Monitoring Myelin Lipid Composition and the Structure of Myelinated Fibers Reveals a Maturation Delay in CMT1A
Abstract
:1. Introduction
2. Results
2.1. Maturation of Myelin Lipid Composition Is Delayed in CMT1A
2.2. Maturation of Myelinated Fibers Structure Is Delayed during Development in CMT1A
3. Discussion
4. Materials and Methods
4.1. Animal Model
4.2. PNS Myelin Isolation
4.3. Lipid Extraction
4.4. Untargeted LC-MS/MS Analyses
4.5. Data Processing
4.6. Quantitative Neuropathology on Sciatic Nerves During Development
4.7. Statistical Analysis and Data Visualization
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Timmerman, V.; Nelis, E.; Hul, W.V.; Nieuwenhuijsen, B.W.; Chen, K.L.; Wang, S.; Othman, K.B.; Cullen, B.; Leach, R.J.; Hanemann, C.O. The Peripheral Myelin Protein Gene PMP-22 Is Contained within the Charcot-Marie-Tooth Disease Type 1A Duplication. Nat. Genet. 1992, 1, 171–175. [Google Scholar] [CrossRef] [PubMed]
- Roa, B.B.; Lupski, J.R. Molecular Basis of Charcot-Marie-Tooth Disease Type 1A: Gene Dosage as a Novel Mechanism for a Common Autosomal Dominant Condition. Am. J. Med. Sci. 1993, 306, 177–184. [Google Scholar] [CrossRef] [PubMed]
- Hertzog, N.; Jacob, C. Mechanisms and Treatment Strategies of Demyelinating and Dysmyelinating Charcot-Marie-Tooth Disease. Neural Regen. Res. 2023, 18, 1931–1939. [Google Scholar] [CrossRef] [PubMed]
- Nobbio, L.; Visigalli, D.; Radice, D.; Fiorina, E.; Solari, A.; Lauria, G.; Reilly, M.M.; Santoro, L.; Schenone, A.; Pareyson, D.; et al. PMP22 Messenger RNA Levels in Skin Biopsies: Testing the Effectiveness of a Charcot-Marie-Tooth 1A Biomarker. Brain J. Neurol. 2014, 137, 1614–1620. [Google Scholar] [CrossRef] [PubMed]
- Li, J. Caveats in the Established Understanding of CMT1A. Ann. Clin. Transl. Neurol. 2017, 4, 601–607. [Google Scholar] [CrossRef]
- Lewis, R.A.; Sumner, A.J.; Brown, M.J.; Asbury, A.K. Multifocal Demyelinating Neuropathy with Persistent Conduction Block. Neurology 1982, 32, 958–964. [Google Scholar] [CrossRef]
- Manganelli, F.; Pisciotta, C.; Reilly, M.M.; Tozza, S.; Schenone, A.; Fabrizi, G.M.; Cavallaro, T.; Vita, G.; Padua, L.; Gemignani, F.; et al. Nerve Conduction Velocity in CMT1A: What Else Can We Tell? Eur. J. Neurol. 2016, 23, 1566–1571. [Google Scholar] [CrossRef]
- García, A.; Combarros, O.; Calleja, J.; Berciano, J. Charcot-Marie-Tooth Disease Type 1A with 17p Duplication in Infancy and Early Childhood: A Longitudinal Clinical and Electrophysiologic Study. Neurology 1998, 50, 1061–1067. [Google Scholar] [CrossRef]
- Gabreëls-Festen, A.A.; Bolhuis, P.A.; Hoogendijk, J.E.; Valentijn, L.J.; Eshuis, E.J.; Gabreëls, F.J. Charcot-Marie-Tooth Disease Type 1A: Morphological Phenotype of the 17p Duplication versus PMP22 Point Mutations. Acta Neuropathol. 1995, 90, 645–649. [Google Scholar] [CrossRef]
- Gabreëls-Festen, A.; Wetering, R.V. Human Nerve Pathology Caused by Different Mutational Mechanisms of the PMP22 Gene. Ann. N. Y. Acad. Sci. 1999, 883, 336–343. [Google Scholar] [CrossRef]
- Fledrich, R.; Kungl, T.; Nave, K.-A.; Stassart, R.M. Axo-Glial Interdependence in Peripheral Nerve Development. Development 2019, 146, dev151704. [Google Scholar] [CrossRef] [PubMed]
- Oka, N.; Kawasaki, T.; Unuma, T.; Shigematsu, K.; Sugiyama, H. Different Profiles of Onion Bulb in CIDP and CMT1A in Relation to Extracellular Matrix. Clin. Neuropathol. 2013, 32, 406–412. [Google Scholar] [CrossRef] [PubMed]
- Manganelli, F.; Nolano, M.; Pisciotta, C.; Provitera, V.; Fabrizi, G.M.; Cavallaro, T.; Stancanelli, A.; Caporaso, G.; Shy, M.E.; Santoro, L. Charcot-Marie-Tooth Disease: New Insights from Skin Biopsy. Neurology 2015, 85, 1202–1208. [Google Scholar] [CrossRef] [PubMed]
- Li, J. Molecular Regulators of Nerve Conduction—Lessons from Inherited Neuropathies and Rodent Genetic Models. Exp. Neurol. 2015, 267, 209–218. [Google Scholar] [CrossRef]
- Sancho, S.; Magyar, J.P.; Aguzzi, A.; Suter, U. Distal Axonopathy in Peripheral Nerves of PMP22-Mutant Mice. Brain 1999, 122, 1563–1577. [Google Scholar] [CrossRef]
- Eichel, M.A.; Gargareta, V.-I.; D’Este, E.; Fledrich, R.; Kungl, T.; Buscham, T.J.; Lüders, K.A.; Miracle, C.; Jung, R.B.; Distler, U.; et al. CMTM6 Expressed on the Adaxonal Schwann Cell Surface Restricts Axonal Diameters in Peripheral Nerves. Nat. Commun. 2020, 11, 4514. [Google Scholar] [CrossRef]
- Hoffman, P.N.; Griffin, J.W.; Price, D.L. Control of Axonal Caliber by Neurofilament Transport. J. Cell Biol. 1984, 99, 705–714. [Google Scholar] [CrossRef]
- Fledrich, R.; Stassart, R.M.; Klink, A.; Rasch, L.M.; Prukop, T.; Haag, L.; Czesnik, D.; Kungl, T.; Abdelaal, T.A.M.; Keric, N.; et al. Soluble Neuregulin-1 Modulates Disease Pathogenesis in Rodent Models of Charcot-Marie-Tooth Disease 1A. Nat. Med. 2014, 20, 1055–1061. [Google Scholar] [CrossRef]
- Hattori, N.; Yamamoto, M.; Yoshihara, T.; Koike, H.; Nakagawa, M.; Yoshikawa, H.; Ohnishi, A.; Hayasaka, K.; Onodera, O.; Baba, M.; et al. Demyelinating and Axonal Features of Charcot-Marie-Tooth Disease with Mutations of Myelin-Related Proteins (PMP22, MPZ and Cx32): A Clinicopathological Study of 205 Japanese Patients. Brain 2003, 126, 134–151. [Google Scholar] [CrossRef]
- Sander, S.; Nicholson, G.A.; Ouvrier, R.A.; McLeod, J.G.; Pollard, J.D. Charcot-Marie-Tooth Disease: Histopathological Features of the Peripheral Myelin Protein (PMP22) Duplication (CMT1A) and Connexin32 Mutations (CMTX1). Muscle Nerve 1998, 21, 217–225. [Google Scholar] [CrossRef]
- Fledrich, R.; Abdelaal, T.; Rasch, L.; Bansal, V.; Schütza, V.; Brügger, B.; Lüchtenborg, C.; Prukop, T.; Stenzel, J.; Rahman, R.U.; et al. Targeting Myelin Lipid Metabolism as a Potential Therapeutic Strategy in a Model of CMT1A Neuropathy. Nat. Commun. 2018, 9, 3025. [Google Scholar] [CrossRef] [PubMed]
- Visigalli, D.; Capodivento, G.; Basit, A.; Fernández, R.; Hamid, Z.; Pencová, B.; Gemelli, C.; Marubbi, D.; Pastorino, C.; Luoma, A.M.; et al. Exploiting Sphingo- and Glycerophospholipid Impairment to Select Effective Drugs and Biomarkers for CMT1A. Front. Neurol. 2020, 11, 903. [Google Scholar] [CrossRef] [PubMed]
- Chrast, R.; Saher, G.; Nave, K.-A.; Verheijen, M.H.G. Lipid Metabolism in Myelinating Glial Cells: Lessons from Human Inherited Disorders and Mouse Models. J. Lipid Res. 2011, 52, 419–434. [Google Scholar] [CrossRef] [PubMed]
- Poitelon, Y.; Kopec, A.M.; Belin, S. Myelin Fat Facts: An Overview of Lipids and Fatty Acid Metabolism. Cells 2020, 9, 812. [Google Scholar] [CrossRef]
- Montani, L. Lipids in Regulating Oligodendrocyte Structure and Function. Semin. Cell Dev. Biol. 2021, 112, 114–122. [Google Scholar] [CrossRef]
- Harayama, T.; Riezman, H. Understanding the Diversity of Membrane Lipid Composition. Nat. Rev. Mol. Cell Biol. 2018, 19, 281–296. [Google Scholar] [CrossRef]
- Schwarz, D.S.; Blower, M.D. The Endoplasmic Reticulum: Structure, Function and Response to Cellular Signaling. Cell. Mol. Life Sci. CMLS 2016, 73, 79–94. [Google Scholar] [CrossRef]
- Federovitch, C.M.; Ron, D.; Hampton, R.Y. The Dynamic ER: Experimental Approaches and Current Questions. Curr. Opin. Cell Biol. 2005, 17, 409–414. [Google Scholar] [CrossRef]
- Pereira, J.A.; Lebrun-Julien, F.; Suter, U. Molecular Mechanisms Regulating Myelination in the Peripheral Nervous System. Trends Neurosci. 2012, 35, 123–134. [Google Scholar] [CrossRef]
- Snaidero, N.; Möbius, W.; Czopka, T.; Hekking, L.H.P.; Mathisen, C.; Verkleij, D.; Goebbels, S.; Edgar, J.; Merkler, D.; Lyons, D.A.; et al. Myelin Membrane Wrapping of CNS Axons by PI(3,4,5)P3-Dependent Polarized Growth at the Inner Tongue. Cell 2014, 156, 277–290. [Google Scholar] [CrossRef]
- Djannatian, M.; Radha, S.; Weikert, U.; Safaiyan, S.; Wrede, C.; Deichsel, C.; Kislinger, G.; Rhomberg, A.; Ruhwedel, T.; Campbell, D.S.; et al. Myelination Generates Aberrant Ultrastructure That Is Resolved by Microglia. J. Cell Biol. 2023, 222, e202204010. [Google Scholar] [CrossRef] [PubMed]
- Lori, S.; Bertini, G.; Bastianelli, M.; Gabbanini, S.; Gualandi, D.; Molesti, E.; Dani, C. Peripheral Nervous System Maturation in Preterm Infants: Longitudinal Motor and Sensory Nerve Conduction Studies. Child’s Nerv. Syst. ChNS Off. J. Int. Soc. Pediatr. Neurosurg. 2018, 34, 1145–1152. [Google Scholar] [CrossRef] [PubMed]
- Farrar, M.A.; Park, S.B.; Lin, C.S.-Y.; Kiernan, M.C. Evolution of Peripheral Nerve Function in Humans: Novel Insights from Motor Nerve Excitability. J. Physiol. 2013, 591, 273–286. [Google Scholar] [CrossRef] [PubMed]
- Gamstorp, I. Normal conduction velocity of ulnar, median and peroneal nerves in infancy, childhood and adolescence. Acta Paediatr. Suppl. 1963, 52 (Suppl. 146), 68–76. [Google Scholar] [CrossRef] [PubMed]
- Jacobs, J.M.; Love, S. Qualitative and Quantitative Morphology of Human Sural Nerve at Different Ages. Brain A J. Neurol. 1985, 108 Pt 4, 897–924. [Google Scholar] [CrossRef]
- Ouvrier, R.A.; McLeod, J.G.; Conchin, T.E. THE HYPERTROPHIC FORMS OF HEREDITARY MOTOR AND SENSORY NEUROPATHY. Brain 1987, 110, 121–148. [Google Scholar] [CrossRef]
- Davion, J.-B.; Cassim, F.; Péréon, Y.; Tich, S.N.T. Young Infants with PMP22 Duplication Can Have Minor Nerve Conduction Study Abnormalities. Neurophysiol. Clin. 2022, 52, 482–485. [Google Scholar] [CrossRef]
- Davis, D.L.; Mahawar, U.; Pope, V.S.; Allegood, J.; Sato-Bigbee, C.; Wattenberg, B.W. Dynamics of Sphingolipids and the Serine Palmitoyltransferase Complex in Rat Oligodendrocytes during Myelination. J. Lipid Res. 2020, 61, 505–522. [Google Scholar] [CrossRef]
- Patzig, J.; Jahn, O.; Tenzer, S.; Wichert, S.P.; de Monasterio-Schrader, P.; Rosfa, S.; Kuharev, J.; Yan, K.; Bormuth, I.; Bremer, J.; et al. Quantitative and Integrative Proteome Analysis of Peripheral Nerve Myelin Identifies Novel Myelin Proteins and Candidate Neuropathy Loci. J. Neurosci. Off. J. Soc. Neurosci. 2011, 31, 16369–16386. [Google Scholar] [CrossRef]
- Djuanda, D.; He, B.; Liu, X.; Xu, S.; Zhang, Y.; Xu, Y.; Zhu, Z. Comprehensive Analysis of Age-Related Changes in Lipid Metabolism and Myelin Sheath Formation in Sciatic Nerves. J. Mol. Neurosci. MN 2021, 71, 2310–2323. [Google Scholar] [CrossRef]
- Helbing, D.L.; Kirkpatrick, J.M.; Reuter, M.; Bischoff, J.; Stockdale, A.; Carlstedt, A.; Cirri, E.; Bauer, R.; Morrison, H. Proteomic Analysis of Peripheral Nerve Myelin during Murine Aging. Front. Cell. Neurosci. 2023, 17, 1214003. [Google Scholar] [CrossRef] [PubMed]
- Verheijen, M.H.G.; Camargo, N.; Verdier, V.; Nadra, K.; de P. Charles, A.-S.; Médard, J.-J.; Luoma, A.; Crowther, M.; Inouye, H.; Shimano, H.; et al. SCAP Is Required for Timely and Proper Myelin Membrane Synthesis. Proc. Natl. Acad. Sci. USA 2009, 106, 21383–21388. [Google Scholar] [CrossRef] [PubMed]
- Siems, S.B.; Jahn, O.; Eichel, M.A.; Kannaiyan, N.; Wu, L.M.N.; Sherman, D.L.; Kusch, K.; Hesse, D.; Jung, R.B.; Fledrich, R.; et al. Proteome Profile of Peripheral Myelin in Healthy Mice and in a Neuropathy Model. eLife 2020, 9, e51406. [Google Scholar] [CrossRef] [PubMed]
- Ziskind-Conhaim, L. Physiological and Morphological Changes in Developing Peripheral Nerves of Rat Embryos. Brain Res. 1988, 470, 15–28. [Google Scholar] [CrossRef]
- Vabnick, I.; Shrager, P. Ion Channel Redistribution and Function during Development of the Myelinated Axon. J. Neurobiol. 1998, 37, 80–96. [Google Scholar] [CrossRef]
- Castelfranco, A.M.; Hartline, D.K. Evolution of Rapid Nerve Conduction. Brain Res. 2016, 1641, 11–33. [Google Scholar] [CrossRef]
- Olsen, A.S.B.; Færgeman, N.J. Sphingolipids: Membrane Microdomains in Brain Development, Function and Neurological Diseases. Open Biol. 2017, 7, 170069. [Google Scholar] [CrossRef]
- Svennerholm, L.; Vanier, M.T. The Distribution of Lipids in the Human Nervous System. IV. Fatty Acid Composition of Major Sphingolipids of Human Infant Brain. Brain Res. 1973, 55, 413–423. [Google Scholar] [CrossRef]
- Ishibashi, T.; Dupree, J.L.; Ikenaka, K.; Hirahara, Y.; Honke, K.; Peles, E.; Popko, B.; Suzuki, K.; Nishino, H.; Baba, H. A Myelin Galactolipid, Sulfatide, Is Essential for Maintenance of Ion Channels on Myelinated Axon But Not Essential for Initial Cluster Formation. J. Neurosci. 2002, 22, 6507–6514. [Google Scholar] [CrossRef]
- Simons, K.; Vaz, W.L.C. Model Systems, Lipid Rafts, and Cell Membranes. Annu. Rev. Biophys. Biomol. Struct. 2004, 33, 269–295. [Google Scholar] [CrossRef]
- Kakorin, S.; Brinkmann, U.; Neumann, E. Cholesterol Reduces Membrane Electroporation and Electric Deformation of Small Bilayer Vesicles. Biophys. Chem. 2005, 117, 155–171. [Google Scholar] [CrossRef] [PubMed]
- Quinn, R. Comparing Rat’s to Human’s Age: How Old Is My Rat in People Years? Nutrition 2005, 21, 775–777. [Google Scholar] [CrossRef] [PubMed]
- Ghasemi, A.; Jeddi, S.; Kashfi, K. The Laboratory Rat: Age and Body Weight Matter. EXCLI J. 2021, 20, 1431–1445. [Google Scholar] [CrossRef] [PubMed]
- Bandeira, F.; Lent, R.; Herculano-Houzel, S. Changing Numbers of Neuronal and Non-Neuronal Cells Underlie Postnatal Brain Growth in the Rat. Proc. Natl. Acad. Sci. USA 2009, 106, 14108–14113. [Google Scholar] [CrossRef]
- Poitelon, Y.; Bogni, S.; Matafora, V.; Nunes, G.D.-F.; Hurley, E.; Ghidinelli, M.; Katzenellenbogen, B.S.; Taveggia, C.; Silvestri, N.; Bachi, A.; et al. Spatial Mapping of Juxtacrine Axo-Glial Interactions Identifies Novel Molecules in Peripheral Myelination. Nat. Commun. 2015, 6, 8303. [Google Scholar] [CrossRef]
- Taveggia, C.; Zanazzi, G.; Petrylak, A.; Yano, H.; Rosenbluth, J.; Einheber, S.; Xu, X.; Esper, R.M.; Loeb, J.A.; Shrager, P.; et al. Neuregulin-1 Type III Determines the Ensheathment Fate of Axons. Neuron 2005, 47, 681–694. [Google Scholar] [CrossRef]
- Stassart, R.M.; Woodhoo, A. Axo-glial Interaction in the Injured PNS. Dev. Neurobiol. 2021, 81, 490–506. [Google Scholar] [CrossRef]
- Sereda, M.; Griffiths, I.; Pühlhofer, A.; Stewart, H.; Rossner, M.J.; Zimmerman, F.; Magyar, J.P.; Schneider, A.; Hund, E.; Meinck, H.M.; et al. A Transgenic Rat Model of Charcot-Marie-Tooth Disease. Neuron 1996, 16, 1049–1060. [Google Scholar] [CrossRef]
- Agrawal, D.; Hawk, R.; Avila, R.L.; Inouye, H.; Kirschner, D.A. Internodal Myelination during Development Quantitated Using X-Ray Diffraction. J. Struct. Biol. 2009, 168, 521–526. [Google Scholar] [CrossRef]
- Fu, Y.; Yuan, Y.; Halliday, G.; Rusznák, Z.; Watson, C.; Paxinos, G. A Cytoarchitectonic and Chemoarchitectonic Analysis of the Dopamine Cell Groups in the Substantia Nigra, Ventral Tegmental Area, and Retrorubral Field in the Mouse. Brain Struct. Funct. 2012, 217, 591–612. [Google Scholar] [CrossRef]
- Capodivento, G.; Visigalli, D.; Garnero, M.; Fancellu, R.; Ferrara, M.D.; Basit, A.; Hamid, Z.; Pastore, V.P.; Garibaldi, S.; Armirotti, A.; et al. Sphingomyelin as a Myelin Biomarker in CSF of Acquired Demyelinating Neuropathies. Sci. Rep. 2017, 7, 7831. [Google Scholar] [CrossRef] [PubMed]
- Larocca, J.N.; Norton, W.T. Isolation of Myelin. Curr. Protoc. Cell Biol. 2007, 33, 3–25. [Google Scholar] [CrossRef] [PubMed]
- Molenaar, M.R.; Jeucken, A.; Wassenaar, T.A.; van de Lest, C.H.A.; Brouwers, J.F.; Helms, J.B. LION/Web: A Web-Based Ontology Enrichment Tool for Lipidomic Data Analysis. GigaScience 2019, 8, giz061. [Google Scholar] [CrossRef] [PubMed]
- Molenaar, M.R.; Haaker, M.W.; Vaandrager, A.B.; Houweling, M.; Helms, J.B. Lipidomic Profiling of Rat Hepatic Stellate Cells during Activation Reveals a Two-Stage Process Accompanied by Increased Levels of Lysosomal Lipids. J. Biol. Chem. 2023, 299, 103042. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Capodivento, G.; Camera, M.; Liessi, N.; Trada, A.; Debellis, D.; Schenone, A.; Armirotti, A.; Visigalli, D.; Nobbio, L. Monitoring Myelin Lipid Composition and the Structure of Myelinated Fibers Reveals a Maturation Delay in CMT1A. Int. J. Mol. Sci. 2024, 25, 11244. https://doi.org/10.3390/ijms252011244
Capodivento G, Camera M, Liessi N, Trada A, Debellis D, Schenone A, Armirotti A, Visigalli D, Nobbio L. Monitoring Myelin Lipid Composition and the Structure of Myelinated Fibers Reveals a Maturation Delay in CMT1A. International Journal of Molecular Sciences. 2024; 25(20):11244. https://doi.org/10.3390/ijms252011244
Chicago/Turabian StyleCapodivento, Giovanna, Mattia Camera, Nara Liessi, Anna Trada, Doriana Debellis, Angelo Schenone, Andrea Armirotti, Davide Visigalli, and Lucilla Nobbio. 2024. "Monitoring Myelin Lipid Composition and the Structure of Myelinated Fibers Reveals a Maturation Delay in CMT1A" International Journal of Molecular Sciences 25, no. 20: 11244. https://doi.org/10.3390/ijms252011244
APA StyleCapodivento, G., Camera, M., Liessi, N., Trada, A., Debellis, D., Schenone, A., Armirotti, A., Visigalli, D., & Nobbio, L. (2024). Monitoring Myelin Lipid Composition and the Structure of Myelinated Fibers Reveals a Maturation Delay in CMT1A. International Journal of Molecular Sciences, 25(20), 11244. https://doi.org/10.3390/ijms252011244