prev. 2020, 21, 3019–3026. [Google Scholar] [CrossRef]
- Elaguizy, M.; Sheta, M.; Ibrahim, N.; Eltaweel, A.; Mostafa, A. Serum MicroRNA-18a, MicroRNA-21 and MicroRNA-92a as Diagnostic Markers in Colorectal Cancer Patients. J. BUON 2020, 25, 1443–1448. [Google Scholar]
- Salah, M.; Shaheen, I.; El-Shanawany, P.; Eid Saad, N.; Saad, R.; El Guibaly, M.; Momen, N. Detection of MiR-1246, MiR-23a and MiR-451 in Sera of Colorectal Carcinoma Patients: A Case-Control Study in Cairo University Hospital. Afr. Health Sci. 2020, 20, 1283–1291. [Google Scholar] [CrossRef]
- Ghareib, A.F.; Mohamed, R.H.; Abd el-Fatah, A.R.; Saadawy, S.F. Assessment of Serum MicroRNA-21 Gene Expression for Diagnosis and Prognosis of Colorectal Cancer. J. Gastrointest. Cancer 2020, 51, 818–823. [Google Scholar] [CrossRef]
- Pastor-Navarro, B.; García-Flores, M.; Fernández-Serra, A.; Blanch-Tormo, S.; Martínez de Juan, F.; Martínez-Lapiedra, C.; Maia de Alcantara, F.; Peñalver, J.C.; Cervera-Deval, J.; Rubio-Briones, J.; et al. A Tetra-Panel of Serum Circulating MiRNAs for the Diagnosis of the Four Most Prevalent Tumor Types. Int. J. Mol. Sci. 2020, 21, 2783. [Google Scholar] [CrossRef]
- Bader El Din, N.G.; Ibrahim, M.K.; El-Shenawy, R.; Salum, G.M.; Farouk, S.; Zayed, N.; Khairy, A.; El Awady, M. MicroRNAs Expression Profiling in Egyptian Colorectal Cancer Patients. IUBMB Life 2020, 72, 275–284. [Google Scholar] [CrossRef]
- Farouk, S.; Khairy, A.; Salem, A.M.; Soliman, A.F.; Bader El Din, N.G. Differential Expression of MiR-21, MiR-23a, and MiR-27a, and Their Diagnostic Significance in Egyptian Colorectal Cancer Patients. Genet. Test. Mol. Biomark. 2020, 24, 825–834. [Google Scholar] [CrossRef]
- Huang, G.; Wei, B.; Chen, Z.; Wang, J.; Zhao, L.; Peng, X.; Liu, K.; Lai, Y.; Ni, L. Identification of A Four-Microrna Panel in Serum As Promising Biomarker for Colorectal Carcinoma Detection. Biomark. Med. 2020, 14, 749–760. [Google Scholar] [CrossRef]
- Pan, Z.; Miao, L. Serum MicroRNA 592 Serves as a Novel Potential Biomarker for Early Diagnosis of Colorectal Cancer. Oncol. Lett. 2020, 20, 1119–1126. [Google Scholar] [CrossRef]
- Jin, X.-H.; Lu, S.; Wang, A.-F. Expression and Clinical Significance of MiR-4516 and MiR-21-5p in Serum of Patients with Colorectal Cancer. BMC Cancer 2020, 20, 241. [Google Scholar] [CrossRef]
- Akbar, S.; Mashreghi, S.; Kalani, M.R.; Valanik, A.; Ahmadi, F.; Aalikhani, M.; Bazi, Z. Blood MiRNAs MiR-549a, MiR-552, and MiR-592 Serve as Potential Disease-Specific Panels to Diagnose Colorectal Cancer. Heliyon 2024, 10, e28492. [Google Scholar] [CrossRef]
- Koga, Y.; Yamazaki, N.; Yamamoto, Y.; Yamamoto, S.; Saito, N.; Kakugawa, Y.; Otake, Y.; Matsumoto, M.; Matsumura, Y. Fecal MiR-106a Is a Useful Marker for Colorectal Cancer Patients with False-Negative Results in Immunochemical Fecal Occult Blood Test. Cancer Epidemiol. Biomark. Prev. 2013, 22, 1844–1852. [Google Scholar] [CrossRef]
- Yau, T.O.; Wu, C.W.; Dong, Y.; Tang, C.-M.; Ng, S.S.M.; Chan, F.K.L.; Sung, J.J.Y.; Yu, J. MicroRNA-221 and MicroRNA-18a Identification in Stool as Potential Biomarkers for the Non-Invasive Diagnosis of Colorectal Carcinoma. Br. J. Cancer 2014, 111, 1765–1771. [Google Scholar] [CrossRef]
- Ghanbari, R.; Mosakhani, N.; Sarhadi, V.K.; Armengol, G.; Nouraee, N.; Mohammadkhani, A.; Khorrami, S.; Arefian, E.; Paryan, M.; Malekzadeh, R.; et al. Simultaneous Underexpression of Let-7a-5p and Let-7f-5p MicroRNAs in Plasma and Stool Samples from Early Stage Colorectal Carcinoma. Biomark. Cancer 2015, 7, 39–48. [Google Scholar] [CrossRef]
- Zhu, Y.; Xu, A.; Li, J.; Fu, J.; Wang, G.; Yang, Y.; Cui, L.; Sun, J. Fecal MiR-29a and MiR-224 as the Noninvasive Biomarkers for Colorectal Cancer. Cancer Biomark. 2016, 16, 259–264. [Google Scholar] [CrossRef]
- Yau, T.O.; Wu, C.W.; Tang, C.-M.; Chen, Y.; Fang, J.; Dong, Y.; Liang, Q.; Man Ng, S.S.; Chan, F.K.L.; Sung, J.J.Y.; et al. MicroRNA-20a in Human Faeces as a Non-Invasive Biomarker for Colorectal Cancer. Oncotarget 2016, 7, 1559–1568. [Google Scholar] [CrossRef]
- Liu, H.; Gong, W.; Lou, J.; Ju, H.; Yin, X.; Liu, Y.; Tian, Z. MicroRNA-21 and MicroRNA-146a Identification in Stool and Its Clinical Significance in Colorectal Neoplasms. Int. J. Clin. Exp. Med. 2016, 9, 16441–16449. [Google Scholar]
- Wu, C.W.; Cao, X.; Berger, C.K.; Foote, P.H.; Mahoney, D.W.; Simonson, J.A.; Anderson, B.W.; Yab, T.C.; Taylor, W.R.; Boardman, L.A.; et al. Novel Approach to Fecal Occult Blood Testing by Assay of Erythrocyte-Specific MicroRNA Markers. Dig. Dis. Sci. 2017, 62, 1985–1994. [Google Scholar] [CrossRef] [PubMed]
- Choi, H.H.; Cho, Y.-S.; Choi, J.H.; Kim, H.-K.; Kim, S.S.; Chae, H.-S. Stool-Based MiR-92a and MiR-144* as Noninvasive Biomarkers for Colorectal Cancer Screening. Oncology 2019, 97, 173–179. [Google Scholar] [CrossRef] [PubMed]
- Duran-Sanchon, S.; Moreno, L.; Augé, J.M.; Serra-Burriel, M.; Cuatrecasas, M.; Moreira, L.; Martín, A.; Serradesanferm, A.; Pozo, À.; Costa, R.; et al. Identification and Validation of MicroRNA Profiles in Fecal Samples for Detection of Colorectal Cancer. Gastroenterology 2020, 158, 947–957.e4. [Google Scholar] [CrossRef] [PubMed]
- Rapado-González, Ó.; Majem, B.; Álvarez-Castro, A.; Díaz-Peña, R.; Abalo, A.; Suárez-Cabrera, L.; Gil-Moreno, A.; Santamaría, A.; López-López, R.; Muinelo-Romay, L.; et al. A Novel Saliva-Based MiRNA Signature for Colorectal Cancer Diagnosis. J. Clin. Med. 2019, 8, 2029. [Google Scholar] [CrossRef] [PubMed]
- Yong, F.L.; Law, C.W.; Wang, C.W. Potentiality of a Triple MicroRNA Classifier: MiR-193a-3p, MiR-23a and MiR-338-5p for Early Detection of Colorectal Cancer. BMC Cancer 2013, 13, 280. [Google Scholar] [CrossRef] [PubMed]
- Sarlinova, M.; Halasa, M.; Mistuna, D.; Musak, L.; Iliev, R.; Slaby, O.; Mazuchova, J.; Valentova, V.; Plank, L.; Halasova, E. MiR-21, MiR-221 and MiR-150 Are Deregulated in Peripheral Blood of Patients with Colorectal Cancer. Anticancer. Res. 2016, 36, 5449–5454. [Google Scholar] [CrossRef]
- Wang, J.; Yan, F.; Zhao, Q.; Zhan, F.; Wang, R.; Wang, L.; Zhang, Y.; Huang, X. Circulating Exosomal MiR-125a-3p as a Novel Biomarker for Early-Stage Colon Cancer. Sci. Rep. 2017, 7, 4150. [Google Scholar] [CrossRef]
- Liu, X.; Pan, B.; Sun, L.; Chen, X.; Zeng, K.; Hu, X.; Xu, T.; Xu, M.; Wang, S. Circulating Exosomal MiR-27a and MiR-130a Act as Novel Diagnostic and Prognostic Biomarkers of Colorectal Cancer. Cancer Epidemiol. Biomark. Prev. 2018, 27, 746–754. [Google Scholar] [CrossRef]
- Liu, W.; Yang, D.; Chen, L.; Liu, Q.; Wang, W.; Yang, Z.; Shang, A.; Quan, W.; Li, D. Plasma Exosomal MiRNA-139-3p Is a Novel Biomarker of Colorectal Cancer. J. Cancer 2020, 11, 4899–4906. [Google Scholar] [CrossRef]
- Ogata-Kawata, H.; Izumiya, M.; Kurioka, D.; Honma, Y.; Yamada, Y.; Furuta, K.; Gunji, T.; Ohta, H.; Okamoto, H.; Sonoda, H.; et al. Circulating Exosomal MicroRNAs as Biomarkers of Colon Cancer. PLoS ONE 2014, 9, e92921. [Google Scholar] [CrossRef]
- Karimi, N.; Ali Hosseinpour Feizi, M.; Safaralizadeh, R.; Hashemzadeh, S.; Baradaran, B.; Shokouhi, B.; Teimourian, S. Serum Overexpression of MiR-301a and MiR-23a in Patients with Colorectal Cancer. J. Chin. Med. Assoc. 2019, 82, 215–220. [Google Scholar] [CrossRef]
- Zhao, Y.J.; Song, X.; Niu, L.; Tang, Y.; Song, X.; Xie, L. Circulating Exosomal MiR-150-5p and MiR-99b-5p as Diagnostic Biomarkers for Colorectal Cancer. Front. Oncol. 2019, 9, 1129. [Google Scholar] [CrossRef]
- Maminezhad, H.; Ghanadian, S.; Pakravan, K.; Razmara, E.; Rouhollah, F.; Mossahebi-Mohammadi, M.; Babashah, S. A Panel of Six-Circulating MiRNA Signature in Serum and Its Potential Diagnostic Value in Colorectal Cancer. Life Sci. 2020, 258, 118226. [Google Scholar] [CrossRef]
- Han, L.; Shi, W.-J.; Xie, Y.-B.; Zhang, Z.-G. Diagnostic Value of Four Serum Exosome MicroRNAs Panel for the Detection of Colorectal Cancer. World J. Gastrointest. Oncol. 2021, 13, 970–979. [Google Scholar] [CrossRef]
- Cui, X.; Lv, Z.; Ding, H.; Xing, C.; Yuan, Y. MiR-1539 and Its Potential Role as a Novel Biomarker for Colorectal Cancer. Front. Oncol. 2021, 10, 531244. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Zhuang, Y.; Zhang, J.; Chen, M.; Wu, S. Four Circulating Exosomal MiRNAs as Novel Potential Biomarkers for the Early Diagnosis of Human Colorectal Cancer. Tissue Cell 2021, 70, 101499. [Google Scholar] [CrossRef] [PubMed]
- Roman-Canal, B.; Tarragona, J.; Moiola, C.P.; Gatius, S.; Bonnin, S.; Ruiz-Miró, M.; Sierra, J.E.; Rufas, M.; González, E.; Porcel, J.M.; et al. EV-Associated MiRNAs from Peritoneal Lavage as Potential Diagnostic Biomarkers in Colorectal Cancer. J. Transl. Med. 2019, 17, 208. [Google Scholar] [CrossRef] [PubMed]
- Coleman, D.; Kuwada, S. MiRNA as a Biomarker for the Early Detection of Colorectal Cancer. Genes 2024, 15, 338. [Google Scholar] [CrossRef]
- Tsuchida, A.; Ohno, S.; Wu, W.; Borjigin, N.; Fujita, K.; Aoki, T.; Ueda, S.; Takanashi, M.; Kuroda, M. MiR-92 Is a Key Oncogenic Component of the MiR-17–92 Cluster in Colon Cancer. Cancer Sci. 2011, 102, 2264–2271. [Google Scholar] [CrossRef] [PubMed]
- Shigoka, M.; Tsuchida, A.; Matsudo, T.; Nagakawa, Y.; Saito, H.; Suzuki, Y.; Aoki, T.; Murakami, Y.; Toyoda, H.; Kumada, T.; et al. Deregulation of MiR-92a Expression Is Implicated in Hepatocellular Carcinoma Development. Pathol. Int. 2010, 60, 351–357. [Google Scholar] [CrossRef]
- Si, H.; Sun, X.; Chen, Y.; Cao, Y.; Chen, S.; Wang, H.; Hu, C. Circulating MicroRNA-92a and MicroRNA-21 as Novel Minimally Invasive Biomarkers for Primary Breast Cancer. J. Cancer Res. Clin. Oncol. 2013, 139, 223–229. [Google Scholar] [CrossRef]
- Jiang, Y.; Wang, H.; Li, Y.; Guo, S.; Zhang, L.; Cai, J. Peripheral Blood MiRNAs as a Biomarker for Chronic Cardiovascular Diseases. Sci. Rep. 2014, 4, 5026. [Google Scholar] [CrossRef]
- Bryant, R.J.; Pawlowski, T.; Catto, J.W.F.; Marsden, G.; Vessella, R.L.; Rhees, B.; Kuslich, C.; Visakorpi, T.; Hamdy, F.C. Changes in Circulating MicroRNA Levels Associated with Prostate Cancer. Br. J. Cancer 2012, 106, 768–774. [Google Scholar] [CrossRef] [PubMed]
- Peng, W.; Liu, Y.-N.; Zhu, S.-Q.; Li, W.-Q.; Guo, F.-C. The Correlation of Circulating Pro-Angiogenic MiRNAs’ Expressions with Disease Risk, Clinicopathological Features, and Survival Profiles in Gastric Cancer. Cancer Med. 2018, 7, 3773–3791. [Google Scholar] [CrossRef] [PubMed]
- Zeng, X.; Xiang, J.; Wu, M.; Xiong, W.; Tang, H.; Deng, M.; Li, X.; Liao, Q.; Su, B.; Luo, Z.; et al. Circulating MiR-17, MiR-20a, MiR-29c, and MiR-223 Combined as Non-Invasive Biomarkers in Nasopharyngeal Carcinoma. PLoS ONE 2012, 7, e46367. [Google Scholar] [CrossRef]
- Nguyen, T.T.P.; Suman, K.H.; Nguyen, T.B.; Nguyen, H.T.; Do, D.N. The Role of MiR-29s in Human Cancers—An Update. Biomedicines 2022, 10, 2121. [Google Scholar] [CrossRef]
- Mo, W.-Y.; Cao, S.-Q. MiR-29a-3p: A Potential Biomarker and Therapeutic Target in Colorectal Cancer. Clin. Transl. Oncol. 2022, 25, 563–577. [Google Scholar] [CrossRef]
- Di Martino, M.T.; Arbitrio, M.; Caracciolo, D.; Cordua, A.; Cuomo, O.; Grillone, K.; Riillo, C.; Caridà, G.; Scionti, F.; Labanca, C.; et al. MiR-221/222 as Biomarkers and Targets for Therapeutic Intervention on Cancer and Other Diseases: A Systematic Review. Mol. Ther. Nucleic Acids 2022, 27, 1191–1224. [Google Scholar] [CrossRef]
- Cai, K.; Shen, F.; Cui, J.-H.; Yu, Y.; Pan, H.-Q. Expression of MiR-221 in Colon Cancer Correlates with Prognosis. Int. J. Clin. Exp. Med. 2015, 8, 2794–2798. [Google Scholar] [PubMed]
- Tang, H.; Deng, M.; Liao, Q.; Zeng, X.; Zhou, X.; Su, Q. Expression and Clinical Significance of MiR-23a and Metastasis Suppressor 1 in Colon Carcinoma. Zhonghua Bing. Li Xue Za Zhi 2012, 41, 28–32. [Google Scholar]
- Fayyad-Kazan, H.; Bitar, N.; Najar, M.; Lewalle, P.; Fayyad-Kazan, M.; Badran, R.; Hamade, E.; Daher, A.; Hussein, N.; ELDirani, R.; et al. Circulating MiR-150 and MiR-342 in Plasma Are Novel Potential Biomarkers for Acute Myeloid Leukemia. J. Transl. Med. 2013, 11, 31. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, J.; Li, J.; Wang, X.; Song, W. MicroRNA-150 Promotes Cell Proliferation, Migration, and Invasion of Cervical Cancer through Targeting PDCD4. Biomed. Pharmacother. 2018, 97, 511–517. [Google Scholar] [CrossRef]
- Mall, C.; Rocke, D.M.; Durbin-Johnson, B.; Weiss, R.H. Stability of MiRNA in Human Urine Supports Its Biomarker Potential. Biomark. Med. 2013, 7, 623–631. [Google Scholar] [CrossRef] [PubMed]
- Tan, H.; Huang, S.; Zhang, Z.; Qian, X.; Sun, P.; Zhou, X. Pan-Cancer Analysis on MicroRNA-Associated Gene Activation. EBioMedicine 2019, 43, 82–97. [Google Scholar] [CrossRef] [PubMed]
- Ghafouri-Fard, S.; Khoshbakht, T.; Hussen, B.M.; Jamal, H.H.; Taheri, M.; Hajiesmaeili, M. A Comprehensive Review on Function of MiR-15b-5p in Malignant and Non-Malignant Disorders. Front. Oncol. 2022, 12, 870996. [Google Scholar] [CrossRef] [PubMed]
- Gasparello, J.; Gambari, L.; Papi, C.; Rozzi, A.; Manicardi, A.; Corradini, R.; Gambari, R.; Finotti, A. High Levels of Apoptosis Are Induced in the Human Colon Cancer HT-29 Cell Line by Co-Administration of Sulforaphane and a Peptide Nucleic Acid Targeting MiR-15b-5p. Nucleic Acid Ther. 2020, 30, 164–174. [Google Scholar] [CrossRef] [PubMed]
- Zhao, C.; Zhao, Q.; Zhang, C.; Wang, G.; Yao, Y.; Huang, X.; Zhan, F.; Zhu, Y.; Shi, J.; Chen, J.; et al. MiR-15b-5p Resensitizes Colon Cancer Cells to 5-Fluorouracil by Promoting Apoptosis via the NF-ΚB/XIAP Axis. Sci. Rep. 2017, 7, 4194. [Google Scholar] [CrossRef]
- Wu, B.; Liu, G.; Jin, Y.; Yang, T.; Zhang, D.; Ding, L.; Zhou, F.; Pan, Y.; Wei, Y. MiR-15b-5p Promotes Growth and Metastasis in Breast Cancer by Targeting HPSE2. Front. Oncol. 2020, 10, 108. [Google Scholar] [CrossRef]
- Wang, F.; Zu, Y.; Zhu, S.; Yang, Y.; Huang, W.; Xie, H.; Li, G. Long Noncoding RNA MAGI2-AS3 Regulates CCDC19 Expression by Sponging MiR-15b-5p and Suppresses Bladder Cancer Progression. Biochem. Biophys. Res. Commun. 2018, 507, 231–235. [Google Scholar] [CrossRef]
- Zhu, Y.; Zhang, X.; Wang, L.; Zhu, X.; Xia, Z.; Xu, L.; Xu, J. FENDRR Suppresses Cervical Cancer Proliferation and Invasion by Targeting MiR-15a/b-5p and Regulating TUBA1A Expression. Cancer Cell Int. 2020, 20, 152. [Google Scholar] [CrossRef]
- Miao, S.; Wang, J.; Xuan, L.; Liu, X. LncRNA TTN-AS1 Acts as Sponge for MiR-15b-5p to Regulate FBXW7 Expression in Ovarian Cancer. BioFactors 2020, 46, 600–607. [Google Scholar] [CrossRef]
- Zhao, C.; Li, Y.; Chen, G.; Wang, F.; Shen, Z.; Zhou, R. Overexpression of MiR-15b-5p Promotes Gastric Cancer Metastasis by Regulating PAQR3. Oncol. Rep. 2017, 38, 352–358. [Google Scholar] [CrossRef]
- Zou, J.; Qian, J.; Fu, H.; Yin, F.; Zhao, W.; Xu, L. MicroRNA 15b 5p Exerts Its Tumor Repressive Role via Targeting GDI2: A Novel Insight into the Pathogenesis of Thyroid Carcinoma. Mol. Med. Rep. 2020, 22, 2723–2732. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Fan, R.-G.; Qin, C.-L.; Jia, J.; Wu, X.-D.; Zha, W.-Z. LncRNA-H19 Activates CDC42/PAK1 Pathway to Promote Cell Proliferation, Migration and Invasion by Targeting MiR-15b in Hepatocellular Carcinoma. Genomics 2019, 111, 1862–1872. [Google Scholar] [CrossRef] [PubMed]
- Chava, S.; Reynolds, C.P.; Pathania, A.S.; Gorantla, S.; Poluektova, L.Y.; Coulter, D.W.; Gupta, S.C.; Pandey, M.K.; Challagundla, K.B. MiR-15a-5p, MiR-15b-5p, and MiR-16-5p Inhibit Tumor Progression by Directly Targeting MYCN in Neuroblastoma. Mol. Oncol. 2020, 14, 180–196. [Google Scholar] [CrossRef]
- Weng, Y.; Shen, Y.; He, Y.; Pan, X.; Xu, J.; Jiang, Y.; Zhang, Q.; Wang, S.; Kong, F.; Zhao, S.; et al. The MiR-15b-5p/PDK4 Axis Regulates Osteosarcoma Proliferation through Modulation of the Warburg Effect. Biochem. Biophys. Res. Commun. 2018, 503, 2749–2757. [Google Scholar] [CrossRef]
- Chen, R.; Sheng, L.; Zhang, H.-J.; Ji, M.; Qian, W.-Q. MiR-15b-5p Facilitates the Tumorigenicity by Targeting RECK and Predicts Tumour Recurrence in Prostate Cancer. J. Cell. Mol. Med. 2018, 22, 1855–1863. [Google Scholar] [CrossRef] [PubMed]
- Zhao, S.-Y.; Wang, Z.; Wu, X.-B.; Zhang, S.; Chen, Q.; Wang, D.-D.; Tan, Q.-F. CERS6-AS1 Contributes to the Malignant Phenotypes of Colorectal Cancer Cells by Interacting with MiR-15b-5p to Regulate SPTBN2. Kaohsiung J. Med. Sci. 2022, 38, 403–414. [Google Scholar] [CrossRef]
- Liu, C.; Liu, R.; Wang, B.; Lian, J.; Yao, Y.; Sun, H.; Zhang, C.; Fang, L.; Guan, X.; Shi, J.; et al. Blocking IL-17A Enhances Tumor Response to Anti-PD-1 Immunotherapy in Microsatellite Stable Colorectal Cancer. J. Immunother. Cancer 2021, 9, e001895. [Google Scholar] [CrossRef]
- Ji, D.; Zhan, T.; Li, M.; Yao, Y.; Jia, J.; Yi, H.; Qiao, M.; Xia, J.; Zhang, Z.; Ding, H.; et al. Enhancement of Sensitivity to Chemo/Radiation Therapy by Using MiR-15b against DCLK1 in Colorectal Cancer. Stem Cell Rep. 2018, 11, 1506–1522. [Google Scholar] [CrossRef]
- Sun, L.-N.; Zhi, Z.; Chen, L.-Y.; Zhou, Q.; Li, X.-M.; Gan, W.-J.; Chen, S.; Yang, M.; Liu, Y.; Shen, T.; et al. SIRT1 Suppresses Colorectal Cancer Metastasis by Transcriptional Repression of MiR-15b-5p. Cancer Lett. 2017, 409, 104–115. [Google Scholar] [CrossRef]
- Sur, D.; Advani, S.; Braithwaite, D. MicroRNA Panels as Diagnostic Biomarkers for Colorectal Cancer: A Systematic Review and Meta-Analysis. Front. Med. 2022, 9, 915226. [Google Scholar] [CrossRef]
- Guo, X.-Z.; Ye, X.-L.; Xiao, W.-Z.; Wei, X.-N.; You, Q.-H.; Che, X.-H.; Cai, Y.-J.; Chen, F.; Yuan, H.; Liu, X.-J.; et al. Downregulation of VMP1 Confers Aggressive Properties to Colorectal Cancer. Oncol. Rep. 2015, 34, 2557–2566. [Google Scholar] [CrossRef] [PubMed]
- Jiang, R.; Chen, X.; Ge, S.; Wang, Q.; Liu, Y.; Chen, H.; Xu, J.; Wu, J. MiR-21-5p Induces Pyroptosis in Colorectal Cancer via TGFBI. Front. Oncol. 2021, 10, 610545. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Kumar, M.; Choudhury, S.N.; Becker Buscaglia, L.E.; Barker, J.R.; Kanakamedala, K.; Liu, M.-F.; Li, Y. Loss of the MiR-21 Allele Elevates the Expression of Its Target Genes and Reduces Tumorigenesis. Proc. Natl. Acad. Sci. USA 2011, 108, 10144–10149. [Google Scholar] [CrossRef]
- Wu, Y.; Song, Y.; Xiong, Y.; Wang, X.; Xu, K.; Han, B.; Bai, Y.; Li, L.; Zhang, Y.; Zhou, L. MicroRNA-21 (Mir-21) Promotes Cell Growth and Invasion by Repressing Tumor Suppressor PTEN in Colorectal Cancer. Cell. Physiol. Biochem. 2017, 43, 945–958. [Google Scholar] [CrossRef]
- Asangani, I.A.; Rasheed, S.A.K.; Nikolova, D.A.; Leupold, J.H.; Colburn, N.H.; Post, S.; Allgayer, H. MicroRNA-21 (MiR-21) Post-Transcriptionally Downregulates Tumor Suppressor Pdcd4 and Stimulates Invasion, Intravasation and Metastasis in Colorectal Cancer. Oncogene 2008, 27, 2128–2136. [Google Scholar] [CrossRef]
- He, Q.; Ye, A.; Ye, W.; Liao, X.; Qin, G.; Xu, Y.; Yin, Y.; Luo, H.; Yi, M.; Xian, L.; et al. Cancer-Secreted Exosomal MiR-21-5p Induces Angiogenesis and Vascular Permeability by Targeting KRIT1. Cell Death Dis. 2021, 12, 576. [Google Scholar] [CrossRef]
- Liu, M.; Tang, Q.; Qiu, M.; Lang, N.; Li, M.; Zheng, Y.; Bi, F. MiR-21 Targets the Tumor Suppressor RhoB and Regulates Proliferation, Invasion and Apoptosis in Colorectal Cancer Cells. FEBS Lett. 2011, 585, 2998–3005. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Zhao, L.; Chen, Y.; He, T.; Chen, X.; Mao, J.; Li, C.; Lyu, J.; Meng, Q.H. MicroRNA-21 Promotes Proliferation, Migration, and Invasion of Colorectal Cancer, and Tumor Growth Associated with down-Regulation of Sec23a Expression. BMC Cancer 2016, 16, 605. [Google Scholar] [CrossRef]
- Tsao, C.-J. MicroRNA-21-Mediated Regulation of Sprouty2 Protein Expression Enhances the Cytotoxic Effect of 5-Fluorouracil and Metformin in Colon Cancer Cells. Int. J. Mol. Med. 2012, 29, 920–926. [Google Scholar] [CrossRef]
- Bullock, M.D.; Pickard, K.M.; Nielsen, B.S.; Sayan, A.E.; Jenei, V.; Mellone, M.; Mitter, R.; Primrose, J.N.; Thomas, G.J.; Packham, G.K.; et al. Pleiotropic Actions of MiR-21 Highlight the Critical Role of Deregulated Stromal MicroRNAs during Colorectal Cancer Progression. Cell Death Dis. 2013, 4, e684. [Google Scholar] [CrossRef]
- Hashemi, M.; Mirdamadi, M.S.A.; Talebi, Y.; Khaniabad, N.; Banaei, G.; Daneii, P.; Gholami, S.; Ghorbani, A.; Tavakolpournegari, A.; Farsani, Z.M.; et al. Pre-Clinical and Clinical Importance of MiR-21 in Human Cancers: Tumorigenesis, Therapy Response, Delivery Approaches and Targeting Agents. Pharmacol. Res. 2023, 187, 106568. [Google Scholar] [CrossRef]
- Li, J.; Chen, H.; Sun, G.; Zhang, X.; Ye, H.; Wang, P. Role of MiR-21 in the Diagnosis of Colorectal Cancer: Meta-Analysis and Bioinformatics. Pathol. Res. Pract. 2023, 248, 154670. [Google Scholar] [CrossRef] [PubMed]
- Yu, T.; Ma, P.; Wu, D.; Shu, Y.; Gao, W. Functions and Mechanisms of MicroRNA-31 in Human Cancers. Biomed. Pharmacother. 2018, 108, 1162–1169. [Google Scholar] [CrossRef] [PubMed]
- Sun, D.; Yu, F.; Ma, Y.; Zhao, R.; Chen, X.; Zhu, J.; Zhang, C.-Y.; Chen, J.; Zhang, J. MicroRNA-31 Activates the RAS Pathway and Functions as an Oncogenic MicroRNA in Human Colorectal Cancer by Repressing RAS P21 GTPase Activating Protein 1 (RASA1). J. Biol. Chem. 2013, 288, 9508–9518. [Google Scholar] [CrossRef] [PubMed]
- Cottonham, C.L.; Kaneko, S.; Xu, L. MiR-21 and MiR-31 Converge on TIAM1 to Regulate Migration and Invasion of Colon Carcinoma Cells. J. Biol. Chem. 2010, 285, 35293–35302. [Google Scholar] [CrossRef]
- Zhong, L.; Simoneau, B.; Huot, J.; Simard, M.J. P38 and JNK Pathways Control E-Selectin-Dependent Extravasation of Colon Cancer Cells by Modulating MiR-31 Transcription. Oncotarget 2017, 8, 1678–1687. [Google Scholar] [CrossRef]
- Zhong, L.; Huot, J.; Simard, M.J. P38 Activation Induces Production of MiR-146a and MiR-31 to Repress E-Selectin Expression and Inhibit Transendothelial Migration of Colon Cancer Cells. Sci. Rep. 2018, 8, 2334. [Google Scholar] [CrossRef]
- Nosho, K.; Igarashi, H.; Nojima, M.; Ito, M.; Maruyama, R.; Yoshii, S.; Naito, T.; Sukawa, Y.; Mikami, M.; Sumioka, W.; et al. Association of MicroRNA-31 with BRAF Mutation, Colorectal Cancer Survival and Serrated Pathway. Carcinogenesis 2014, 35, 776–783. [Google Scholar] [CrossRef]
- Kurihara, H.; Maruyama, R.; Ishiguro, K.; Kanno, S.; Yamamoto, I.; Ishigami, K.; Mitsuhashi, K.; Igarashi, H.; Ito, M.; Tanuma, T.; et al. The Relationship between EZH2 Expression and MicroRNA-31 in Colorectal Cancer and the Role in Evolution of the Serrated Pathway. Oncotarget 2016, 7, 12704–12717. [Google Scholar] [CrossRef]
- Ashoori, H.; Kamian, S.; Vahidian, F.; Ghamarchehreh, M.E. Correlation of MiR-31 and MiR-373 Expression with KRAS Mutations and Its Impact on Prognosis in Colorectal Cancer. J. Egypt. Natl. Cancer Inst. 2022, 34, 35. [Google Scholar] [CrossRef]
- Chen, T.; Yao, L.-Q.; Shi, Q.; Ren, Z.; Ye, L.-C.; Xu, J.-M.; Zhou, P.-H.; Zhong, Y.-S. MicroRNA-31 Contributes to Colorectal Cancer Development by Targeting Factor Inhibiting HIF-1α (FIH-1). Cancer Biol. Ther. 2014, 15, 516–523. [Google Scholar] [CrossRef]
- Lei, S.-L.; Zhao, H.; Yao, H.-L.; Chen, Y.; Lei, Z.-D.; Liu, K.-J.; Yang, Q. Regulatory Roles of MicroRNA-708 and MicroRNA-31 in Proliferation, Apoptosis and Invasion of Colorectal Cancer Cells. Oncol. Lett. 2014, 8, 1768–1774. [Google Scholar] [CrossRef] [PubMed]
- Yang, M.-H.; Yu, J.; Chen, N.; Wang, X.-Y.; Liu, X.-Y.; Wang, S.; Ding, Y.-Q. Elevated MicroRNA-31 Expression Regulates Colorectal Cancer Progression by Repressing Its Target Gene SATB2. PLoS ONE 2013, 8, e85353. [Google Scholar] [CrossRef] [PubMed]
- Hao, C.; Gao, C.; Shang, H.; Liu, J.; Qi, F. MicroRNA-31 Inhibits the Growth and Metastasis and Enhances Drug Sensitivity of the Human Colon Cancer Cells by Targeting PAX6. J. BUON 2020, 25, 1860–1865. [Google Scholar] [PubMed]
- Mi, B.; Li, Q.; Li, T.; Liu, G.; Sai, J. High MiR-31-5p Expression Promotes Colon Adenocarcinoma Progression by Targeting TNS1. Aging 2020, 12, 7480–7490. [Google Scholar] [CrossRef]
- Xu, R.-S.; Wu, X.-D.; Zhang, S.-Q.; Li, C.-F.; Yang, L.; Li, D.-D.; Zhang, B.-G.; Zhang, Y.; Jin, J.-P.; Zhang, B. The Tumor Suppressor Gene RhoBTB1 Is a Novel Target of MiR-31 in Human Colon Cancer. Int. J. Oncol. 2013, 42, 676–682. [Google Scholar] [CrossRef]
- Yan, G.; Wang, L. Role of ELK1 in Regulating Colorectal Cancer Progression: MiR-31-5p/CDIP1 Axis in CRC Pathogenesis. PeerJ 2023, 11, e15602. [Google Scholar] [CrossRef] [PubMed]
- Peng, H.; Wang, L.; Su, Q.; Yi, K.; Du, J.; Wang, Z. MiR-31-5p Promotes the Cell Growth, Migration and Invasion of Colorectal Cancer Cells by Targeting NUMB. Biomed. Pharmacother. 2019, 109, 208–216. [Google Scholar] [CrossRef]
- Tang, B.; Lu, X.; Tong, Y.; Feng, Y.; Mao, Y.; Dun, G.; Li, J.; Xu, Q.; Tang, J.; Zhang, T.; et al. MicroRNA-31 Induced by Fusobacterium nucleatum Infection Promotes Colorectal Cancer Tumorigenesis. iScience 2023, 26, 106770. [Google Scholar] [CrossRef]
- Stepicheva, N.A.; Song, J.L. Function and Regulation of MicroRNA-31 in Development and Disease. Mol. Reprod. Dev. 2016, 83, 654–674. [Google Scholar] [CrossRef]
- Yang, X.; Xu, X.; Zhu, J.; Zhang, S.; Wu, Y.; Wu, Y.; Zhao, K.; Xing, C.; Cao, J.; Zhu, H.; et al. MiR-31 Affects Colorectal Cancer Cells by Inhibiting Autophagy in Cancer-Associated Fibroblasts. Oncotarget 2016, 7, 79617–79628. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Bai, J.; Zhang, L.; Lou, F.; Ke, F.; Cai, W.; Wang, H. Conditional Knockout of MicroRNA-31 Promotes the Development of Colitis Associated Cancer. Biochem. Biophys. Res. Commun. 2017, 490, 62–68. [Google Scholar] [CrossRef] [PubMed]
- Staiteieh, S.; Akil, L.; Al Khansa, R.; Nasr, R.; Al Sagheer, Z.; Houshaymi, B.; Merhi, R. Study of MicroRNA Expression Profiling as Biomarkers for Colorectal Cancer Patients in Lebanon. Mol. Clin. Oncol. 2021, 16, 39. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, Z.; Chen, W. Novel Circulating MicroRNAs Expression Profile in Colon Cancer: A Pilot Study. Eur. J. Med. Res. 2017, 22, 51. [Google Scholar] [CrossRef]
- Li, Y.; Xin, S.; Wu, H.; Xing, C.; Duan, L.; Sun, W.; Hu, X.; Lin, R.; Zhang, F. High Expression of MicroRNA 31 and Its Host Gene LOC554202 Predict Favorable Outcomes in Patients with Colorectal Cancer Treated with Oxaliplatin. Oncol. Rep. 2018, 40, 1706–1724. [Google Scholar] [CrossRef] [PubMed]
- Kubota, N.; Taniguchi, F.; Nyuya, A.; Umeda, Y.; Mori, Y.; Fujiwara, T.; Tanioka, H.; Tsuruta, A.; Yamaguchi, Y.; Nagasaka, T. Upregulation of MicroRNA 31 Is Associated with Poor Prognosis in Patients with Advanced Colorectal Cancer. Oncol. Lett. 2020, 19, 2685–2694. [Google Scholar] [CrossRef]
- Liu, C.; Wu, W.; Chang, W.; Wu, R.; Sun, X.; Wu, H.; Liu, Z. MiR-31-5p-DMD Axis as a Novel Biomarker for Predicting the Development and Prognosis of Sporadic Early-Onset Colorectal Cancer. Oncol. Lett. 2022, 23, 157. [Google Scholar] [CrossRef]
- Bin, H.; Mei, H.; Hui, W.; Bing, Z. The Correlation between MiR -34a-3p, MiR -31, PLEK2 and the Occurrence, Development and Prognosis of Colorectal Cancer. Cell. Mol. Biol. 2022, 68, 192–200. [Google Scholar] [CrossRef] [PubMed]
- Moloudizargari, M.; Rahmani, J.; Asghari, M.H.; Goel, A. The Prognostic Role of MiR-31 in Colorectal Cancer: The Results of a Meta-Analysis of 4720 Patients. Epigenomics 2022, 14, 101–112. [Google Scholar] [CrossRef]
- Zhang, W.; Ming, X.; Rong, Y.; Huang, C.; Weng, H.; Chen, H.; Bian, J.; Wang, F. Diagnostic Value Investigation and Bioinformatics Analysis of MiR-31 in Patients with Lymph Node Metastasis of Colorectal Cancer. Anal. Cell. Pathol. 2019, 2019, 9740475. [Google Scholar] [CrossRef]
- Nakagawa, Y.; Kuranaga, Y.; Tahara, T.; Yamashita, H.; Shibata, T.; Nagasaka, M.; Funasaka, K.; Ohmiya, N.; Akao, Y. Induced MiR-31 by 5-fluorouracil Exposure Contributes to the Resistance in Colorectal Tumors. Cancer Sci. 2019, 110, 2540–2548. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.-J.; Stratmann, J.; Zhou, Z.-G.; Sun, X.-F. Suppression of MicroRNA-31 Increases Sensitivity to 5-FU at an Early Stage, and Affects Cell Migration and Invasion in HCT-116 Colon Cancer Cells. BMC Cancer 2010, 10, 616. [Google Scholar] [CrossRef] [PubMed]
- Hsu, H.-H.; Kuo, W.-W.; Shih, H.-N.; Cheng, S.-F.; Yang, C.-K.; Chen, M.-C.; Tu, C.-C.; Viswanadha, V.P.; Liao, P.-H.; Huang, C.-Y. FOXC1 Regulation of MiR-31-5p Confers Oxaliplatin Resistance by Targeting LATS2 in Colorectal Cancer. Cancers 2019, 11, 1576. [Google Scholar] [CrossRef]
- Kim, S.B.; Zhang, L.; Barron, S.; Shay, J.W. Inhibition of MicroRNA-31-5p Protects Human Colonic Epithelial Cells against Ionizing Radiation. Life Sci. Space Res. 2014, 1, 67–73. [Google Scholar] [CrossRef]
- Schee, K.; Boye, K.; Abrahamsen, T.W.; Fodstad, Ø.; Flatmark, K. Clinical Relevance of MicroRNA MiR-21, MiR-31, MiR-92a, MiR-101, MiR-106a and MiR-145 in Colorectal Cancer. BMC Cancer 2012, 12, 505. [Google Scholar] [CrossRef]
- Wang, C.J.; Zhou, Z.G.; Wang, L.; Yang, L.; Zhou, B.; Gu, J.; Chen, H.Y.; Sun, X.F. Clinicopathological Significance of MicroRNA-31, -143 and -145 Expression in Colorectal Cancer. Dis. Markers 2009, 26, 27–34. [Google Scholar] [CrossRef]
- Igarashi, H.; Kurihara, H.; Mitsuhashi, K.; Ito, M.; Okuda, H.; Kanno, S.; Naito, T.; Yoshii, S.; Takahashi, H.; Kusumi, T.; et al. Association of MicroRNA-31-5p with Clinical Efficacy of Anti-EGFR Therapy in Patients with Metastatic Colorectal Cancer. Ann. Surg. Oncol. 2015, 22, 2640–2648. [Google Scholar] [CrossRef] [PubMed]
- Anandappa, G.; Lampis, A.; Cunningham, D.; Khan, K.H.; Kouvelakis, K.; Vlachogiannis, G.; Hedayat, S.; Tunariu, N.; Rao, S.; Watkins, D.; et al. MiR-31-3p Expression and Benefit from Anti-EGFR Inhibitors in Metastatic Colorectal Cancer Patients Enrolled in the Prospective Phase II PROSPECT-C Trial. Clin. Cancer Res. 2019, 25, 3830–3838. [Google Scholar] [CrossRef]
- Manceau, G.; Imbeaud, S.; Thiébaut, R.; Liébaert, F.; Fontaine, K.; Rousseau, F.; Génin, B.; Le Corre, D.; Didelot, A.; Vincent, M.; et al. Hsa-MiR-31-3p Expression Is Linked to Progression-Free Survival in Patients with KRAS Wild-Type Metastatic Colorectal Cancer Treated with Anti-EGFR Therapy. Clin. Cancer Res. 2014, 20, 3338–3347. [Google Scholar] [CrossRef]
- Laurent-Puig, P.; Grisoni, M.-L.; Heinemann, V.; Liebaert, F.; Neureiter, D.; Jung, A.; Montestruc, F.; Gaston-Mathe, Y.; Thiébaut, R.; Stintzing, S. Validation of MiR-31-3p Expression to Predict Cetuximab Efficacy When Used as First-Line Treatment in RAS Wild-Type Metastatic Colorectal Cancer. Clin. Cancer Res. 2019, 25, 134–141. [Google Scholar] [CrossRef]
- Pugh, S.; Thiébaut, R.; Bridgewater, J.; Grisoni, M.-L.; Moutasim, K.; Rousseau, F.; Thomas, G.J.; Griffiths, G.; Liebaert, F.; Primrose, J.; et al. Association between MiR-31-3p Expression and Cetuximab Efficacy in Patients with KRAS Wild-Type Metastatic Colorectal Cancer: A Post-Hoc Analysis of the New EPOC Trial. Oncotarget 2017, 8, 93856–93866. [Google Scholar] [CrossRef] [PubMed]
- Boisteau, E.; Lespagnol, A.; De Tayrac, M.; Corre, S.; Perrot, A.; Rioux-Leclercq, N.; Martin-Lannerée, S.; Artru, P.; Chalabreysse, P.; Poureau, P.-G.; et al. MiR-31-3p Do Not Predict Anti-EGFR Efficacy in First-Line Therapy of RAS Wild-Type Metastatic Right-Sided Colon Cancer. Clin. Res. Hepatol. Gastroenterol. 2022, 46, 101888. [Google Scholar] [CrossRef] [PubMed]
- Mlcochova, J.; Faltejskova-Vychytilova, P.; Ferracin, M.; Zagatti, B.; Radova, L.; Svoboda, M.; Nemecek, R.; John, S.; Kiss, I.; Vyzula, R.; et al. MicroRNA Expression Profiling Identifies MiR-31-5p/3p as Associated with Time to Progression in Wild-Type RAS Metastatic Colorectal Cancer Treated with Cetuximab. Oncotarget 2015, 6, 38695–38704. [Google Scholar] [CrossRef]
- Sathyanarayanan, A.; Chandrasekaran, K.S.; Karunagaran, D. MicroRNA-146a Inhibits Proliferation, Migration and Invasion of Human Cervical and Colorectal Cancer Cells. Biochem. Biophys. Res. Commun. 2016, 480, 528–533. [Google Scholar] [CrossRef]
- Lu, D.; Yao, Q.; Zhan, C.; Le-Meng, Z.; Liu, H.; Cai, Y.; Tu, C.; Li, X.; Zou, Y.; Zhang, S. MicroRNA-146a Promote Cell Migration and Invasion in Human Colorectal Cancer via Carboxypeptidase M/Src-FAK Pathway. Oncotarget 2017, 8, 22674–22684. [Google Scholar] [CrossRef]
- Noorolyai, S.; Baghbani, E.; Shanehbandi, D.; Khaze Shahgoli, V.; Baghbanzadeh Kojabad, A.; Mansoori, B.; Hajiasgharzadeh, K.; Mokhtarzadeh, A.; Baradaran, B. MiR-146a-5p and MiR-193a-5p Synergistically Inhibited the Proliferation of Human Colorectal Cancer Cells (HT-29 Cell Line) through ERK Signaling Pathway. Adv. Pharm. Bull. 2020, 11, 755–764. [Google Scholar] [CrossRef]
- Garo, L.P.; Ajay, A.K.; Fujiwara, M.; Gabriely, G.; Raheja, R.; Kuhn, C.; Kenyon, B.; Skillin, N.; Kadowaki-Saga, R.; Saxena, S.; et al. MicroRNA-146a Limits Tumorigenic Inflammation in Colorectal Cancer. Nat. Commun. 2021, 12, 2419. [Google Scholar] [CrossRef]
- Hwang, W.-L.; Jiang, J.-K.; Yang, S.-H.; Huang, T.-S.; Lan, H.-Y.; Teng, H.-W.; Yang, C.-Y.; Tsai, Y.-P.; Lin, C.-H.; Wang, H.-W.; et al. MicroRNA-146a Directs the Symmetric Division of Snail-Dominant Colorectal Cancer Stem Cells. Nat. Cell Biol. 2014, 16, 268–280. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Wang, X.; Song, Y.; Si, M.; Sun, Y.; Liu, X.; Cui, S.; Qu, X.; Yu, X. Exosomal MiR-146a-5p and MiR-155-5p Promote CXCL12/CXCR7-Induced Metastasis of Colorectal Cancer by Crosstalk with Cancer-Associated Fibroblasts. Cell Death Dis. 2022, 13, 380. [Google Scholar] [CrossRef]
- Khorrami, S.; Zavaran Hosseini, A.; Mowla, S.J.; Soleimani, M.; Rakhshani, N.; Malekzadeh, R. MicroRNA-146a Induces Immune Suppression and Drug-Resistant Colorectal Cancer Cells. Tumor Biol. 2017, 39, 101042831769836. [Google Scholar] [CrossRef]
- Chae, Y.S.; Kim, J.G.; Lee, S.J.; Kang, B.W.; Lee, Y.J.; Park, J.Y.; Jeon, H.-S.; Park, J.S.; Choi, G.S. A MiR-146a Polymorphism (Rs2910164) Predicts Risk of and Survival from Colorectal Cancer. Anticancer. Res. 2013, 33, 3233–3239. [Google Scholar]
- Omrane, I.; Kourda, N.; Stambouli, N.; Privat, M.; Medimegh, I.; Arfaoui, A.; Uhrhammer, N.; Bougatef, K.; Baroudi, O.; Bouzaienne, H.; et al. MicroRNAs 146a and 147b Biomarkers for Colorectal Tumor’s Localization. BioMed Res. Int. 2014, 2014, 584852. [Google Scholar] [CrossRef] [PubMed]
- Zeng, C.; Huang, L.; Zheng, Y.; Huang, H.; Chen, L.; Chi, L. Expression of MiR-146a in Colon Cancer and Its Significance. Nan Fang. Yi Ke Da Xue Xue Bao 2014, 34, 396–400. [Google Scholar] [PubMed]
- Ždralević, M.; Raonić, J.; Popovic, N.; Vučković, L.; Rovčanin Dragović, I.; Vukčević, B.; Todorović, V.; Vukmirović, F.; Marzano, F.; Tullo, A.; et al. The Role of MiRNA in Colorectal Cancer Diagnosis: A Pilot Study. Oncol. Lett. 2023, 25, 267. [Google Scholar] [CrossRef] [PubMed]
- Rex, D.K.; Johnson, D.A.; Anderson, J.C.; Schoenfeld, P.S.; Burke, C.A.; Inadomi, J.M. American College of Gastroenterology Guidelines for Colorectal Cancer Screening 2008. Am. J. Gastroenterol. 2009, 104, 739–750. [Google Scholar] [CrossRef]
- Yang, S.; Farraye, F.A.; Mack, C.; Posnik, O.; O’Brien, M.J. BRAF and KRAS Mutations in Hyperplastic Polyps and Serrated Adenomas of the Colorectum. Am. J. Surg. Pathol. 2004, 28, 1452–1459. [Google Scholar] [CrossRef]
- WHO Classification of Tumours Editorial Board. Digestive System Tumours: WHO Classification of Tumours, 5th ed.; WHO: Geneva, Switzerland, 2019; Volume 1, ISBN 978-92-832-4499-8. [Google Scholar]
Screening Method | Biological Sample | Mechanism of Action | Sensitivity and Specificity | Reference | ACS Recommendations | USPTF Recommendations |
---|---|---|---|---|---|---|
Guaiac FOBT | Stool | Detects blood | 39% 94% | [27] | Annually | Annually |
Immunochemical FOBT | Stool | Detects blood | 76% 96% | [27] | Annually (if guaiac is not done) | Annually (if guaiac is not done) |
Stool DNA (Cologuard) | Stool | Detects abnormal DNA and blood | 92% 87% | [28] | Every 3 years | Every 1–3 years |
Colonoscopy | Tumour tissue from anywhere in the entire colon | Direct visualization and biopsy/removal, requires bowel preparation | 95% 100% | [29] | Every 10 years | Every 10 years |
Flexible sigmoidoscopy | Tumour tissue only from the rectum and sigmoid | Direct visualization and biopsy/removal, requires bowel preparation | 35–70% 98–100% | [30] | Every 5 years | Every 5 years |
CT colonography | No sample is taken | Visualization of the colon, requires bowel preparation | 90% 88% | [28] | N/A | Every 5 years |
Article | Year | Biospecimen | Sample Size | miRNAs Deregulated | Sensitivity % | Specificity % | AUC (95% CI) |
---|---|---|---|---|---|---|---|
[54] | 2010 | Plasma | AP: 37 CRC: 120 HC: 59 | miR-29a ↑ miR-92a ↑ miR-29a + miR-92a AP vs. CRC | 69 84 73 | 89.1 71.2 79.7 | 0.844 (0.786–0.903) 0.838 (775–0.900) 0.773 (0.669–0.877) |
[55] | 2012 | Plasma | AP: 100 (plasma 19 tissue) CRC: 43 (plasma) HC: 68 (plasma) | miR-601 ↓ miR-760 ↓ | 69.2 80 | 72.4 72.4 | 0.747 (.666–0.828) 0.788 (0.714–0.862) |
Tissue | no statistically significant results | / | / | / | |||
[56] | 2013 | Plasma | Screening phase: AP: 9 CRC: 20 HC: 12 Validation phase: AP: 16 CRC: 45 HC: 26 | miR-15b ↑ miR-142-3p ↑ miR-155 ↑ miR-21 ↑ miR-532 ↑ miR-331 ↑ miR-652 ↑ miR-195 ↑ miR-532-3p ↑ miR-29a ↑ miR-29c ↑ miR-423-5p ↑ miR-17 ↑ miR-193a-5p ↑ miR-339-3p ↑ AP vs. HC miR-532-3p + miR-331 + miR-195 + miR-17 + miR-142-3p + miR-15b + miR-532 + miR-652 ↑ | 88 | 64 | 0.868 (0.76–0.98) |
[57] | 2013 | Plasma | AP: 60 CRC: 63 HC: 73 | miR18a ↑ in AA | / | / | 0.64 (0.52–0.75) |
[58] | 2013 | Serum Tissue | AP: 43 (serum) CRC: 198 (serum), 174 (tissue) HC: 65 (serum), 174 (tissue) | miR-21 ↑ miR-21 ↑ | 91.9 / | 81.1 / | 0.919 (0.867–0.958) / |
[59] | 2013 | Serum | AP: 50 CRC: 200 HC: 80 | miR-21 ↑ miR-92a ↑ miR-21 + miR-92 ↑ | 65 65.5 68 | 85 82.5 91.2 | 0.802 (0.752–0.852) 0.786 (0.728–0.845) 0.847 (0.803–0.891) |
[60] | 2014 | Plasma | AP: 73 (non-advanced); 49 (advanced) CRC: 6 HC: 48 | miR-10a, miiR-31, miR-100b, miR-184, miR-187-5p, miR-196-a, miR-203, miR-29, miR-92a, miR- 17-3p, miR-125b, miR-200b panel examined. No correlation with AP found. | / | / | / |
[61] | 2014 | FFPE | AP: 222 HP: 132 TSA: 101 without dysplasia; 16 with HG dysplasia SSA: 122 without dysplasia; 10 with dysplasia CRC: 870 | miR-31 ↑ in SSA, SSA with HG dysplasia, TSA | / | / | 3.04 (1.88–4.97) |
[62] | 2014 | FFPE | AP: 66 (non-advanced); 40 (advanced) HP: 23 TSA: 11 SSA: 13 | miR-320a ↑ miR-145 ↓ miR-192 ↓ (with higher histologic grade) | / | / | / |
[63] | 2014 | FFPE | AP: 127 non-recurrent; 100 recurrent HC: 37 | miR-10a ↓ miR-141 ↓ miR-146a ↓ miR-151-3p ↓ miR-194 ↓ miR-3607-3p ↓ | 43 69 62 79 71 68 | 83.5 60.6 60.6 45.7 78 71.7 | 0.655 (0.589–0.717) 0.643 (0.577–0.705) 0.631 (0.565–0.694) 0.648 (0.582–0.710) 0.755 (0.694–0.810) 0.696 (0.632–0.755) |
[64] | 2015 | Plasma | AP: 59 CRC: 111 HC: 130 | miR-24↓ miR-320a↓ miR-423-5p↓ | 78.38 92.79 91.89 | 83.85 73.08 70.77 | 0.839 (0.787–0.892) 0.886 (0.845–0.926) 0.833 (0.780–0.887) |
[65] | 2015 | Stool Frozen tissue | AP: 110 non-advanced; 59 advanced CRC: 104 HC: 109 | miR-31 ↑ miR -135b ↑ miR-20a-3p ↑ miR-182 ↑ miR-649 ↑ miR-26a-1-3p ↑ miR-625 ↑ miR-18a ↑ miR-20a ↑ miR-552 ↑ in advanced AP mir-135b ↑ in CRC and AP | / | / | 0.79 (of mir-135b for CRC) 0.71 (for adenomas) |
[66] | 2015 | FFPE | HP: 11 AP: 34 non-advanced; 10 advanced CRC: 13 HC: 11 | Progressive miR-135b ↑ with lesion grade | / | / | / |
[67] | 2016 | FFPE | AP: 290 CRC: 1893 HC: 1893 | Around 600 miRNAs differentially expressed among groups | / | / | / |
[68] | 2016 | FFPE | 18 LST (3 CRC and 15 CRC with adenoma) 3 protruded CRC with adenoma | Progressive miR320 ↓ family with grade | / | / | / |
[69] | 2016 | FFPE | AP: 26 non-advanced; 40 advanced HP: 23 TSA: 11 SSA: 13 | 99 miRNAs differing in at least one histopathologic group | / | / | / |
[70] | 2016 | FFPE, total serum, and exomes from serum | AP: 27 (FFPE) 26 (serum) HC: 20 (FFPE) 47 (serum) CRC: 19 | AP vs. HC total serum: miR-21 ↑ miR-29a ↑ miR-92a ↑ exomal serum: miR-21 ↑ | 73.1 72 65.4 69.8 | 68.1 66 78.7 80 | 0.755 (0.640–0.848) 0.676 (0.556–0.781) 0.747 (0.632–0.842) 0.770 (0.654–0.861) |
[71] | 2017 | FFPE | AP: 277 HP: 15 SSA: 14 | 70 miRNAs differentially expressed among groups | / | / | / |
[72] | 2017 | Freshly frozen tissue and FFPE | LG-IEN: 24 HG-IEN: 24 HC: 12 | ssc-let-7e ↑ miR-98 ↑ miR-146a-5p ↑ miR-146b ↑ miR-183 ↑ miR-196a ↑ ssc-miR-126-3p ↓ in HG-IEN | / | / | / |
[73] | 2018 | Plasma | AP: 94 (discovery cohort) 76 (validation cohort) HC: 95 (discovery cohort) 64 (validation cohort) | miR-335-5p ↓ un-annotated small RNA ↑ | / | / | Discovery cohort: 0.711 (0.638–0.784) Validation cohort: 0.755 (0.672–0.838) |
[74] | 2019 | Plasma | AP: 14 HP: 12 SSA: 6 HC: 56 | SSA: miR 31–5p ↑ miR-135b-5p ↑ miR-549a ↑ miR-3614–5p ↑ miR-222-5p ↑ miR-144–3p ↑ miR-584–5p ↑ miR-451a ↑ miR 4488 ↑ miR-151a-5p ↓ mir-205-5p ↓ AP: miR-135b-5p ↑ miR-549a ↑ miR-584–5p ↑ HP: miR -4488 ↑ | / | / | / |
[75] | 2019 | Serum | AP: 74 CRC: 59 HC: 80 | Serum levels AP miR-29a-3p ↑ miR-19a-3p ↑ miR-335-5p ↑ AP vs. HC miR-15b-5p + miR-18a-5p + miR-29a-3p + miR-335-5p + miR-19a-3p + miR 19b-3p | 81 | 63 | 0.80 (0.72–0.87) |
[76] | 2020 | FFPE | AP: 10 AEM: 13 AEC: 10 AC: 11 HC:21 | AP, AEM, AEC: miR-200-b ↑ miR 200c ↑ let7a ↑ miR-29a ↑ miR-29b ↑ miR-29c ↑194 miR-146-a ↑ AC: hsa-miR-146a ↓ hsa-miR-29b ↓ miR-200-b ↑ miR-200c ↑ miR-let7a ↑ miR-29a ↑ miR-29c ↑ | / | / | / |
Article | Year | Biospecimen | Sample Size | miRNAs Deregulated | Sensitivity % | Specificity % | AUC (95% CI) |
---|---|---|---|---|---|---|---|
[82] | 2010 | Plasma | CRC: 90 HC: 50 | miR-17-3p ↑ miR-92 ↑ | 64 89 | 70 70 | 0.717 (0.630–0.800) 0.885 (0.830–0.940) |
[83] | 2010 | Plasma | CRC: 103 HC: 37 | miR-221 ↑ | 86 | 41 | 0.606 (0.490–0.720) |
[54] | 2010 | Plasma | CRC: 100 HC: 59 | miR-29a ↑ miR-92a ↑ miR-29a + miR-92a ↑ 1 | 69 84 83 | 89.1 71.2 84.7 | 0.844 (0.786–0.903) 0.838 (0.775–0.900) 0.883 (0.830–0.937) |
[84] | 2012 | Plasma | Training cohort CRC: 30 HC: 30 | miR-21 ↑ | 90 | 90 | 0.820 |
Validation cohort CRC: 20 HC: 20 | miR-21 ↑ | 90 | 90 | 0.910 | |||
[55] | 2012 | Plasma | CRC: 90 HC: 58 | miR-601 ↓ miR-760 ↓ | 69.2 80 | 72.4 72.4 | 0.747 (0.666–0.828) 0.788 (0.714–0.862) |
[56] | 2013 | Plasma | CRC: 45 HC: 26 | miR-139-3p ↑ + miR-431 ↑ | 91 | 57 | 0.829 (0.730–0.930) |
[85] | 2013 | Plasma | CRC: 80 HC: 144 | miR-18a +miR-20a + miR-21 + miR-29a + miR-92a + miR-106b + miR-133a + miR-143 + miR-145 + miR-181b + miR-342-3p + miR-532-3p ↑ | / | / | 0.745 (0.708–0.846) |
[57] | 2013 | Plasma | CRC: 42 HC: 53 | miR19a + miR19b ↑ miR19a + miR19b + miR15b ↑ | 78.6 78.6 | 77.4 79.3 | 0.820 (0.730–0.900) 0.840 (0.760–0.920) |
[86] | 2014 | Plasma | Training cohort CRC: 55 HC: 57 | miR-7 ↓ + miR-93 ↓ + miR-409-3p ↑ | 91 | 88 | 0.866 |
Validation cohort CRC: 22 HC: 27 | miR-7 ↓ + miR-93 ↓ + miR-409-3p ↑ | 82 | 89 | 0.897 | |||
[87] | 2014 | Plasma | CRC: 94 HC: 46 | miR-375 ↓ miR-206 ↑ miR-375 ↓ + miR-206 ↑ | 76.92 / / | 64.63 / / | 0.749 (0.654–0.844) 0.705 (0.612–0.799) 0.846 (0.775–0.917) |
[88] | 2015 | Plasma | CRC: 100 HC: 79 | miR-106a ↑ miR-20a ↑ | 74 46 | 44.4 73.4 | 0.605 (0.522–0.688) 0.590 (0.507–0.674) |
[89] | 2015 | Plasma | CRC: 61 HC: 24 | miR-142-3p ↓ miR-26a-5p ↓ | / / | / / | 0.710 (0.594–0.825) 0.670 (0.552–0.787) |
[64] | 2015 | Plasma | CRC: 111 HC: 130 | miR-24 ↓ miR-320a ↓ miR-423-5p ↓ miR-24 + miR-320a + miR-423-5p ↓ | 78.4 92.8 91.9 92.8 | 83.9 73.1 70.8 70.8 | 0.839 (0.787–0.892) 0.886 (0.845–0.926) 0.833 (0.780–0.887) 0.899 (0.867–0.938) |
[90] | 2016 | Plasma | CRC: 187 HC: 47 | miR-96 ↑ | 65.4 | 73.3 | 0.740 (0.650–0.831) |
[91] | 2016 | Plasma | Training cohort CRC: 62 HC: 62 | miR-92a ↑ miR-223 ↑ | / / | / / | 0.833 (0.763–0.904) 0.734 (0.646–0.823) |
Plasma + stool | Validation cohort CRC:153 HC:121 | miR-92a ↑ miR-223 ↑ miR-92a + miR-223 ↑ miR-92a + miR-223 ↑ | / / 75.8 96.8 | / / 70.5 75 | 0.751 (0.693–0.808) 0.707 (0.646–0.768) / 0.907 | ||
[92] | 2016 | Plasma | CRC: 200 HC: 400 | miR-29b ↓ | 61.4 | 72.5 | 0.743 |
[93] | 2016 | Plasma | CRC: 31 HC: 34 | miR-21 ↑ | 65 | 85 | / |
[94] | 2017 | Plasma | CRC: 56 HC: 70 | miR-506 ↑ miR-4316 ↑ miR-506 + miR-4316 ↑ | 60.7 83.9 76.8 | 76.8 60.9 75 | 0.747 (0.662–0.820) 0.744 (0.658–0.817) 0.751 (0.666–0.824) |
[95] | 2018 | Plasma | CRC: 67 HC: 134 | miR-21 + miR-25 + miR-18a + miR-22 ↑ | 67 | 90 | 0.930 |
[96] | 2018 | Plasma | Training cohort CRC: 40 HC: 40 | miR-182 ↑ miR-20a ↑ miR-182 + miR-20a ↑ | / / / | / / / | 0.929 (0.875–0.983) 0.801 (0.695–0.906) 0.905 (0.841–0.968) |
Validation cohort CRC: 50 HC: 50 | miR-182 ↑ miR-20a ↑ miR-182 + miR-20a ↑ | 78 / / | 91 / / | 0.891 (0.821–0.961) 0.736 (0.631–0.842) 0.831 (0.746–0.914) | |||
[79] | 2019 | Plasma | CRC: 96 HC: 100 | miR-19a + miR-19b + miR-15b + miR-29a + miR-335 + miR-18a ↑ | 91 | 90 | 0.950 (0.903–0.991) |
[97] | 2019 | Plasma | CRC:48 HC: 47 | miR-27a-3p ↓ miR-143-3p ↓ miR-144-3p ↓ miR-148a-3p ↓ miR-424-5p ↓ miR-425-5p ↓ miR-1260b ↓ miR-144-3p + miR-425-5p + miR-1260b ↓ | 75 72.9 93.8 79.2 79.2 83.3 81.3 93.8 | 85 78.7 78.7 91.5 93.6 91.5 83.3 91.3 | 0.881 (0.816–0.946) 0.777 (0.682–0.873 0.887 (0.815–0.959) 0.871 (0.795–0.947) 0.919 (0.863–0.975) 0.910 (0.852–0.969) 0.848 (0.766–0.929) 0.954 (0.914–0.994) |
[98] | 2021 | Plasma | CRC: 44 HC: 40 | miR-92a ↑ miR-211 ↑ miR-25 ↑ miR-92a + miR-211 + miR-25 ↑ | 71 71 75 91 | 67 90 85 93 | 0.766 0.794 0.812 0.954 |
[99] | 2021 | Plasma | CRC: 52 HC: 20 | miR-21 ↑ miR-92a ↑ miR-21 + miR-92a ↑ | 90.4 94.2 96.1 | 100 100 100 | 0.977 0.991 0.981 |
[100] | 2022 | Plasma | CRC: 54 HC: 15 | miR-92a ↑ | 98.1 | 93.9 | 0.994 |
[101] | 2019 | Plasma Exosomes from plasma | Training cohort CRC: 30 HC: 30 | miR-103a-3p + miR-127-3p + miR-151a-5p + miR-17-5p + miR-181a-5p + miR-18a-5p + miR-18b-5p ↑ | 96.7 | 53.3 | 0.762 (0.642–0.882) |
Testing cohort CRC: 79 HC: 76 | miR-103a-3p + miR-127-3p + miR-151a-5p + miR-17-5p + miR-181a-5p + miR-18a-5p + miR-18b-5p ↑ | 85.3 | 35.1 | 0.824 (0.758–0.889) | |||
Validation cohort CRC: 30 HC: 26 | miR-103a-3p ↑ miR-127-3p ↑ miR-151a-5p ↑ miR-17-5p ↑ miR-181a-5p ↑ miR-18a-5p ↑ miR-18b-5p ↑ miR-103a-3p + miR-127-3p + miR-151a-5p + miR-17-5p + miR-181a-5p + miR-18a-5p + miR-18b-5p ↑ | / / / / / / / 76.9 | / / / / / / / 86.7 | 0.759 (0.702–0.816) 0.729 (0.669–0.788) 0.737 (0.678–0.796) 0.742 (0.684–0.800) 0.736 (0.676–0.796) 0.777 (0.722–0.832) 0.781 (0.726–0.837) 0.895 (0.813–0.977) | |||
[102] | 2012 | Serum | CRC:32 HC:39 | miR-21 ↑ | 87.5 | 74.4 | 0.850 (0.760–0.940) |
[58] | 2013 | Serum | CRC: 186 HC: 53 | miR-21 ↑ | 82.8 | 90.6 | 0.927 (0.886–0.956) |
[59] | 2013 | Serum | CRC: 200 HC: 80 | miR-21↑ miR-92a ↑ miR-21 + miR-92 ↑ | 65 65.5 68 | 85 82.5 91.2 | 0.802 (0.752–0.852) 0.786 (0.728–0.845) 0.847 (0.803–0.891) |
[103] | 2014 | Serum | CRC: 40 HC: 40 | miR-21 ↑ | 77 | 78 | 0.870 (0.780–0.950) |
[104] | 2014 | Serum | CRC: 146 HC: 60 | miR-155 ↑ | 58.2 | 95 | 0.776 (0.714–0.837) |
[105] | 2014 | Serum | Training cohort CRC: 160 HC: 94 | miR-19a-3p ↑ miR-92a-3p ↑ miR-223-3p ↑ miR-422a ↓ miR-19a-3p ↑ + miR-92a-3p ↑ + miR-223-3p ↑ + miR-422a ↓ | / / / / / | / / / / / | 0.849 0.871 0.890 0.843 0.960 |
Validation cohort CRC: 117 HC: 102 | miR-19a-3p ↑ + miR-92a-3p ↑ + miR-223-3p ↑ + miR-422a ↓ | 84.3 | 91.6 | 0.951 (0.907–0.978) | |||
[106] | 2015 | Serum | CRC: 55 HC: 55 | miR-194 ↓ miR-29b ↓ | 72 77 | 80 75 | 0.850 (0.790–0.930) 0.870 (0.800–0.960) |
[107] | 2015 | Serum | CRC: 84 HC: 32 | miR-103 ↑ miR-720 ↑ | 55.9 58.3 | 75 56.3 | 0.662 0.630 |
[108] | 2016 | Serum | CRC: 100 HC:24 | miR-17 ↑ miR-19a ↑ miR-20a ↑ miR-223 ↑ | / / / / | / / / / | 0.813 (0.589–1.000) 0.825 (0.611–1.000) 0.788 (0.558–1.000) 0.838 (0.627–1.000) |
[109] | 2016 | Serum | Training cohort CRC: 80 HC: 80 | miR-23a-3p + miR-27a-3p + miR-142-5p + miR-376c-3p ↑ | 87.5 | 81 | 0.922 |
Validation cohort CRC: 203 HC: 100 | miR-23a-3p + miR-27a-3p + miR-142-5p + miR-376c-3p ↑ miR-23a-3p ↑ miR-27a-3p ↑ miR-142-5p ↑ miR-376c-3p ↑ | 88.7 / / / / | 81 / / / / | 0.922 0.891 0.697 0.815 0.654 | |||
[110] | 2016 | Serum | CRC: 211 HC: 57 | miR-1290 ↑ | 70.1 | 91.2 | 0.830 |
[111] | 2017 | Serum | CRC: 40 HC: 40 | miR-21 ↑ | 86.05 | 72.97 | 0.783 |
[112] | 2017 | Serum | CRC: 117 HC: 90 | miR-139-3p ↓ miR-622 ↑ | 96.6 87.8 | 97.8 67.5 | 0.994 (0.987–1.000) / |
[113] | 2017 | Serum | CRC: 73 HC:45 | miR-206 ↓ | 80 | 82.2 | 0.846 |
[114] | 2017 | Serum | CRC: 64 HC:27 | miR-92a ↑ miR-375 ↓ miR-760 ↓ | 84.4 78.1 92.2 | 100 100 100 | 0.844 (0.755–0.933) 0.781 (0.680–0.883) 0.922 (0.856–0.988) |
[115] | 2017 | Serum | Training cohort CRC: 30 HC: 30 | miR-19a-3p + miR-21-5p + miR-425-5p ↑ | / | / | 0.886 (0.803–0.968) |
Testing cohort CRC: 136 HC: 90 | miR-19a-3p + miR-21-5p + miR-425-5p ↑ | / | / | 0.768 (0.706–0.831) | |||
Validation cohort CRC: 30 HC: 18 | miR-19a-3p + miR-21-5p + miR-425-5p ↑ | / | / | 0.830 (0.708–0.952) | |||
[116] | 2017 | Serum | CRC: 103 HC: 100 | miR-196b ↑ | 63 | 87.4 | 0.814 (0.755–0.873) |
[117] | 2018 | Serum | CRC: 107 HC: 120 | miR-1246 ↑ miR-1229-3p ↑ miR-202-3p↓ miR-21-3p ↓ miR-532-3p ↓ miR-1246 ↑ + miR-1229-3p ↑ + miR-202-3p ↓ + miR-21-3p ↓ + miR-532-3p ↓ | 64.2 67.5 69.2 90.7 60.8 91.6 | 68.2 92.5 88.3 78.3 96.3 91.7 | 0.681 (0.612–0.750) 0.776 (0.713–0.839) 0.815 (0.756–0.873) 0.878 (0.831–0.924) 0.743 (0.674–0.811) 0.960 (0.937–0.983) |
[118] | 2018 | Serum | CRC: 26 HC: 33 | miR-20a ↓ miR-486 ↓ | / / | / / | 0.676 0.629 |
[119] | 2018 | Serum | CRC: 35 HC: 101 | miR-210 ↑ miR-21 ↑ miR-126 ↓ | 88.6 91.4 88.6 | 90.1 95 50.5 | 0.934 (0.873–0.995) 0.973 (0.946–1.000) 0.665 (0.571–0.759) |
[120] | 2020 | Serum | CRC: 148 HC: 68 | miR-92a-1 ↑ | 81.8 | 95.6 | 0.914 |
[121] | 2020 | Serum | CRC: 110 HC: 90 | miR-378e ↓ | 89 | 80 | 0.930 (0.897–0.962) |
[122] | 2020 | Serum | CRC: 80 HC: 88 | miR-30e-3p ↑ miR-31-5p ↑ miR-34b-3p ↑ miR-146a-5p ↑ miR-148a-3p ↓ miR-192-5p ↓ miR-30e-3p ↑ + miR-31-5p ↑ + miR-34b-3p ↑+ miR-146a-5p ↑ + miR-148a-3p ↓ + miR-192-5p ↓ miR-30e-3p ↑ + miR-146a-5p ↑ + miR-148a-3p ↓ | / / / / / / 84.6 80 | / / / / / / 86.1 78.7 | 0.731 (0.654–0.808) 0.669 (0.586–0.751) 0.785 (0.715–0.855) 0.739 (0.665–0.813) 0.648 (0.559–0.737) 0.652 (0.569–0.735) 0.932 (0.895–0.970) 0.883 (0.831–0.935) |
[123] | 2020 | Serum | CRC: 73 HC:18 | miR-21 ↑ miR-29a ↑ miR-92a ↑ miR-221 ↑ | 72.6 / / / | 70.6 / / / | 0.756 (0.6388–0.8728) 0.696 0.506 0.615 |
[124] | 2020 | Serum | CRC: 50 HC: 50 | miR-18a ↑ miR-21 ↑ miR-92a ↑ miR-18a + miR-21 ↑ | 84 84 66 88 | 84 90 68 92 | 0.906 0.918 0.672 0.966 |
[125] | 2020 | Serum | CRC: 37 HC: 30 | miR-1246 ↑ miR-451 ↓ | 100 73 | 80 80 | 0.924 0.757 |
[126] | 2020 | Serum | CRC: 48 HC: 48 | miR-21 ↑ | 95.8 | 91.7 | 0.940 |
[127] | 2020 | Serum | CRC: 27 HC: 45 | miR-21 ↑ miR-92a ↑ miR-221 ↑ miR-21 + miR-92a + miR-221 ↑ | / / / / | / / / / | 0.913 (0.848–0.978) 0.809 (0.694–0.924) 0.882 (0.804–0.960) 0.891 (0.818–0.965) |
[128] | 2020 | Serum | CRC: 60 HC: 30 | let-7c ↑ miR-21 ↑ miR-26a ↑ miR-146a ↑ let-7c + miR- 21 + miR-26a + miR-146a miR-21 + miR-26a | 77.6 80.7 77.6 78 82.1 91.8 | 96.2 100 96.2 74.1 100 91.7 | 0.855 (0.770–0.941) 0.936 (0.884–0.989) 0.918 (0.857–0.979) 0.805 (0.708–0.903) 0.950 (0.898–1.002) 0.953 (0.908–0.999) |
[129] | 2020 | Serum | CRC: 35 HC: 35 | miR-21 ↑ miR-23a ↑ miR-27a ↑ miR-21 + miR-23a ↑ miR-21 + miR-27a ↑ miR-21 + miR-23a + miR-27a ↑ | 82.9 82.9 42.9 82.9 88.6 82.9 | 97.1 91.3 88.6 97.1 85.7 97.1 | 0.893 (0.804–0.981) 0.887 (0.802–0.973) 0.665 (0.532–0.797) 0.908 (0.822–0.989) 0.899 (0.810–0.987) 0.908 (0.824–0.993) |
[130] | 2020 | Serum | CRC: 80 HC: 80 | miR-203a-3p ↑ miR-145-5p ↓ miR-375-3p ↓ miR-200c-3p ↓ miR-203a-3p ↑ + miR-145-5p ↓ + miR-375-3p ↓ + miR-200c-3p ↓ | / / / / 81.3 | / / / / 73.3 | 0.712 (0.633–0.791) 0.754 (0.678–0.830) 0.715 (0.637–0.793) 0.656 (0.568–0.743) 0.893 (0.846–0.940) |
[131] | 2020 | Serum | Training cohort CRC: 15 HC: 15 | miR-592 ↑ | 86.6 | 73.4 | 0.880 (0.750–0.990) |
Validation cohort CRC: 134 HC: 50 | miR-592 ↑ | 82.8 | 78 | 0.844 (0.780–0.910) | |||
[132] | 2020 | Serum | CRC: 80 HC: 50 | miR-4516 ↓ miR-21-5p ↑ miR-4516 ↓ + miR-21-5p ↑ | 94.4 90.6 92.1 | 89.8 86.2 87.6 | 0.958 0.928 0.943 |
[133] | 2024 | Serum | CRC: 46 HC: 46 | miR-549a ↑ miR-552 ↑ miR-592 ↑ | / / / | / / / | 0.863 0.946 0.884 |
[134] | 2013 | Stool | CRC: 117 HC: 10 | miR-106a ↑ | 34.2 | 97.2 | / |
[65] | 2014 | Stool | CRC: 104 HC: 109 | miR-135b ↑ | 78 | 68 | 0.790 |
[135] | 2014 | Stool | CRC: 198 HC: 198 | miR-221 ↑ miR-18a ↑ miR-221 + miR-18a ↑ | 62 61 66 | 74 69 75 | 0.730 (0.680–0.780) 0.670 (0.620–0.720) 0.750 |
[136] | 2016 | Stool | CRC: 51 HC: 26 | let-7f-5p ↓ | / | / | 0.709 (0.591–0.827) |
[137] | 2016 | Stool | CRC: 80 HC: 51 | miR-29a ↓ miR-223 ↓ miR-224 ↓ | 85 60 75 | 61 71 63 | 0.777 (0.695–0.859) 0.649 (0.551–0.746) 0.744 (0.658–0.829) |
[91] | 2016 | Stool | Training cohort CRC: 62 HC: 62 | miR-223 ↑ miR-92a ↑ | / / | / / | 0.787 (0.705–0.869) 0.739 (0.651–0.828) |
Validation cohort CRC: 76 HC: 247 | miR-223 ↑ miR-92a ↑ miR-223 + miR-92a ↑ | 77 61 71.7 | 65 82 79.9 | 0.796 (0.734–0.858) 0.748 (0.683–0.814) / | |||
[138] | 2016 | Stool | CRC: 198 HC: 198 | miR-20a ↑ miR-20a + miR-92a ↑ miR-20a + miR-135b ↑ | 55 57 79 | 82 84 65 | 0.730 (0.680–0.780) 0.770 (0.720–0.820) 0.790 (0.740–0.830) |
[139] | 2016 | Stool | CRC: 150 HC: 98 | miR-21 ↑ miR-146a ↓ miR-21 ↑ + miR-146a ↓ | 90.3 77.2 87 | 75.2 68.1 81.7 | 0.877 (0.810–0.972) 0.794 (0.669–0.913) 0.878 (0.779–0.965) |
[111] | 2017 | Stool | CRC: 40 HC: 40 | miR-21 ↑ | 86.06 | 81.08 | 0.829 |
[140] | 2017 | Stool | CRC: 29 HC: 115 | miR-144-5p ↑ + miR-451a ↑ | 66 | 95 | 0.890 (0.820–0.950) |
[141] | 2019 | Stool | CRC: 29 HC: 29 | miR-21 ↑ miR-92a ↑ miR-144 ↑ miR-17-3p ↑ miR-92a + miR-144 ↑ | 79.3 89.7 78.6 67.9 96.6 | 48.3 51.7 66.7 70.8 37.9 | 0.690 (0.550–0.830) 0.760 (0.630–0.880) 0.770 (0.614–0.904) 0.710 (0.572–0.855) / |
[142] | 2019 | Stool | CRC: 67 HC: 217 | miR-421 + miR-27a-3p ↑ | 96 | 33 | 0.740 |
[143] | 2019 | Saliva | CRC: 51 HC: 37 | miR-186-5p ↑ miR-29a-3p ↑ miR-29c-3p ↑ miR-766-3p ↑ miR-491-5p ↑ miR-186-5p + miR-29a-3p + miR-29c-3p + miR-766-3p + miR-491-5p ↑ | / / / / / 72 | / / / / / 66.7 | 0.655 (0.542–0.768) 0.631 (0.514–0.747) 0.659 (0.545–0.773) 0.631 (0.513–0.748) 0.632 (0.515–0.750) 0.754 (0.652–0.855) |
[144] | 2013 | Whole blood | CRC: 70 HC: 32 | miR-338-5p + miR-23a + miR-193a-3p ↑ | 80 | 84.4 | 0.887 (0.821–0.953) |
[145] | 2016 | Whole blood | CRC: 71 HC: 80 | miR-21 ↑ miR-221 ↑ miR-150 ↓ miR-21 ↑ + miR-221 ↑ + miR-150 ↓ | 71.8 71.8 57.8 80 | 67.5 68.8 56.3 74 | 0.740 0.754 0.632 0.818 |
[146] | 2017 | Exosomes from plasma | CRC: 50 HC: 50 | miR-125a-3p ↑ miR-320c ↑ | / / | / / | 0.685 (0.559–0.803) 0.598 (0.471–0.726) |
[147] | 2018 | Exosomes from plasma | Training cohort CRC: 40 HC: 40 | miR-27a ↑ miR-130a ↑ miR-27a + miR-130a ↑ | 75 82.5 82.5 | 77.5 62.5 75 | 0.773 (0.669–0.876) 0.742 (0.633–0.851) 0.846 (0.762–0.930) |
External validation cohort CRC: 50 HC: 50 | miR-27a ↑ miR-130a ↑ miR-27a + miR-130a ↑ | 80 70 80 | 77.5 80 90 | 0.746 (0.659–0.833) 0.697 (0.610–0.784) 0.801 (0.712–0.870) | |||
Validation cohort CRC: 80 HC: 40 | miR-27a ↑ miR-130a ↑ miR-27a + miR-130a ↑ | 80 70 80 | 77.5 80 90 | 0.820 (0.742–0.899) 0.787 (0.704–0.871) 0.898 (0.844–0.953) | |||
[148] | 2020 | Exosomes from plasma | CRC: 80 HC: 23 | miR-139-3p ↓ | / | / | 0.726 (0.603–0.848) |
[149] | 2014 | Exosomes from serum | CRC: 88 HC: 11 | let-7a ↑ miR-1224-5p ↑ miR-1229 ↑ miR-1246 ↑ miR-150 ↑ miR-21 ↑ miR-223 ↑ miR-23a ↑ | 50 31.8 22.7 95.5 55.7 61.4 46.6 92 | 90.9 100 100 90.9 100 90.9 90.9 100 | 0.670 0.610 0.614 0.948 0.758 0.798 0.716 0.953 |
[150] | 2019 | Exosomes from serum | CRC: 13 HC: 5 | miR-23a ↑ miR-301a ↑ | / / | / / | 0.890 (0.740 -1.000) 0.840 (0.650–1.000) |
[151] | 2019 | Exosomes from serum | CRC: 165 HC: 153 | miR-99b-5p ↓ miR-150-5p ↓ | 32.1 75.2 | 90.8 58.8 | 0.628 (0.567–0.689) 0.707 (0.649–0.764) |
[152] | 2020 | Exosomes from serum | CRC: 45 HC: 4 | miR-19a ↑ miR-20a ↑ miR150 ↑ miR-143 ↓ miR-145 ↓ let-7a ↑ | / / / / / / | / / / / / / | 0.870 0.830 0.750 0.760 0.780 0.710 |
[153] | 2021 | Exosomes from serum | Test cohort CRC: 123 HC: 150 | miR-15b ↑ miR-16 ↑ miR-21 ↑ miR-31 ↑ miR-15b + miR-21 + miR-31 ↑ | / / / / 91.6 | / / / / 97.6 | 0.860 (0.820–0.910) 0.580 (0.510–0.650) 0.750 (0.690–0.810) 0.750 (0.680–0.820) / |
Validation cohort CRC: 81 HC: 90 | miR-15b + miR-21 + miR-31 ↑ | 95.1 | 94.4 | / | |||
[154] | 2021 | Exosomes from serum | CRC: 51 HC: 49 | miR-1539 ↑ | 92.2 | 40.8 | 0.673 (0.568–0.779) |
[155] | 2021 | Exosomes from serum | CRC: 100 HC: 35 | miR-126 ↑ miR-1290 ↑ miR-23a ↑ miR-940 ↑ miR-126 + miR-1290 + miR-23a + miR-940 ↑ | 84 85 91 90 90 | 88.6 88.6 74.3 77.1 88.6 | 0.940 (0.900–0.980) 0.920 (0.870–0.970) 0.890 (0.830–0.950) 0.880 (0.820–0.940) 0.950 (0.910–0.990) |
[156] | 2019 | EVs from PLF | CRC: 19 HC: 22 | miR-150-5p ↑ miRNA-199b-5p ↓ miR-29c-5p ↓ miR-218-5p ↓ miR-99a-3p ↓ miR-383-5p ↓ miR-199a-3p ↓ miR-193a-5p ↓ miR-10b-5p ↓ miR-181c-5p ↓ | 93.6 96.8 94.3 90.5 97.6 94 92 85.2 87.5 85.9 | 89.9 96.4 94.4 92.1 90 93.8 88.7 89.7 86.6 80.3 | 0.978 (0.959–0.996) 1.000 0.973 (0.954–0.991) 0.970 (0.945–0.995) 0.970 (0.950–0.990) 0.968 (0.952–0.985) 0.968 (0.942–0.994) 0.962 (0.932–0.991) 0.957 (0.930–0.983) 0.952 (0.929–0.974) |
[24] | 2022 | Urine | CRC: 63 HC: 63 | miR-129-1-3p ↑ miR-566 ↑ miR-129-1-3p + miR-566 | / / 88.9 | / / 76.2 | 0.856 (0.789–0.924) 0.809 (0.733–0.885) 0.868 (0.806–0.931) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ždralević, M.; Radović, A.; Raonić, J.; Popovic, N.; Klisic, A.; Vučković, L. Advances in microRNAs as Emerging Biomarkers for Colorectal Cancer Early Detection and Diagnosis. Int. J. Mol. Sci. 2024, 25, 11060. https://doi.org/10.3390/ijms252011060
Ždralević M, Radović A, Raonić J, Popovic N, Klisic A, Vučković L. Advances in microRNAs as Emerging Biomarkers for Colorectal Cancer Early Detection and Diagnosis. International Journal of Molecular Sciences. 2024; 25(20):11060. https://doi.org/10.3390/ijms252011060
Chicago/Turabian StyleŽdralević, Maša, Andrijana Radović, Janja Raonić, Natasa Popovic, Aleksandra Klisic, and Ljiljana Vučković. 2024. "Advances in microRNAs as Emerging Biomarkers for Colorectal Cancer Early Detection and Diagnosis" International Journal of Molecular Sciences 25, no. 20: 11060. https://doi.org/10.3390/ijms252011060
APA StyleŽdralević, M., Radović, A., Raonić, J., Popovic, N., Klisic, A., & Vučković, L. (2024). Advances in microRNAs as Emerging Biomarkers for Colorectal Cancer Early Detection and Diagnosis. International Journal of Molecular Sciences, 25(20), 11060. https://doi.org/10.3390/ijms252011060