The Protective Role of Intermedin in Contrast-Induced Acute Kidney Injury: Enhancing Peritubular Capillary Endothelial Cell Adhesion and Integrity Through the cAMP/Rac1 Pathway
Abstract
:1. Introduction
2. Results
2.1. IMD Mitigated Iohexol-Induced Damage to HUVEC Viability and Apoptosis
2.2. IMD Protected the Adherent Junctions in HUVECs by Activating the cAMP/Rac1 Pathway
2.3. IMD Attenuated Renal Injury in Rat CIAKI Models and Inhibition of Rac1 Negated This Protective Effect
2.4. IMD Activated the cAMP/Rac1 Pathway and Mitigated Peritubular Capillary Injury in CIAKI Rats
2.5. IMD Can Protect the Endothelial Barrier of PTCs
3. Discussion
4. Materials and Methods
4.1. Reagents and Antibodies
4.2. Cell Culture
4.3. Cell Viability Assay
4.4. Apoptosis Assay
4.5. ELISA
4.6. Immunoblotting
4.7. Animals, CIAKI Model, and Treatments
4.8. Biochemical Evaluation of Renal Function
4.9. Histopathological Examination
4.10. Immunohistochemistry and Immunofluorescence
4.11. Transmission Electron Microscope Analysis
4.12. Statistical Analyses
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rakowski, T.; Dziewierz, A.; Węgiel, M.; Siudak, Z.; Zasada, W.; Jąkała, J.; Dykla, D.; Matysek, J.; Surdacki, A.; Bartuś, S.; et al. Risk Factors of Contrast-Induced Nephropathy in Patients with Acute Coronary Syndrome. Kardiol. Pol. 2022, 80, 760–764. [Google Scholar] [CrossRef] [PubMed]
- Ehmann, M.R.; Mitchell, J.; Levin, S.; Smith, A.; Menez, S.; Hinson, J.S.; Klein, E.Y. Renal Outcomes Following Intravenous Contrast Administration in Patients with Acute Kidney Injury: A Multi-Site Retrospective Propensity-Adjusted Analysis. Intensive Care Med. 2023, 49, 205–215. [Google Scholar] [CrossRef] [PubMed]
- Venturi, G.; Pighi, M.; Lunardi, M.; Mainardi, A.; Del Sole, P.A.; Tavella, D.; Setti, M.; Pesarini, G.; Benini, A.; Ferrero, V.; et al. Contrast-Induced Nephropathy in Patients Undergoing Staged Versus Concomitant Transcatheter Aortic Valve Implantation and Coronary Procedures. J. Am. Heart Assoc. 2021, 10, e020599. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.-Y.; Liu, K.; Yin, W.-J.; Xie, Y.-L.; Wang, J.-L.; Zuo, S.-R.; Tang, Z.-Y.; Wu, Y.-F.; Zuo, X.-C. Arginase2 Mediates Contrast-Induced Acute Kidney Injury via Facilitating Nitrosative Stress in Tubular Cells. Redox Biol. 2023, 67, 102929. [Google Scholar] [CrossRef] [PubMed]
- Yue, R.-Z.; Wang, J.; Lin, F.; Li, C.-J.; Su, B.-H.; Zeng, R. CUX1 Attenuates the Apoptosis of Renal Tubular Epithelial Cells Induced by Contrast Media through Activating the PI3K/AKT Signaling Pathway. BMC Nephrol. 2024, 25, 192. [Google Scholar] [CrossRef]
- Ward, D.B.; Valentovic, M.A. Contrast Induced Acute Kidney Injury and Direct Cytotoxicity of Iodinated Radiocontrast Media on Renal Proximal Tubule Cells. J. Pharmacol. Exp. Ther. 2019, 370, 160–171. [Google Scholar] [CrossRef]
- Linkermann, A.; Heller, J.-O.; Prókai, A.; Weinberg, J.M.; De Zen, F.; Himmerkus, N.; Szabó, A.J.; Bräsen, J.H.; Kunzendorf, U.; Krautwald, S. The RIP1-Kinase Inhibitor Necrostatin-1 Prevents Osmotic Nephrosis and Contrast-Induced AKI in Mice. J. Am. Soc. Nephrol. 2013, 24, 1545–1557. [Google Scholar] [CrossRef]
- Lamby, P.; Krüger-Genge, A.; Franke, R.P.; Mrowietz, C.; Falter, J.; Graf, S.; Schellenberg, E.L.; Jung, F.; Prantl, L. Effect of Iodinated Contrast Media on the Oxygen Tension in the Renal Cortico-Medullary Region of Pigs. Clin. Hemorheol. Microcirc. 2019, 73, 261–270. [Google Scholar] [CrossRef]
- Jourde-Chiche, N.; Fakhouri, F.; Dou, L.; Bellien, J.; Burtey, S.; Frimat, M.; Jarrot, P.-A.; Kaplanski, G.; Le Quintrec, M.; Pernin, V.; et al. Endothelium Structure and Function in Kidney Health and Disease. Nat. Rev. Nephrol. 2019, 15, 87–108. [Google Scholar] [CrossRef]
- Molema, G.; Zijlstra, J.G.; van Meurs, M.; Kamps, J.A.A.M. Renal Microvascular Endothelial Cell Responses in Sepsis-Induced Acute Kidney Injury. Nat. Rev. Nephrol. 2022, 18, 95–112. [Google Scholar] [CrossRef]
- Bansal, S.; Patel, R.N. Pathophysiology of Contrast-Induced Acute Kidney Injury. Interv. Cardiol. Clin. 2020, 9, 293–298. [Google Scholar] [CrossRef] [PubMed]
- Perrotta, A.M.; Gigante, A.; Rotondi, S.; Menè, P.; Notturni, A.; Schiavetto, S.; Tanzilli, G.; Pellicano, C.; Guaglianone, G.; Tinti, F.; et al. Contrast-Induced Acute Kidney Injury and Endothelial Dysfunction: The Role of Vascular and Biochemical Parameters. J. Pers. Med. 2023, 13, 701. [Google Scholar] [CrossRef] [PubMed]
- Moztarzadeh, S.; Radeva, M.Y.; Sepic, S.; Schuster, K.; Hamad, I.; Waschke, J.; García-Ponce, A. Lack of Adducin Impairs the Stability of Endothelial Adherens and Tight Junctions and May Be Required for cAMP-Rac1-Mediated Endothelial Barrier Stabilization. Sci. Rep. 2022, 12, 14940. [Google Scholar] [CrossRef] [PubMed]
- Adil, M.S.; Narayanan, S.P.; Somanath, P.R. Cell-Cell Junctions: Structure and Regulation in Physiology and Pathology. Tissue Barriers 2021, 9, 1848212. [Google Scholar] [CrossRef] [PubMed]
- Tokarz, V.L.; Pereira, R.V.S.; Jaldin-Fincati, J.R.; Mylvaganam, S.; Klip, A. Junctional Integrity and Directional Mobility of Lymphatic Endothelial Cell Monolayers Are Disrupted by Saturated Fatty Acids. Mol. Biol. Cell 2023, 34, ar28. [Google Scholar] [CrossRef] [PubMed]
- Combedazou, A.; Gayral, S.; Colombié, N.; Fougerat, A.; Laffargue, M.; Ramel, D. Small GTPases Orchestrate Cell-Cell Communication during Collective Cell Movement. Small GTPases 2020, 11, 103–112. [Google Scholar] [CrossRef]
- Babin, K.M.; Karim, J.A.; Gordon, P.H.; Lennon, J.; Dickson, A.; Pioszak, A.A. Adrenomedullin 2/Intermedin Is a Slow off-Rate, Long-Acting Endogenous Agonist of the Adrenomedullin2 G Protein-Coupled Receptor. J. Biol. Chem. 2023, 299, 104785. [Google Scholar] [CrossRef]
- Yang, Z.; Li, H.; Wu, P.; Li, Q.; Yu, C.; Wang, D.; Li, W. Multi-Biological Functions of Intermedin in Diseases. Front. Physiol. 2023, 14, 1233073. [Google Scholar] [CrossRef]
- Lu, W.-W.; Jia, L.-X.; Ni, X.-Q.; Zhao, L.; Chang, J.-R.; Zhang, J.-S.; Hou, Y.-L.; Zhu, Y.; Guan, Y.-F.; Yu, Y.-R.; et al. Intermedin1-53 Attenuates Abdominal Aortic Aneurysm by Inhibiting Oxidative Stress. Arterioscler. Thromb. Vasc. Biol. 2016, 36, 2176–2190. [Google Scholar] [CrossRef]
- Ren, J.-L.; Chen, Y.; Zhang, L.-S.; Zhang, Y.-R.; Liu, S.-M.; Yu, Y.-R.; Jia, M.-Z.; Tang, C.-S.; Qi, Y.-F.; Lu, W.-W. Intermedin1-53 Attenuates Atherosclerotic Plaque Vulnerability by Inhibiting CHOP-Mediated Apoptosis and Inflammasome in Macrophages. Cell Death Dis. 2021, 12, 436. [Google Scholar] [CrossRef]
- Wang, L.-J.; Xiao, F.; Kong, L.-M.; Wang, D.-N.; Li, H.-Y.; Wei, Y.-G.; Tan, C.; Zhao, H.; Zhang, T.; Cao, G.-Q.; et al. Intermedin Enlarges the Vascular Lumen by Inducing the Quiescent Endothelial Cell Proliferation. Arterioscler. Thromb. Vasc. Biol. 2018, 38, 398–413. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.-R.; Liu, S.-M.; Chen, Y.; Zhang, L.-S.; Ji, D.-R.; Zhao, J.; Yu, Y.-R.; Jia, M.-Z.; Tang, C.-S.; Huang, W.; et al. Intermedin Alleviates Diabetic Vascular Calcification by Inhibiting GLUT1 through Activation of the cAMP/PKA Signaling Pathway. Atherosclerosis 2023, 385, 117342. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.-S.; Zhang, J.-S.; Hou, Y.-L.; Lu, W.-W.; Ni, X.-Q.; Lin, F.; Liu, X.-Y.; Wang, X.-J.; Yu, Y.-R.; Jia, M.-Z.; et al. Intermedin1-53 Inhibits NLRP3 Inflammasome Activation by Targeting IRE1α in Cardiac Fibrosis. Inflammation 2022, 45, 1568–1584. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Gao, T.; Zhang, R.; Hu, J.; Gao, S.; Wang, Y.; Qi, X.; Zhou, Y.; Zheng, G.; Dong, H. Neutrophil Extracellular Traps Aggravate Contrast-Induced Acute Kidney Injury by Damaging Glomeruli and Peritubular Capillaries. J. Inflamm. Res. 2023, 16, 5629–5646. [Google Scholar] [CrossRef]
- Fan, S.; Qi, D.; Yu, Q.; Tang, X.; Wen, X.; Wang, D.; Deng, X. Intermedin Alleviates the Inflammatory Response and Stabilizes the Endothelial Barrier in LPS-Induced ARDS through the PI3K/Akt/eNOS Signaling Pathway. Int. Immunopharmacol. 2020, 88, 106951. [Google Scholar] [CrossRef]
- Fan, S.; He, J.; Yang, Y.; Wang, D. Intermedin Reduces Oxidative Stress and Apoptosis in Ventilator-Induced Lung Injury via JAK2/STAT3. Front. Pharmacol. 2021, 12, 817874. [Google Scholar] [CrossRef]
- Aslam, M.; Gündüz, D.; Schuler, D.; Li, L.; Sharifpanah, F.; Sedding, D.; Piper, H.M.; Noll, T. Intermedin Induces Loss of Coronary Microvascular Endothelial Barrier via Derangement of Actin Cytoskeleton: Role of RhoA and Rac1. Cardiovasc. Res. 2011, 92, 276–286. [Google Scholar] [CrossRef]
- Zheng, C.; Wu, X.; Zeng, R.; Lin, L.; Xu, L.; Li, E.; Dong, G. Computational Prediction of Hot Spots and Binding Site of Inhibitor NSC23766 on Rac1 Binding with Tiam1. Front. Chem. 2020, 8, 625437. [Google Scholar] [CrossRef]
- Wang, Y.; Mi, Y.; Tian, J.; Qiao, X.; Su, X.; Kang, J.; Wu, Z.; Wang, G.; Zhou, X.; Zhou, Y.; et al. Intermedin Alleviates Renal Ischemia-Reperfusion Injury and Enhances Neovascularization in Wistar Rats. DDDT 2020, 14, 4825–4834. [Google Scholar] [CrossRef]
- Gökyer, A.; Küçükarda, A.; Köstek, O.; Hacıoğlu, M.B.; Uzunoğlu, S.; Kula, O.; Kurt, N.; Üstündağ, S.; Erdoğan, B.; Çiçin, İ. Contrast Nephropathy in Cancer Patients Receiving Anti-VEGF Therapy: A Prospective Study. Int. J. Clin. Oncol. 2020, 25, 1757–1762. [Google Scholar] [CrossRef]
- Hassanpour, M.; Salybekov, A.A.; Kobayashi, S.; Asahara, T. CD34 Positive Cells as Endothelial Progenitor Cells in Biology and Medicine. Front. Cell Dev. Biol. 2023, 11, 1128134. [Google Scholar] [CrossRef] [PubMed]
- Singh, V.; Kaur, R.; Kumari, P.; Pasricha, C.; Singh, R. ICAM-1 and VCAM-1: Gatekeepers in Various Inflammatory and Cardiovascular Disorders. Clin. Chim. Acta 2023, 548, 117487. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.-R.; Zhuo, H.; Zhang, Y.; Dahl, N.; Dardik, A.; Ochoa Chaar, C.I. Risk Factors and Safe Contrast Volume Thresholds for Postcontrast Acute Kidney Injury after Peripheral Vascular Interventions. J. Vasc. Surg. 2020, 72, 603–610.e1. [Google Scholar] [CrossRef] [PubMed]
- Kida, Y. Peritubular Capillary Rarefaction: An Underappreciated Regulator of CKD Progression. Int. J. Mol. Sci. 2020, 21, 8255. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Zee, J.; Janowczyk, A.R.; Rubin, J.; Toro, P.; Lafata, K.J.; Mariani, L.H.; Holzman, L.B.; Hodgin, J.B.; Madabhushi, A. Clinical Relevance of Computationally Derived Attributes of Peritubular Capillaries from Kidney Biopsies. Kidney360 2023, 4, 648–658. [Google Scholar] [CrossRef]
- Li, Y.; Wang, J. Contrast-Induced Acute Kidney Injury: A Review of Definition, Pathogenesis, Risk Factors, Prevention and Treatment. BMC Nephrol. 2024, 25, 140. [Google Scholar] [CrossRef]
- Tochaikul, G.; Daowtak, K.; Pilapong, C.; Moonkum, N. In Vitro Investigation the Effects of Iodinated Contrast Media on Endothelial Cell Viability, Cell Cycle, and Apoptosis. Toxicol. Mech. Methods 2024, 1–8. [Google Scholar] [CrossRef]
- Panova, I.G.; Tatikolov, A.S. Endogenous and Exogenous Antioxidants as Agents Preventing the Negative Effects of Contrast Media (Contrast-Induced Nephropathy). Pharmaceuticals 2023, 16, 1077. [Google Scholar] [CrossRef]
- Kusirisin, P.; Chattipakorn, S.C.; Chattipakorn, N. Contrast-Induced Nephropathy and Oxidative Stress: Mechanistic Insights for Better Interventional Approaches. J. Transl. Med. 2020, 18, 400. [Google Scholar] [CrossRef]
- Zhang, F.; Lu, Z.; Wang, F. Advances in the Pathogenesis and Prevention of Contrast-Induced Nephropathy. Life Sci. 2020, 259, 118379. [Google Scholar] [CrossRef]
- Magnusson, M.M.; Gerk, U.; Schüpbach, G.; Rieger, J.; Plendl, J.; Marin, I.; Drews, B.; Kaessmeyer, S. Microvascular Changes Following Exposure to Iodinated Contrast Media in Vitro. A Qualitative Comparison to Serum Creatinine Concentrations in Post-Cardiac Catheterization Patients. Microvasc. Res. 2024, 153, 104659. [Google Scholar] [CrossRef] [PubMed]
- Citi, S. The Mechanobiology of Tight Junctions. Biophys. Rev. 2019, 11, 783–793. [Google Scholar] [CrossRef] [PubMed]
- Duong, C.N.; Brückner, R.; Schmitt, M.; Nottebaum, A.F.; Braun, L.J.; Meyer zu Brickwedde, M.; Ipe, U.; Vom Bruch, H.; Schöler, H.R.; Trapani, G. Force-Induced Changes of α-Catenin Conformation Stabilize Vascular Junctions Independently of Vinculin. J. Cell Sci. 2021, 134, jcs259012. [Google Scholar] [CrossRef] [PubMed]
- Fischer, J.-P.; Els-Heindl, S.; Beck-Sickinger, A.G. Adrenomedullin–Current Perspective on a Peptide Hormone with Significant Therapeutic Potential. Peptides 2020, 131, 170347. [Google Scholar] [CrossRef]
- Babin, K.M.; Gostynska, S.E.; Karim, J.A.; Pioszak, A.A. Variable CGRP Family Peptide Signaling Durations and the Structural Determinants Thereof. Biochem. Pharmacol. 2024, 224, 116235. [Google Scholar] [CrossRef]
- Vielmuth, F.; Radeva, M.Y.; Yeruva, S.; Sigmund, A.M.; Waschke, J. cAMP: A Master Regulator of Cadherin-mediated Binding in Endothelium, Epithelium and Myocardium. Acta Physiol. 2023, 238, e14006. [Google Scholar] [CrossRef]
- Huang, L.; Wang, D.; Feng, Z.; Zhao, H.; Xiao, F.; Wei, Y.; Zhang, H.; Li, H.; Kong, L.; Li, M. Inhibition of Intermedin (Adrenomedullin 2) Suppresses the Growth of Glioblastoma and Increases the Antitumor Activity of Temozolomide. Mol. Cancer Ther. 2021, 20, 284–295. [Google Scholar] [CrossRef]
- Sen, T.T.; Kale, A.; Lech, M.; Anders, H.-J.; Gaikwad, A.B. Promising Novel Therapeutic Targets for Kidney Disease: Emphasis on Kidney-Specific Proteins. Drug Discov. Today 2023, 28, 103466. [Google Scholar] [CrossRef]
- Cheng, W.; Zhao, F.; Tang, C.-Y.; Li, X.-W.; Luo, M.; Duan, S.-B. Comparison of Iohexol and Iodixanol Induced Nephrotoxicity, Mitochondrial Damage and Mitophagy in a New Contrast-Induced Acute Kidney Injury Rat Model. Arch. Toxicol. 2018, 92, 2245–2257. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, T.; Gu, R.; Wang, H.; Li, L.; Zhang, B.; Hu, J.; Tian, Q.; Chang, R.; Zhang, R.; Zheng, G.; et al. The Protective Role of Intermedin in Contrast-Induced Acute Kidney Injury: Enhancing Peritubular Capillary Endothelial Cell Adhesion and Integrity Through the cAMP/Rac1 Pathway. Int. J. Mol. Sci. 2024, 25, 11110. https://doi.org/10.3390/ijms252011110
Gao T, Gu R, Wang H, Li L, Zhang B, Hu J, Tian Q, Chang R, Zhang R, Zheng G, et al. The Protective Role of Intermedin in Contrast-Induced Acute Kidney Injury: Enhancing Peritubular Capillary Endothelial Cell Adhesion and Integrity Through the cAMP/Rac1 Pathway. International Journal of Molecular Sciences. 2024; 25(20):11110. https://doi.org/10.3390/ijms252011110
Chicago/Turabian StyleGao, Tingting, Ruiyuan Gu, Heng Wang, Lizheng Li, Bojin Zhang, Jie Hu, Qinqin Tian, Runze Chang, Ruijing Zhang, Guoping Zheng, and et al. 2024. "The Protective Role of Intermedin in Contrast-Induced Acute Kidney Injury: Enhancing Peritubular Capillary Endothelial Cell Adhesion and Integrity Through the cAMP/Rac1 Pathway" International Journal of Molecular Sciences 25, no. 20: 11110. https://doi.org/10.3390/ijms252011110
APA StyleGao, T., Gu, R., Wang, H., Li, L., Zhang, B., Hu, J., Tian, Q., Chang, R., Zhang, R., Zheng, G., & Dong, H. (2024). The Protective Role of Intermedin in Contrast-Induced Acute Kidney Injury: Enhancing Peritubular Capillary Endothelial Cell Adhesion and Integrity Through the cAMP/Rac1 Pathway. International Journal of Molecular Sciences, 25(20), 11110. https://doi.org/10.3390/ijms252011110