Bio-Inspired Thermal Conductive Fibers by Boron Nitride Nanosheet/Boron Nitride Hybrid
Abstract
:1. Introduction
2. Results and Discussion
2.1. Structural Characterizations of BN@TM and BNNS@TM
2.2. Morphology and Structure of Thermal Conductive Fibers
3. Materials and Methods
3.1. Materials
3.2. Fabrication of Composite Fibers
3.3. Characterization
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Liu, W.; Liu, Y.; Zhong, S.; Chen, J.; Li, Z.; Zhang, C.; Jiang, P.; Huang, X. Soft and damping thermal interface materials with honeycomb-board-mimetic filler network for electronic heat dissipation. Small 2024, 20, 2400115. [Google Scholar] [CrossRef]
- Yang, S.; Li, J.; Cao, B.; Wu, Z.; Sheng, K. Investigation of Z-type manifold microchannel cooling for ultra-high heat flux dissipation in power electronic devices. Int. J. Heat Mass Transfer 2024, 218, 124792. [Google Scholar] [CrossRef]
- Xie, Z.; Dou, Z.; Wu, D.; Zeng, X.; Feng, Y.; Tian, Y.; Fu, Q.; Wu, K. Joint-inspired liquid and thermal conductive interface for designing thermal interface materials with high solid filling yet excellent thixotropy. Adv. Funct. Mater. 2023, 33, 2214071. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhang, Z.; Cai, C.; Zhou, Z.; Ling, Z.; Fang, X. Vertically aligned carbon fibers-penetrated phase change thermal interface materials with high thermal conductivity for chip heat dissipation. Appl. Therm. Eng. 2023, 230, 120807. [Google Scholar] [CrossRef]
- Nguyen-Ha, T.M.; Nguyen, T.B.; Nguyen, T.A.; Pham, L.H.; Nguyen, D.H.; Nguyen, D.M.; Hoang, D.; Oh, E.; Suhr, J. Novel high-performance sustainable polyurethane nanocomposite foams: Fire resistance, thermal stability, thermal conductivity, and mechanical properties. Chem. Eng. J. 2023, 474, 145585. [Google Scholar] [CrossRef]
- Fan, Y.; Wang, Y.; Qiu, J. Elastomeric thermal interface materials with high through-plane thermal conductivity by 3D printing. J. Appl. Polym. Sci. 2024, 141, e55500. [Google Scholar] [CrossRef]
- Xia, R.; Zhu, S.; Zhen, F.; Du, Y.; Zhang, J.; Yang, H.; Wu, M.; Zhao, B.; Qi, Z.; Liu, M.; et al. Vertical 3D printing of rGO/CNTs arrays for thermal interface materials with in-situ local temperature monitoring function. Chem. Eng. J. 2024, 496, 153643. [Google Scholar] [CrossRef]
- Wang, Z.; Huo, Y.; Nan, H.; Zhang, G.; Gao, J.; Xu, L.; Li, C.; Xu, J.; Li, Z. Constructing the snail shell-like framework in thermal interface materials for enhanced through-plane thermal conductivity. ACS Appl. Mater. Interfaces 2024, 16, 48386–48394. [Google Scholar] [CrossRef]
- Hu, B.; Guo, H.; Liu, J.; Cao, M.; Li, M.; Cui, Y.; Li, B. Vertically oriented boron nitride/silicon carbide scaffold for thermal-conductive and electrical-insulating phase change composites. Compos. Part A Appl. S. 2023, 168, 107460. [Google Scholar] [CrossRef]
- Guo, H.; Hu, B.; Shan, H.; Li, Z.; Qi, W.; Li, B. Magnetically assembled flexible phase change composites with vertically aligned structures for thermal management and electromagnetic interference shielding. Chem. Eng. J. 2024, 495, 153361. [Google Scholar] [CrossRef]
- Zhou, W.; Wang, W.; Shi, H.; Zeng, X.; Li, J.; Pang, Y.; Chang, Y.C.; Sun, R.; Ren, L. Multiway softness polyurethane elastomeric composite with enhanced thermal conductivity and application as thermal interface materials. Adv. Mater. Technol. 2023, 8, 2201701. [Google Scholar] [CrossRef]
- Sun, X.; Wang, Z.; Wang, Y.; Du, X.; Liu, J.; Zhang, C.; Li, W.; Zhao, Z. Graphene/polyolefin elastomer films as thermal interface materials with high thermal conductivity, flexibility, and good adhesion. Chem. Mater. 2023, 35, 2486–2494. [Google Scholar] [CrossRef]
- Hu, D.; Ma, W.; Zhang, Z.; Ding, Y.; Wu, L. Dual Bio-Inspired Design of Highly Thermally Conductive and Superhydrophobic Nanocellulose Composite Films. ACS Appl. Mater. Interfaces 2020, 12, 11115–11125. [Google Scholar] [CrossRef]
- Qu, H.; Yin, L.; Ye, Y.; Li, X.; Liu, J.; Feng, Y.; Chang, C.; Zhou, X.; Tsai, F.; Xie, X. Bio-inspired stem-like composites based on highly aligned SiC nanowires. Chem. Eng. J. 2020, 389, 123466. [Google Scholar] [CrossRef]
- Quan, G.; Liu, Y.; Feng, H.; Li, J.; Yan, Z.; Yang, C.; Li, D.; Xiao, L.; Liu, Y. Layer-by-layer assembly of biomimetic fish scale structure on carbon fiber surfaces to improve thermal conductivity and mechanical properties of composites. Appl. Surf. Sci. 2023, 615, 156308. [Google Scholar] [CrossRef]
- Chen, D.; Zhang, X.; Wang, R.; Lin, Z.; Li, G.; Lei, Y.; Xue, L.; Liu, S. Bio-inspired spreadable multi-signal self-sensing covering composite material for intelligent devices. Compos. Commun. 2024, 51, 102085. [Google Scholar] [CrossRef]
- Yang, X.; Wu, H.; Liu, C.; Zhang, X. A novel analytic model for prediction of the anisotropic thermal conductivity in polymer composites containing aligned 1D nanofillers. Int. J. Therm. Sci. 2023, 184, 107980. [Google Scholar] [CrossRef]
- Ai, D.; Han, Y.; Xie, Z.; Pang, X.; Chang, Y.; Li, H.; Wu, C.; Cheng, Y.; Wu, G. High temperature polyimide nanocomposites containing two-dimensional nanofillers for improved thermal stability and capacitive energy storage performance. Nano Res. 2024, 17, 7746–7755. [Google Scholar] [CrossRef]
- Jin, J.; Yue, X.; Pan, D.; Guo, Y.; Liu, C.; Shen, C.; Liu, H. Glucose derived carbon encapsulated boron nitride core-shell composites for efficient electromagnetic microwave absorption. Compos. Commun. 2024, 48, 101942. [Google Scholar] [CrossRef]
- Liu, G.; Tang, Y.; Soomro, A.M.; Shen, P.; Lu, S.; Cai, Y.; Wang, H.; Yang, Q.; Chen, H.; Shi, Y.; et al. Vertically aligned ZnO nanoarray directly orientated on Cu paper by h-BN monolayer for flexible and transparent piezoelectric nanogenerator. Nano Energy 2023, 109, 108265. [Google Scholar] [CrossRef]
- Granja, V.; Jogesh, K.; Taha-Tijerina, J.; Higgs, C.F. Tribological properties of h-BN, Ag and MgO nanostructures as lubricant additives in vegetable oils. Lubricants 2024, 12, 66. [Google Scholar] [CrossRef]
- Zhang, K.; Chen, C.; Wen, Y.; Xu, X.; Ni, H.; Lei, W.; Ren, X.; You, J.; Zhang, Q.; Shi, D. Directional thermal transport feature in binary filler-based SiR composites with horizontally oriented h-BN. Compos. Sci. Technol. 2024, 254, 110666. [Google Scholar] [CrossRef]
- Pornea, A.G.M.; Choi, K.-I.; Jung, J.-H.; Hanif, Z.; Kwak, C.; Kim, J. Enhancement of isotropic heat dissipation of polymer composites by using ternary filler systems consisting of boron nitride nanotubes, h-BN, and Al2O3. ACS Omega 2023, 8, 24454–24466. [Google Scholar] [CrossRef]
- Zhang, Z.; Yang, R.; Wang, Y.; Xu, K.; Dai, W.; Zhang, J.; Li, M.; Li, L.; Guo, Y.; Qin, Y.; et al. Enhanced thermal conductivity and reduced thermal resistance in carbon fiber-based thermal interface materials with vertically aligned structure. J. Mater. Chem. A 2024, 12, 24428–24440. [Google Scholar] [CrossRef]
- Dong, H.; Liu, Z.; Guo, J.; Lv, S.; Huang, H.; Jiang, X. Vertically aligned carbon fiber/polydimethylsiloxane composites prepared by lyophilization with exceptional thermal conductivity and electromagnetic interference shielding performance. Chem. Eng. J. 2024, 490, 151620. [Google Scholar] [CrossRef]
- Ravichandran, V.; Chandrashekar, A.; Prabhu, T.N.; Varrla, E. SPI-modified h-BN nanosheets-based thermal interface materials for thermal management applications. ACS Appl. Mater. Interfaces 2024, 16, 34367–34376. [Google Scholar] [CrossRef]
- Shan, Z.; Jia, X.; Yang, J.; Wang, Z.; Song, H. Cellulose-based binder assisted exfoliation of large-sized boron nitride nanosheets for improved thermal management capability of polymer films. Compos. Commun. 2024, 51, 102094. [Google Scholar] [CrossRef]
- Gu, S.; Xu, Z.; Zhang, H.; Li, T.; Zhong, S.; Ma, J.; Lu, H.; Qiao, D.; Qin, M. Preparation and properties of AlN–BN composite ceramics through combined addition of c-BN and h-BN. Ceram. Int. 2024, 50, 1419–1427. [Google Scholar] [CrossRef]
- Jiang, H.; Cai, Q.; Mateti, S.; Shao, H.; Sathikumar, G.; Zeng, X.; Sun, R.; Huang, S.; Zhi, C.; Chen, Y.I. Unleashing the Potential of Boron Nitride Spheres for High-Performance Thermal Management. ChemNanoMat 2024, 10, e202300601. [Google Scholar] [CrossRef]
- Li, C.; Du, Q.; Ru, Y.; Zhang, H.; An, Y.; Liu, J.; Wu, D.; Gao, D.; Sun, J. Preparation of polypropylene-based thermally conductive composites via multiple injection compression molding method. Compos. Commun. 2022, 35, 101331. [Google Scholar] [CrossRef]
- Huang, X.; Li, Z.; Li, Y.; Wu, X.; Liu, C.; Xie, H.; Yu, W. Thermally Conductive Boron Nitride Nanosheets on Electrospun Thermoplastic Polyurethane for Wearable Janus-Type Fabrics with Simultaneous Thermal and Moisture Management. ACS Appl. Nano Mater. 2024, 7, 8229–8237. [Google Scholar] [CrossRef]
- Huang, H.; Cui, Y.; Fu, Z.; Wang, S.; Du, Y.; Liu, F.; Zhu, Y. Fabrication of Multifunctional Composites with Hydrophobicity, High Thermal Conductivity and Wear Resistance Based on Carbon Fiber/Epoxy Resin Composites. Appl. Sci. 2022, 12, 9363. [Google Scholar] [CrossRef]
- Lu, Y.; Li, Z.; Guo, N.; Zhang, P.; Fu, S. Preparation and Properties of Boron Nitride Loaded Regenerated Cooling Fiber. Fibers Polym. 2023, 24, 1633–1640. [Google Scholar] [CrossRef]
- Yang, F.; Li, J.; Han, S.; Ma, N.; Li, Q.; Liu, D.; Sui, G. Wear resistant PEEK composites with great mechanical properties and high thermal conductivity synergized with carbon fibers and h-BN nanosheets. Polym. Advan. Technol. 2023, 34, 2224–2234. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Zhang, P.; Zhang, C.; Xu, J.; Zhang, L.; Xia, L. Bio-Inspired Thermal Conductive Fibers by Boron Nitride Nanosheet/Boron Nitride Hybrid. Int. J. Mol. Sci. 2024, 25, 11156. https://doi.org/10.3390/ijms252011156
Zhang J, Zhang P, Zhang C, Xu J, Zhang L, Xia L. Bio-Inspired Thermal Conductive Fibers by Boron Nitride Nanosheet/Boron Nitride Hybrid. International Journal of Molecular Sciences. 2024; 25(20):11156. https://doi.org/10.3390/ijms252011156
Chicago/Turabian StyleZhang, Jiajing, Pingyuan Zhang, Chunhua Zhang, Jiahao Xu, Leyan Zhang, and Liangjun Xia. 2024. "Bio-Inspired Thermal Conductive Fibers by Boron Nitride Nanosheet/Boron Nitride Hybrid" International Journal of Molecular Sciences 25, no. 20: 11156. https://doi.org/10.3390/ijms252011156
APA StyleZhang, J., Zhang, P., Zhang, C., Xu, J., Zhang, L., & Xia, L. (2024). Bio-Inspired Thermal Conductive Fibers by Boron Nitride Nanosheet/Boron Nitride Hybrid. International Journal of Molecular Sciences, 25(20), 11156. https://doi.org/10.3390/ijms252011156