MSI-H Detection by ddPCR in Endoscopic Ultrasound Fine Needle Biopsy (EUS-FNB) from Pancreatic Ductal Adenocarcinoma
Abstract
:1. Introduction
2. Results
2.1. Clinicopathologic Characteristics of Patients
2.2. DNA Quantity and Quality Assessment
2.3. MSI-H/dMMR Analysis
2.4. Association of MSI-H Status with Clinicopathological Features from PDAC Patients
3. Discussion
4. Materials and Methods
4.1. Patients
4.2. Tumor Area Evaluation
4.3. Immunohistochemistry
4.4. DNA Extraction
4.5. ddPCR MSI Molecular Analysis
4.6. Statistical Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Siegel, R.L.; Miller, K.D.; Wagle, N.S.; Jemal, A. Cancer Statistics, 2023. CA Cancer J. Clin. 2023, 73, 17–48. [Google Scholar] [CrossRef] [PubMed]
- Rahib, L.; Smith, B.D.; Aizenberg, R.; Rosenzweig, A.B.; Fleshman, J.M.; Matrisian, L.M. Projecting Cancer Incidence and Deaths to 2030: The Unexpected Burden of Thyroid, Liver, and Pancreas Cancers in the United States. Cancer Res. 2014, 74, 2913–2921. [Google Scholar] [CrossRef]
- Halbrook, C.J.; Lyssiotis, C.A.; Pasca di Magliano, M.; Maitra, A. Pancreatic Cancer: Advances and Challenges. Cell 2023, 186, 1729–1754. [Google Scholar] [CrossRef] [PubMed]
- Muñoz, A.R.; Chakravarthy, D.; Gong, J.; Halff, G.A.; Ghosh, R.; Kumar, A.P. Pancreatic Cancer: Current Status and Challenges. Curr. Pharmacol. Rep. 2017, 3, 396–408. [Google Scholar] [CrossRef] [PubMed]
- Fesinmeyer, M.D.; Austin, M.A.; Li, C.I.; De Roos, A.J.; Bowen, D.J. Differences in Survival by Histologic Type of Pancreatic Cancer. Cancer Epidemiol. Biomark. Prev. 2005, 14, 1766–1773. [Google Scholar] [CrossRef]
- Kitano, M.; Kudo, M.; Yamao, K.; Takagi, T.; Sakamoto, H.; Komaki, T.; Kamata, K.; Imai, H.; Chiba, Y.; Okada, M.; et al. Characterization of Small Solid Tumors in the Pancreas: The Value of Contrast-Enhanced Harmonic Endoscopic Ultrasonography. Am. J. Gastroenterol. 2012, 107, 303–310. [Google Scholar] [CrossRef]
- Rogers, H.K.; Shah, S.L. Role of Endoscopic Ultrasound in Pancreatic Cancer Diagnosis and Management. Diagnostics 2024, 14, 1156. [Google Scholar] [CrossRef]
- Chatterjee, A.; Shah, J. Role of Endoscopic Ultrasound in Diagnosis of Pancreatic Ductal Adenocarcinoma. Diagnostics 2023, 14, 78. [Google Scholar] [CrossRef]
- Overbeek, K.A.; Cahen, D.L.; Bruno, M.J. The Role of Endoscopic Ultrasound in the Detection of Pancreatic Lesions in High-Risk Individuals. Fam. Cancer 2024, 23, 279–293. [Google Scholar] [CrossRef]
- Salom, F.; Prat, F. Current Role of Endoscopic Ultrasound in the Diagnosis and Management of Pancreatic Cancer. World J. Gastrointest. Endosc. 2022, 14, 35–48. [Google Scholar] [CrossRef]
- Yousaf, M.N.; Chaudhary, F.S.; Ehsan, A.; Suarez, A.L.; Muniraj, T.; Jamidar, P.; Aslanian, H.R.; Farrell, J.J. Endoscopic Ultrasound (EUS) and the Management of Pancreatic Cancer. BMJ Open Gastroenterol. 2020, 7, e000408. [Google Scholar] [CrossRef] [PubMed]
- Conroy, T.; Pfeiffer, P.; Vilgrain, V.; Lamarca, A.; Seufferlein, T.; O’Reilly, E.M.; Hackert, T.; Golan, T.; Prager, G.; Haustermans, K.; et al. Pancreatic Cancer: ESMO Clinical Practice Guideline for Diagnosis, Treatment and Follow-Up. Ann. Oncol. 2023, 34, 987–1002. [Google Scholar] [CrossRef] [PubMed]
- Kleeff, J.; Korc, M.; Apte, M.; La Vecchia, C.; Johnson, C.D.; Biankin, A.V.; Neale, R.E.; Tempero, M.; Tuveson, D.A.; Hruban, R.H.; et al. Pancreatic Cancer. Nat. Rev. Dis. Primers 2016, 2, 16022. [Google Scholar] [CrossRef] [PubMed]
- Von Hoff, D.D.; Ervin, T.; Arena, F.P.; Chiorean, E.G.; Infante, J.; Moore, M.; Seay, T.; Tjulandin, S.A.; Ma, W.W.; Saleh, M.N.; et al. Increased Survival in Pancreatic Cancer with Nab-Paclitaxel plus Gemcitabine. N. Engl. J. Med. 2013, 369, 1691–1703. [Google Scholar] [CrossRef] [PubMed]
- Principe, D.R.; Underwood, P.W.; Korc, M.; Trevino, J.G.; Munshi, H.G.; Rana, A. The Current Treatment Paradigm for Pancreatic Ductal Adenocarcinoma and Barriers to Therapeutic Efficacy. Front. Oncol. 2021, 11, 688377. [Google Scholar] [CrossRef]
- Tateo, V.; Marchese, P.V.; Mollica, V.; Massari, F.; Kurzrock, R.; Adashek, J.J. Agnostic Approvals in Oncology: Getting the Right Drug to the Right Patient with the Right Genomics. Pharmaceuticals 2023, 16, 614. [Google Scholar] [CrossRef]
- Stefanoudakis, D.; Frountzas, M.; Schizas, D.; Michalopoulos, N.V.; Drakaki, A.; Toutouzas, K.G. Significance of TP53, CDKN2A, SMAD4 and KRAS in Pancreatic Cancer. Curr. Issues Mol. Biol. 2024, 46, 2827–2844. [Google Scholar] [CrossRef]
- Park, J.K.; Kim, H.; Son, D.S.; Kim, N.K.D.; Sung, Y.K.; Cho, M.; Lee, C.; Noh, D.H.; Lee, S.H.; Lee, K.T.; et al. Accurate Prognosis Prediction of Pancreatic Ductal Adenocarcinoma Using Integrated Clinico-genomic Data of Endoscopic Ultrasound-guided Fine Needle Biopsy. Cancers 2021, 13, 2791. [Google Scholar] [CrossRef]
- Petrelli, F.; Ghidini, M.; Ghidini, A.; Tomasello, G. Outcomes Following Immune Checkpoint Inhibitor Treatment of Patients with Microsatellite Instability-High Cancers: A Systematic Review and Meta-Analysis. JAMA Oncol. 2020, 6, 1068–1071. [Google Scholar] [CrossRef]
- Hu, Z.I.; Shia, J.; Stadler, Z.K.; Varghese, A.M.; Capanu, M.; Salo-Mullen, E.; Lowery, M.A.; Diaz, L.A.; Mandelker, D.; Yu, K.H.; et al. Evaluating Mismatch Repair Deficiency in Pancreatic Adenocarcinoma: Challenges and Recommendations. Clin. Cancer Res. 2018, 24, 1326–1336. [Google Scholar] [CrossRef]
- Luchini, C.; Brosens, L.A.A.; Wood, L.D.; Chatterjee, D.; Shin, J.I.; Sciammarella, C.; Fiadone, G.; Malleo, G.; Salvia, R.; Kryklyva, V.; et al. Comprehensive Characterisation of Pancreatic Ductal Adenocarcinoma with Microsatellite Instability: Histology, Molecular Pathology and Clinical Implications. Gut 2021, 70, 148–156. [Google Scholar] [CrossRef]
- Hosein, A.N.; Dougan, S.K.; Aguirre, A.J.; Maitra, A. Translational Advances in Pancreatic Ductal Adenocarcinoma Therapy. Nat. Cancer 2022, 3, 272–286. [Google Scholar] [CrossRef] [PubMed]
- Bass, A.J.; Thorsson, V.; Shmulevich, I.; Reynolds, S.M.; Miller, M.; Bernard, B.; Hinoue, T.; Laird, P.W.; Curtis, C.; Shen, H.; et al. Comprehensive Molecular Characterization of Gastric Adenocarcinoma. Nature 2014, 513, 202–209. [Google Scholar] [CrossRef]
- Diao, Z.; Han, Y.; Chen, Y.; Zhang, R.; Li, J. The Clinical Utility of Microsatellite Instability in Colorectal Cancer. Crit. Rev. Oncol. Hematol. 2021, 157, 103171. [Google Scholar] [CrossRef]
- Diaz-Padilla, I.; Romero, N.; Amir, E.; Matias-Guiu, X.; Vilar, E.; Muggia, F.; Garcia-Donas, J. Mismatch Repair Status and Clinical Outcome in Endometrial Cancer: A Systematic Review and Meta-Analysis. Crit. Rev. Oncol. Hematol. 2013, 88, 154–167. [Google Scholar] [CrossRef]
- Schrock, A.B.; Devoe, C.E.; McWilliams, R.; Sun, J.; Aparicio, T.; Stephens, P.J.; Ross, J.S.; Wilson, R.; Miller, V.A.; Ali, S.M.; et al. Genomic Profiling of Small-Bowel Adenocarcinoma. JAMA Oncol. 2017, 3, 1546–1553. [Google Scholar] [CrossRef]
- Kavun, A.; Veselovsky, E.; Lebedeva, A.; Belova, E.; Kuznetsova, O.; Yakushina, V.; Grigoreva, T.; Mileyko, V.; Fedyanin, M.; Ivanov, M. Microsatellite Instability: A Review of Molecular Epidemiology and Implications for Immune Checkpoint Inhibitor Therapy. Cancers 2023, 15, 2288. [Google Scholar] [CrossRef]
- Le, D.T.; Durham, J.N.; Smith, K.N.; Wang, H.; Bartlett, B.R.; Aulakh, L.K.; Lu, S.; Kemberling, H.; Wilt, C.; Luber, B.S.; et al. Mismatch Repair Deficiency Predicts Response of Solid Tumors to PD-1 Blockade. Science 2017, 357, 409–413. [Google Scholar] [CrossRef]
- Marabelle, A.; Le, D.T.; Ascierto, P.A.; Di Giacomo, A.M.; de Jesus-Acosta, A.; Delord, J.P.; Geva, R.; Gottfried, M.; Penel, N.; Hansen, A.R.; et al. Efficacy of Pembrolizumab in Patients with Noncolorectal High Microsatellite Instability/Mismatch Repair-Deficient Cancer: Results from the Phase II KEYNOTE-158 Study. J. Clin. Oncol. 2020, 38, 1–10. [Google Scholar] [CrossRef]
- Taïeb, J.; Sayah, L.; Heinrich, K.; Kunzmann, V.; Boileve, A.; Cirkel, G.; Lonardi, S.; Chibaudel, B.; Turpin, A.; Beller, T.; et al. Efficacy of Immune Checkpoint Inhibitors in Microsatellite Unstable/Mismatch Repair-Deficient Advanced Pancreatic Adenocarcinoma: An AGEO European Cohort. Eur. J. Cancer 2023, 188, 90–97. [Google Scholar] [CrossRef]
- Kamatham, S.; Shahjehan, F.; Kasi, P.M. Circulating Tumor DNA-Based Detection of Microsatellite Instability and Response to Immunotherapy in Pancreatic Cancer. Front. Pharmacol. 2020, 11, 23. [Google Scholar] [CrossRef] [PubMed]
- Cox, R.E.; Mahipal, A.; Chakrabarti, S. A Patient with Locally Advanced Mismatch-Repair-Deficient Pancreatic Ductal Adenocarcinoma Successfully Treated with Neoadjuvant Immunotherapy. Cureus 2021, 13, e14640. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Singh, V.; Ricca, A.; Lee, P. Survival Benefit of Pembrolizumab for Patients with Pancreatic Adenocarcinoma: A Case Series. J. Med. Cases 2022, 13, 240–243. [Google Scholar] [CrossRef] [PubMed]
- Anisetti, B.; Coston, T.W.; Ahmed, A.K.; Mahadevia, H.J.; Edgar, M.A.; Starr, J.S.; Babiker, H.M. An Excellent Response of Microsatellite Instability-High Pancreatic Adenocarcinoma to Pembrolizumab Treatment: The Role of Circulating Tumor DNA Testing. Cureus 2023, 15, e37239. [Google Scholar] [CrossRef] [PubMed]
- Food and Drug Administration FDA Grants Accelerated Approval to Pembrolizumab for First Tissue/Site Agnostic Indication. Available online: https://www.fda.gov/drugs/resources-information-approved-drugs/fda-grants-accelerated-approval-pembrolizumab-first-tissuesite-agnostic-indication (accessed on 23 July 2024).
- European Medicines Agency (EMA) Keytruda. Available online: https://www.ema.europa.eu/en/medicines/human/EPAR/keytruda (accessed on 23 July 2024).
- Mosele, M.F.; Westphalen, C.B.; Stenzinger, A.; Barlesi, F.; Bayle, A.; Bièche, I.; Bonastre, J.; Castro, E.; Dienstmann, R.; Krämer, A.; et al. Recommendations for the Use of Next-Generation Sequencing (NGS) for Patients with Advanced Cancer in 2024: A Report from the ESMO Precision Medicine Working Group. Ann. Oncol. 2024, 35, 588–606. [Google Scholar] [CrossRef]
- Luchini, C.; Bibeau, F.; Ligtenberg, M.J.L.; Singh, N.; Nottegar, A.; Bosse, T.; Miller, R.; Riaz, N.; Douillard, J.Y.; Andre, F.; et al. ESMO Recommendations on Microsatellite Instability Testing for Immunotherapy in Cancer, and Its Relationship with PD-1/PD-L1 Expression and Tumour Mutational Burden: A Systematic Review-Based Approach. Ann. Oncol. 2019, 30, 1232–1243. [Google Scholar] [CrossRef]
- Casas-Arozamena, C.; Moiola, C.P.; Vilar, A.; Bouso, M.; Cueva, J.; Cabrera, S.; Sampayo, V.; Arias, E.; Abalo, A.; García, Á.; et al. Noninvasive Detection of Microsatellite Instability in Patients with Endometrial Cancer. Int. J. Cancer 2023, 152, 2206–2217. [Google Scholar] [CrossRef]
- Klouch, K.Z.; Stern, M.H.; Trabelsi-Grati, O.; Kiavue, N.; Cabel, L.; Silveira, A.B.; Hego, C.; Rampanou, A.; Popova, T.; Bataillon, G.; et al. Microsatellite Instability Detection in Breast Cancer Using Drop-off Droplet Digital PCR. Oncogene 2022, 41, 5289–5297. [Google Scholar] [CrossRef]
- Silveira, A.B.; Bidard, F.C.; Kasperek, A.; Melaabi, S.; Tanguy, M.L.; Rodrigues, M.; Bataillon, G.; Cabel, L.; Buecher, B.; Pierga, J.Y.; et al. High-Accuracy Determination of Microsatellite Instability Compatible with Liquid Biopsies. Clin. Chem. 2020, 66, 606–613. [Google Scholar] [CrossRef]
- Constantin, A.; Iovănescu, V.; Cazacu, I.M.; Ungureanu, B.S.; Copăescu, C.; Stroescu, C.; Bejinariu, N.; Săftoiu, A. Evaluation of MMR Status and PD-L1 Expression Using Specimens Obtained by EUS-FNB in Patients with Pancreatic Ductal Adenocarcinoma (PDAC). Diagnostics 2022, 12, 294. [Google Scholar] [CrossRef]
- Gleeson, F.C.; Levy, M.J.; Roden, A.C.; Boardman, L.A.; Sinicrope, F.A.; McWilliams, R.R.; Zhang, L. EUS Fine-Needle Pancreatic Core Biopsy Can Determine Eligibility for Tumor-Agnostic Immunotherapy. Endosc. Int. Open 2018, 6, E1278–E1282. [Google Scholar] [CrossRef] [PubMed]
- Sugimoto, M.; Irie, H.; Takagi, T.; Suzuki, R.; Konno, N.; Asama, H.; Sato, Y.; Nakamura, J.; Takasumi, M.; Hashimoto, M.; et al. Efficacy of EUS-Guided FNB Using a Franseen Needle for Tissue Acquisition and Microsatellite Instability Evaluation in Unresectable Pancreatic Lesions. BMC Cancer 2020, 20, 1094. [Google Scholar] [CrossRef] [PubMed]
- Takagi, T.; Sugimoto, M.; Imamura, H.; Takahata, Y.; Nakajima, Y.; Suzuki, R.; Konno, N.; Asama, H.; Sato, Y.; Irie, H.; et al. A Multicenter Comparative Study of Endoscopic Ultrasound-Guided Fine-Needle Biopsy Using a Franseen Needle versus Conventional Endoscopic Ultrasound-Guided Fine-Needle Aspiration to Evaluate Microsatellite Instability in Patients with Unresectable Pancreatic Cancer. Clin. Endosc. 2023, 56, 107–113. [Google Scholar] [CrossRef] [PubMed]
- Boldrin, E.; Piano, M.A.; Alfieri, R.; Mazza, M.; Vassallo, L.; Scapinello, A.; Pilati, P.; Curtarello, M. MSI Analysis in Solid and Liquid Biopsies of Gastroesophageal Adenocarcinoma Patients: A Molecular Approach. Int. J. Mol. Sci. 2021, 22, 7244. [Google Scholar] [CrossRef] [PubMed]
- Maio, M.; Ascierto, P.A.; Manzyuk, L.; Motola-Kuba, D.; Penel, N.; Cassier, P.A.; Bariani, G.M.; De Jesus Acosta, A.; Doi, T.; Longo, F.; et al. Pembrolizumab in Microsatellite Instability High or Mismatch Repair Deficient Cancers: Updated Analysis from the Phase II KEYNOTE-158 Study. Ann. Oncol. 2022, 33, 929–938. [Google Scholar] [CrossRef]
- Gleeson, F.C.; Zhang, L.; Roden, A.C.; Levy, M.J. Endoscopic Ultrasound-Guided Fine-Needle Biopsies from Pancreatic Ductal Adenocarcinomas Can Be Used to Quantify PD-L1. Clin. Gastroenterol. Hepatol. 2018, 16, 1535–1536. [Google Scholar] [CrossRef]
- Grillo, F.; Ali, M.; Paudice, M.; Pigozzi, S.; Anselmi, G.; Scabini, S.; Sciallero, S.; Piol, N.; Mastracci, L. Impact of Formalin Fixation on Mismatch Repair Protein Evaluation by Immunohistochemistry. Virchows Archiv 2023, 483, 677–685. [Google Scholar] [CrossRef]
- Engel, K.B.; Moore, H.M. Effects of Preanalytical Variables on the Detection of Proteins by Immunohistochemistry in Formalin-Fixed, Paraffin-Embedded Tissue. Arch. Pathol. Lab. Med. 2011, 135, 537–543. [Google Scholar] [CrossRef]
- Shia, J. Immunohistochemistry versus Microsatellite Instability Testing for Screening Colorectal Cancer Patients at Risk for Hereditary Nonpolyposis Colorectal Cancer Syndrome. Part I. The Utility of Immunohistochemistry. J. Mol. Diagn. 2008, 10, 293–300. [Google Scholar] [CrossRef]
- Dudley, J.C.; Lin, M.-T.; Le, D.T.; Eshleman, J.R. Microsatellite Instability as a Biomarker for PD-1 Blockade CME Staff Planners’ Disclosures. Clin. Cancer Res. 2016, 22, 813–820. [Google Scholar] [CrossRef]
- Gilson, P.; Levy, J.; Rouyer, M.; Demange, J.; Husson, M.; Bonnet, C.; Salleron, J.; Leroux, A.; Merlin, J.L.; Harlé, A. Evaluation of 3 Molecular-Based Assays for Microsatellite Instability Detection in Formalin-Fixed Tissues of Patients with Endometrial and Colorectal Cancers. Sci. Rep. 2020, 10, 16386. [Google Scholar] [CrossRef] [PubMed]
- Schöniger, S.; Rüschoff, J. Mismatch Repair Deficiency and Microsatellite Instability. Encyclopedia 2022, 2, 1559–1576. [Google Scholar] [CrossRef]
- Millán-Esteban, D.; Reyes-García, D.; García-Casado, Z.; Bañuls, J.; López-Guerrero, J.A.; Requena, C.; Rodríguez-Hernández, A.; Traves, V.; Nagore, E. Suitability of Melanoma FFPE Samples for NGS Libraries: Time and Quality Thresholds for Downstream Molecular Tests. Biotechniques 2018, 65, 79–85. [Google Scholar] [CrossRef] [PubMed]
- Bonnet, E.; Moutet, M.L.; Baulard, C.; Bacq-Daian, D.; Sandron, F.; Mesrob, L.; Fin, B.; Delépine, M.; Palomares, M.A.; Jubin, C.; et al. Performance Comparison of Three DNA Extraction Kits on Human Whole-Exome Data from Formalin-Fixed Paraffin-Embedded Normal and Tumor Samples. PLoS ONE 2018, 13, e0195471. [Google Scholar] [CrossRef] [PubMed]
- Lupinacci, R.M.; Bachet, J.B.; André, T.; Duval, A.; Svrcek, M. Pancreatic Ductal Adenocarcinoma Harboring Microsatellite Instability/DNA Mismatch Repair Deficiency. Towards Personalized Medicine. Surg. Oncol. 2019, 28, 121–127. [Google Scholar] [CrossRef]
- Ghidini, M.; Lampis, A.; Mirchev, M.B.; Okuducu, A.F.; Ratti, M.; Valeri, N.; Hahne, J.C. Immune-Based Therapies and the Role of Microsatellite Instability in Pancreatic Cancer. Genes 2020, 12, 33. [Google Scholar] [CrossRef]
- Leatham, B.; McNall, K.; Subramanian, H.K.K.; Jacky, L.; Alvarado, J.; Yurk, D.; Wang, M.; Green, D.C.; Tsongalis, G.J.; Rajagopal, A.; et al. A Rapid, Multiplex Digital PCR Assay to Detect Gene Variants and Fusions in Non-Small Cell Lung Cancer. Mol. Oncol. 2023, 17, 2221–2234. [Google Scholar] [CrossRef]
- Bartley, A.N.; Mills, A.M.; Konnick, E.; Overman, M.; Ventura, C.B.; Souter, L.; Colasacco, C.; Stadler, Z.K.; Kerr, S.; Howitt, B.E.; et al. Mismatch Repair and Microsatellite Instability Testing for Immune Checkpoint Inhibitor Therapy: Guideline from the College of American Pathologists in Collaboration with the Association for Molecular Pathology and Fight Colorectal Cancer. Arch. Pathol. Lab. Med. 2022, 146, 1194–1210. [Google Scholar] [CrossRef]
- Willis, J.; Lefterova, M.I.; Artyomenko, A.; Kasi, P.M.; Nakamura, Y.; Mody, K.; Catenacci, D.V.T.; Fakih, M.; Barbacioru, C.; Zhao, J.; et al. Validation of Microsatellite Instability Detection Using a Comprehensive Plasma-Based Genotyping Panel. Clin. Cancer Res. 2019, 25, 7035–7045. [Google Scholar] [CrossRef]
- Huerta, M.; Roselló, S.; Sabater, L.; Ferrer, A.; Tarazona, N.; Roda, D.; Gambardella, V.; Alfaro-Cervelló, C.; Garcés-Albir, M.; Cervantes, A.; et al. Circulating Tumor DNA Detection by Digital-Droplet PCR in Pancreatic Ductal Adenocarcinoma: A Systematic Review. Cancers 2021, 13, 994. [Google Scholar] [CrossRef]
- Lupinacci, R.M.; Goloudina, A.; Buhard, O.; Bachet, J.B.; Maréchal, R.; Demetter, P.; Cros, J.; Bardier-Dupas, A.; Collura, A.; Cervera, P.; et al. Prevalence of Microsatellite Instability in Intraductal Papillary Mucinous Neoplasms of the Pancreas. Gastroenterology 2018, 154, 1061–1065. [Google Scholar] [CrossRef] [PubMed]
- Kastrinos, F.; Mukherjee, B.; Tayob, N.; Wang, F.; Sparr, J.; Raymond, V.M.; Bandipalliam, P.; Stoffel, E.M.; Gruber, S.B.; Syngal, S. Risk of Pancreatic Cancer in Families with Lynch Syndrome. JAMA 2009, 302, 1790–1795. [Google Scholar] [CrossRef] [PubMed]
- Chhoda, A.; Lu, L.; Clerkin, B.M.; Risch, H.; Farrell, J.J. Current Approaches to Pancreatic Cancer Screening. Am. J. Pathol. 2019, 189, 22–35. [Google Scholar] [CrossRef] [PubMed]
- Whale, A.S.; De Spiegelaere, W.; Trypsteen, W.; Nour, A.A.; Bae, Y.K.; Benes, V.; Burke, D.; Cleveland, M.; Corbisier, P.; Devonshire, A.S.; et al. The Digital MIQE Guidelines Update: Minimum Information for Publication of Quantitative Digital PCR Experiments for 2020. Clin. Chem. 2020, 66, 1012–1029. [Google Scholar] [CrossRef]
- Umar, A.; Boland, C.R.; Terdiman, J.P.; Syngal, S.; de la Chapelle, A.; Rüschoff, J.; Fishel, R.; Lindor, N.M.; Burgart, L.J.; Hamelin, R.; et al. Revised Bethesda Guidelines for Hereditary Nonpolyposis Colorectal Cancer (Lynch Syndrome) and Microsatellite Instability. J. Natl. Cancer Inst. 2004, 96, 261–268. [Google Scholar] [CrossRef]
Patients N (%) | 43 (100) |
Age (years) | |
Median (Q1; Q3) | 69 (62; 79) |
(Range) | (51–87) |
Gender N (%) | |
Male | 24 (55.8%) |
Female | 19 (44.2%) |
Tumor site N (%) | |
Head | 25 (58%) |
Isthmus | 6 (14%) |
Body | 6 (14%) |
Tail | 6 (14%) |
Histologic Variant N (%) | |
Ductal G1-G2 | 34 (79.1%) |
Ductal G3 | 8 (18.6%) |
Ductal with signet-ring component | 1 (2.3%) |
Stage | |
I/II | 9 (21.4%) |
III/IV | 33 (78.6%) |
Missing | 1 |
Dimension (cm) | |
Median (Q1; Q3) | 3 (2.5; 3.7) |
(Range) | (1.7–9.0) |
Missing | 1 |
Neoplastic markers | |
CA 19-9 (U/mL) | |
Median (Q1; Q3) | 282.1 (35.9; 5876.0) |
(Range) | (0.8–35,709) |
Missing | 7 |
CEA (ng/mL) | |
Median (Q1; Q3) | 6.3 (2.9; 14.5) |
(Range) | (1.3–864.0) |
Missing | 15 |
IPMN degeneration | |
Yes | 7 (16.3%) |
No | 36 (83.7%) |
History of cancer | |
Yes | 11 (26.8%) |
No | 30 (73.2%) |
Missing | 2 |
Chemotherapy | |
Yes | 29 (76.3%) |
No | 9 (23.7%) |
Missing | 5 |
Macrodissection (N; %) | Tumor Area % Median (Range) | DNA ng/µL Median (Range) | DIN Median (Range) | Fragment Length bp Median (Range) | |
---|---|---|---|---|---|
Yes (7; 16.3%) | 100% | 7.22 (1.4–16.1) | 3.1 (1.0–5.9) | 1910 (384–10,445) | |
No (36; 83.7%) | 19.1% * (5.4–72.8) | 11.8 (1.4–78.2) | 3.0 (1.1–5.0) | 1657.5 (434–2910) | |
Total | 43; 100% | - | 11.3 (1.4–78.2) | 3.1 (1–5.9) | 1694 (384–10,445) |
MSI-H/dMMR Status | IHC N° (%) | ddPCR N° (%) |
---|---|---|
MSI-H | 0 | 7 (16.28%) |
MSS | 41 (100%) | 36 (83.72%) |
Not evaluable | 1 | 0 |
ND | 1 | 0 |
Total | 43 | 43 |
Macrodissection (N; %) | %Tumor Area Median (Range) | ng of Tumor DNA/5 ng of Total DNA as Input in ddPCR Median (Range) |
---|---|---|
Yes (7; 16.3%) | 100% | 5 ng |
No (36; 83.7%) | 19.1% * (5.4–72.8) | 0.95 ng * (0.27–3.64) |
MSI-H | MSS | p-Value | |
---|---|---|---|
N (%) | 7 (16.27%) | 36 (83.72%) | |
Age (years) | |||
Median (Q1; Q3) | 69.0 (56.0; 79.0) | 69.5 (63.0; 78.5) | 0.4819 |
(Range) | (51–82) | (55–87) | |
Gender N (%) | |||
Male | 2 (28.6%) | 22 (61.1%) | 0.2115 |
Female | 5 (71.4%) | 14 (38.9%) | |
Tumor site N (%) | |||
Head | 4 (57.1%) | 21 (58.3%) | 0.9999 |
Isthmus | 1 (14.3%) | 5 (13.9%) | |
Body | 1 (14.3%) | 5 (13.9%) | |
Tail | 1 (14.3%) | 5 (13.9%) | |
Histologic Variant N (%) | |||
Ductal G1-G2 | 5 (71.4%) | 29 (80.5%) | 0.7038 |
Ductal G3 | 2 (28.6%) | 6 (16.7%) | |
Ductal with signet-ring component | 0 | 1 (2.8%) | |
Stage N (%) | |||
I/II | 1 (16.7%) | 8 (22.2%) | 1 |
III/IV | 5 (83.3%) | 28 (77.8%) | |
Missing | 1 | 0 | |
Dimension (cm) | |||
Median (Q1; Q3) | 3.0 (2.0; 5.0) | 3.0 (2.5; 3.7) | 0.68 |
(Range) | (1.7–8.0) | (2.0–9.0) | |
Missing | 0 | 1 | |
Neoplastic markers | |||
CA 19-9 (U/mL) | |||
Median (Q1; Q3) | 406.0 (63.5; 1406) | 282.1 (30.0; 8708.0) | 0.9799 |
(Range) | (62.0–2065.0) | (0.8–35,709.0) | |
Missing | 3 | 4 | |
CEA (ng/mL) | |||
Median (Q1; Q3) | 1.5 (1.5; 12.9) | 6.4 (3.0; 15.4) | 0.1692 |
(Range) | (1.5–12.9) | (1.3–864.0) | |
Missing | 4 | 11 | |
IPMN degeneration | 0.0722 | ||
Yes | 3 (42.9%) | 4 (11.1%) | |
No | 4 (57.1%) | 32 (88.9%) | |
History of cancer N (%) | 1 | ||
Yes | 5 (83.3%) | 25 (71.4%) | |
No | 1 (16.7%) | 10 (28.6%) | |
Missing | 1 | 1 | |
Chemotherapy | 1 | ||
Yes | 4 (80%) | 25 (75.8%) | |
No | 1 (20%) | 8 (24.2%) | |
Missing | 2 | 3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Piano, M.A.; Boldrin, E.; Moserle, L.; Salerno, N.; Fanelli, D.; Peserico, G.; Biasin, M.R.; Magni, G.; Varano, V.; Zalgelli, G.; et al. MSI-H Detection by ddPCR in Endoscopic Ultrasound Fine Needle Biopsy (EUS-FNB) from Pancreatic Ductal Adenocarcinoma. Int. J. Mol. Sci. 2024, 25, 11090. https://doi.org/10.3390/ijms252011090
Piano MA, Boldrin E, Moserle L, Salerno N, Fanelli D, Peserico G, Biasin MR, Magni G, Varano V, Zalgelli G, et al. MSI-H Detection by ddPCR in Endoscopic Ultrasound Fine Needle Biopsy (EUS-FNB) from Pancreatic Ductal Adenocarcinoma. International Journal of Molecular Sciences. 2024; 25(20):11090. https://doi.org/10.3390/ijms252011090
Chicago/Turabian StylePiano, Maria Assunta, Elisa Boldrin, Lidia Moserle, Nicoletta Salerno, Dalila Fanelli, Giulia Peserico, Maria Raffaella Biasin, Giovanna Magni, Veronica Varano, Giorgia Zalgelli, and et al. 2024. "MSI-H Detection by ddPCR in Endoscopic Ultrasound Fine Needle Biopsy (EUS-FNB) from Pancreatic Ductal Adenocarcinoma" International Journal of Molecular Sciences 25, no. 20: 11090. https://doi.org/10.3390/ijms252011090
APA StylePiano, M. A., Boldrin, E., Moserle, L., Salerno, N., Fanelli, D., Peserico, G., Biasin, M. R., Magni, G., Varano, V., Zalgelli, G., Mourmouras, V., Rosato, A., Scapinello, A., Fantin, A., & Curtarello, M. (2024). MSI-H Detection by ddPCR in Endoscopic Ultrasound Fine Needle Biopsy (EUS-FNB) from Pancreatic Ductal Adenocarcinoma. International Journal of Molecular Sciences, 25(20), 11090. https://doi.org/10.3390/ijms252011090