Therapeutic Potential of Intermittent Hypoxia in Atrial Fibrillation
Abstract
:1. Introduction
2. Results
2.1. Increased Incidence of AF in MCT-Injected Group
2.2. Effect of IH on Heart Rate Variability
2.3. IL-6, TNF-α, TGF-β, and MMP2 Measurements
2.4. Effects of IH Administration on CaMKII Activation and Ca2+ Handling Disturbances in MCT-Induced AF
2.5. Effect of IH Administration on Cardiac Fibrosis, CX43 Expression, and Cardiac Edema in AF Hearts
3. Discussion
4. Materials and Methods
4.1. Intermittent Hypoxia Condition
4.2. Model of Right-Sided Heart Disease
4.3. Electrocardiogram Telemetry Monitoring
4.4. Enzyme-Linked Immunosorbent Assay
4.5. Heart Rate Variability (HRV) Analysis
4.6. Immunoblot Analysis of Ca2+ Handling Proteins
4.7. Statistical Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bu, H.M.; Yang, C.Y.; Wang, M.L.; Ma, H.J.; Sun, H.; Zhang, Y. K(ATP) channels and MPTP are involved in the cardioprotection bestowed by chronic intermittent hypobaric hypoxia in the developing rat. J. Physiol. Sci. 2015, 65, 367–376. [Google Scholar] [CrossRef] [PubMed]
- Kopylov Iu, N.; Golubeva, L. Effect of adaptation to periodic hypoxia on the resistance of the indicators of energy metabolism and myocardial contraction in acute anoxia and reoxygenation. Biulleten Eksperimental Biol. Meditsiny 1991, 111, 22–25. [Google Scholar]
- Meerson, F.Z.; Ustinova, E.E.; Orlova, E.H. Prevention and elimination of heart arrhythmias by adaptation to intermittent high altitude hypoxia. Clin. Cardiol. 1987, 10, 783–789. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhong, N.; Zhou, Z.N. Effects of intermittent hypoxia on action potential and contraction in non-ischemic and ischemic rat papillary muscle. Life Sci. 2000, 67, 2465–2471. [Google Scholar] [CrossRef]
- Matassini, M.V.; Brambatti, M.; Guerra, F.; Scappini, L.; Capucci, A. Sleep-disordered breathing and atrial fibrillation: Review of the evidence. Cardiol. Rev. 2015, 23, 79–86. [Google Scholar] [CrossRef]
- Zhu, H.F.; Dong, J.W.; Zhu, W.Z.; Ding, H.L.; Zhou, Z.N. ATP-dependent potassium channels involved in the cardiac protection induced by intermittent hypoxia against ischemia/reperfusion injury. Life Sci. 2003, 73, 1275–1287. [Google Scholar] [CrossRef]
- Zhu, W.Z.; Xie, Y.; Chen, L.; Yang, H.T.; Zhou, Z.N. Intermittent high altitude hypoxia inhibits opening of mitochondrial permeability transition pores against reperfusion injury. J. Mol. Cell. Cardiol. 2006, 40, 96–106. [Google Scholar] [CrossRef]
- Wang, Y.P.; Cui, F.; Zhang, L.P.; Yang, C.Y.; Guan, Y.; Zhou, Z.N.; Zhang, Y. Effect of chronic intermittent hypobaric hypoxia on alpha(1)-adrenergic receptor of myocardium participates in the cardioprotection. Acta Physiol. Sin. 2009, 61, 21–26. [Google Scholar]
- Navarrete-Opazo, A.; Mitchell, G.S. Therapeutic potential of intermittent hypoxia: A matter of dose. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2014, 307, R1181–R1197. [Google Scholar] [CrossRef]
- Serebrovskaya, T.V. Intermittent hypoxia research in the former soviet union and the commonwealth of independent States: History and review of the concept and selected applications. High Alt. Med. Biol. 2002, 3, 205–221. [Google Scholar] [CrossRef]
- Xu, W.Q.; Yu, Z.; Xie, Y.; Huang, G.Q.; Shu, X.H.; Zhu, Y.; Zhou, Z.N.; Yang, H.T. Therapeutic effect of intermittent hypobaric hypoxia on myocardial infarction in rats. Basic Res. Cardiol. 2011, 106, 329–342. [Google Scholar] [CrossRef] [PubMed]
- Yu, Z.; Wang, Z.H.; Yang, H.T. Calcium/calmodulin-dependent protein kinase II mediates cardioprotection of intermittent hypoxia against ischemic-reperfusion-induced cardiac dysfunction. Am. J. Physiol. Heart Circ. Physiol. 2009, 297, H735–H742. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Zhao, W.; Li, S.; Ding, Y.; Wang, Y.; Ji, X. Intermittent Hypoxia Conditioning: A Potential Multi-Organ Protective Therapeutic Strategy. Int. J. Med. Sci. 2023, 20, 1551–1561. [Google Scholar] [CrossRef]
- Ostadal, B.; Kolar, F. Cardiac adaptation to chronic high-altitude hypoxia: Beneficial and adverse effects. Respir. Physiol. Neurobiol. 2007, 158, 224–236. [Google Scholar] [CrossRef]
- Serebrovskaya, T.V.; Xi, L. Intermittent hypoxia training as non-pharmacologic therapy for cardiovascular diseases: Practical analysis on methods and equipment. Exp. Biol. Med. 2016, 241, 1708–1723. [Google Scholar] [CrossRef]
- Yuan, H.; Liu, J.; Gu, Y.; Ji, X.; Nan, G. Intermittent hypoxia conditioning as a potential prevention and treatment strategy for ischemic stroke: Current evidence and future directions. Front. Neurosci. 2022, 16, 1067411. [Google Scholar] [CrossRef] [PubMed]
- Sanchis-Gomar, F.; Vina, J.; Lippi, G. Intermittent hypobaric hypoxia applicability in myocardial infarction prevention and recovery. J. Cell. Mol. Med. 2012, 16, 1150–1154. [Google Scholar] [CrossRef]
- Curtis, A.B.; Karki, R.; Hattoum, A.; Sharma, U.C. Arrhythmias in Patients >/=80 Years of Age: Pathophysiology, Management, and Outcomes. J. Am. Coll. Cardiol. 2018, 71, 2041–2057. [Google Scholar] [CrossRef]
- Frenneaux, M.P. Autonomic changes in patients with heart failure and in post-myocardial infarction patients. Heart 2004, 90, 1248–1255. [Google Scholar] [CrossRef]
- Tsuji, H.; Venditti, F.J., Jr.; Manders, E.S.; Evans, J.C.; Larson, M.G.; Feldman, C.L.; Levy, D. Reduced heart rate variability and mortality risk in an elderly cohort. The Framingham Heart Study. Circulation 1994, 90, 878–883. [Google Scholar] [CrossRef]
- Samniang, B.; Shinlapawittayatorn, K.; Chunchai, T.; Pongkan, W.; Kumfu, S.; Chattipakorn, S.C.; KenKnight, B.H.; Chattipakorn, N. Vagus Nerve Stimulation Improves Cardiac Function by Preventing Mitochondrial Dysfunction in Obese-Insulin Resistant Rats. Sci. Rep. 2016, 6, 19749. [Google Scholar] [CrossRef] [PubMed]
- Taralov, Z.Z.; Terziyski, K.V.; Dimov, P.K.; Marinov, B.I.; Kostianev, S.S. Assessment of the impact of 10-day intermittent hypoxia on the autonomic control measured by heart rate variability. Physiol. Int. 2018, 105, 386–396. [Google Scholar] [CrossRef] [PubMed]
- Lampert, R.; Ickovics, J.R.; Viscoli, C.J.; Horwitz, R.I.; Lee, F.A. Effects of propranolol on recovery of heart rate variability following acute myocardial infarction and relation to outcome in the Beta-Blocker Heart Attack Trial. Am. J. Cardiol. 2003, 91, 137–142. [Google Scholar] [CrossRef]
- McConkey, D.J.; Orrenius, S. The role of calcium in the regulation of apoptosis. Biochem. Biophys. Res. Commun. 1997, 239, 357–366. [Google Scholar] [CrossRef]
- Lin, M.Y.; Zal, T.; Ch’en, I.L.; Gascoigne, N.R.; Hedrick, S.M. A pivotal role for the multifunctional calcium/calmodulin-dependent protein kinase II in T cells: From activation to unresponsiveness. J. Immunol. 2005, 174, 5583–5592. [Google Scholar] [CrossRef]
- Ai, X.; Curran, J.W.; Shannon, T.R.; Bers, D.M.; Pogwizd, S.M. Ca2+/calmodulin-dependent protein kinase modulates cardiac ryanodine receptor phosphorylation and sarcoplasmic reticulum Ca2+ leak in heart failure. Circ. Res. 2005, 97, 1314–1322. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Shen, Y.; Lin, F.; Fu, W.; Liu, S.; Wang, C.; Liang, J.; Fan, X.; Ye, X.; Tang, Y.; et al. Targeting RyR2 with a phosphorylation site-specific nanobody reverses dysfunction of failing cardiomyocytes in rats. FASEB J. 2019, 33, 7467–7478. [Google Scholar] [CrossRef]
- Wehrens, X.H.; Lehnart, S.E.; Reiken, S.R.; Marks, A.R. Ca2+/calmodulin-dependent protein kinase II phosphorylation regulates the cardiac ryanodine receptor. Circ. Res. 2004, 94, e61–e70. [Google Scholar] [CrossRef]
- Sultonov, D.; Kim, Y.H.; Park, H.; Kim, K.S. Intermittent Hypoxia on the Attenuation of Induced Nasal Allergy and Allergic Asthma by MAPK Signaling Pathway Downregulation in a Mice Animal Model. Int. J. Mol. Sci. 2022, 23, 9235. [Google Scholar] [CrossRef]
- Tarvainen, M.P.; Niskanen, J.P.; Lipponen, J.A.; Ranta-Aho, P.O.; Karjalainen, P.A. Kubios HRV—Heart rate variability analysis software. Comput. Methods Programs Biomed. 2014, 113, 210–220. [Google Scholar] [CrossRef]
- Mostarda, C.; Rogow, A.; Silva, I.C.; De La Fuente, R.N.; Jorge, L.; Rodrigues, B.; Heeren, M.V.; Caldini, E.G.; De Angelis, K.; Irigoyen, M.C. Benefits of exercise training in diabetic rats persist after three weeks of detraining. Auton. Neurosci. 2009, 145, 11–16. [Google Scholar] [CrossRef] [PubMed]
- Dantas, E.M.; Sant’Anna, M.L.; Andreao, R.V.; Goncalves, C.P.; Morra, E.A.; Baldo, M.P.; Rodrigues, S.L.; Mill, J.G. Spectral analysis of heart rate variability with the autoregressive method: What model order to choose? Comput. Biol. Med. 2012, 42, 164–170. [Google Scholar] [CrossRef] [PubMed]
Heart Rate Variability | CTL | CTL + IH | AF | AF + IH | p-Value between CTL and AF Groups | p-Value between AF and AF + IH Groups |
---|---|---|---|---|---|---|
SDNN | 4.8 ± 2.0 | 4.7 ± 0.8 | 1.9 ± 0.5 | 4.6 ± 3.7 | 0.034 | 0.022 |
lnLF (ms2) | 1.1 ± 0.73 | 1.3 ± 0.4 | 0.5 ± 0.3 | 1.1 ± 0.8 | 0.043 | 0.143 |
lnHF (ms2) | 5.1 ± 2.6 | 5.2 ± 1.3 | 0.9 ± 0.2 | 7.5 ± 3.63 | 0.007 | 0.003 |
LF/HF ratio | 0.22 ± 0.13 | 0.24 ± 0.02 | 0.56 ± 0.25 | 0.18 ± 0.13 | 0.026 | 0.017 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, H.; Park, B.; Kim, K.-s.; Son, Y.H.; Park, S.J.; Lee, K.; Park, H.; Park, J. Therapeutic Potential of Intermittent Hypoxia in Atrial Fibrillation. Int. J. Mol. Sci. 2024, 25, 11085. https://doi.org/10.3390/ijms252011085
Park H, Park B, Kim K-s, Son YH, Park SJ, Lee K, Park H, Park J. Therapeutic Potential of Intermittent Hypoxia in Atrial Fibrillation. International Journal of Molecular Sciences. 2024; 25(20):11085. https://doi.org/10.3390/ijms252011085
Chicago/Turabian StylePark, Hyewon, Bokyeong Park, Kyu-sung Kim, Young Hoon Son, Sung Jin Park, Kichang Lee, Hyelim Park, and Junbeom Park. 2024. "Therapeutic Potential of Intermittent Hypoxia in Atrial Fibrillation" International Journal of Molecular Sciences 25, no. 20: 11085. https://doi.org/10.3390/ijms252011085
APA StylePark, H., Park, B., Kim, K.-s., Son, Y. H., Park, S. J., Lee, K., Park, H., & Park, J. (2024). Therapeutic Potential of Intermittent Hypoxia in Atrial Fibrillation. International Journal of Molecular Sciences, 25(20), 11085. https://doi.org/10.3390/ijms252011085