Erythropoiesis and Gene Expression Analysis in Erythroid Progenitor Cells Derived from Patients with Hemoglobin H/Constant Spring Disease
Abstract
:1. Introduction
2. Results
2.1. Cell Proliferation and Viability
2.2. Cell Differentiation
2.3. Gene Expression Analysis
3. Discussion
4. Materials and Methods
4.1. Patients
4.2. Ethical Issues and Informed Consent
4.3. Ex Vivo Erythroid Differentiation of Human CD34+ Hematopoietic Stem Cells
4.4. Cell Proliferation and Viability
4.5. Cell Differentiation Analysis
4.6. RNA Isolation and Sequencing
4.7. Gene Expression Analysis and Data Visualization
4.8. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lemmens-Zygulska, M.; Eigel, A.; Helbig, B.; Sanguansermsri, T.; Horst, J.; Flatz, G. Prevalence of alpha-thalassemias in northern Thailand. Hum. Genet. 1996, 98, 345–347. [Google Scholar] [CrossRef] [PubMed]
- Hundrieser, J.; Sanguansermsri, T.; Papp, T.; Flatz, G. Alpha-thalassemia in northern Thailand. Frequency of deletional types characterized at the DNA level. Hum. Hered. 1988, 38, 211–215. [Google Scholar] [CrossRef] [PubMed]
- Laig, M.; Pape, M.; Hundrieser, J.; Flatz, G.; Sanguansermsri, T.; Das, B.M.; Deka, R.; Yongvanit, P.; Mularlee, N. The distribution of the Hb constant spring gene in Southeast Asian populations. Hum. Genet. 1990, 84, 188–190. [Google Scholar] [CrossRef] [PubMed]
- Fucharoen, S.; Viprakasit, V. Hb H disease: Clinical course and disease modifiers. Hematol. Am. Soc. Hematol. Educ. Program 2009, 26–34. [Google Scholar] [CrossRef]
- Piel, F.B.; Weatherall, D.J. The α-thalassemias. N. Engl. J. Med. 2014, 371, 1908–1916. [Google Scholar] [CrossRef]
- Hockham, C.; Ekwattanakit, S.; Bhatt, S.; Penman, B.S.; Gupta, S.; Viprakasit, V.; Piel, F.B. Estimating the burden of α-thalassaemia in Thailand using a comprehensive prevalence database for Southeast Asia. eLife 2019, 8, e40580. [Google Scholar] [CrossRef]
- Clegg, J.B.; Weatherall, D.J.; Milner, P.F. Haemoglobin Constant Spring—A chain termination mutant? Nature 1971, 234, 337–340. [Google Scholar] [CrossRef]
- Schrier, S.L.; Bunyaratvej, A.; Khuhapinant, A.; Fucharoen, S.; Aljurf, M.; Snyder, L.M.; Keifer, C.R.; Ma, L.; Mohandas, N. The unusual pathobiology of hemoglobin constant spring red blood cells. Blood 1997, 89, 1762–1769. [Google Scholar] [CrossRef]
- Charoenkwan, P.; Taweephon, R.; Sae-Tung, R.; Thanarattanakorn, P.; Sanguansermsri, T. Molecular and clinical features of Hb H disease in northern Thailand. Hemoglobin 2005, 29, 133–140. [Google Scholar] [CrossRef]
- He, S.; Zheng, C.; Meng, D.; Chen, R.; Zhang, Q.; Tian, X.; Chen, S. Hb H Hydrops Fetalis Syndrome Caused by Association of the − −SEA Deletion and Hb Constant Spring (HBA2: C.427T>C) Mutation in a Chinese Family. Hemoglobin 2015, 39, 216–219. [Google Scholar] [CrossRef]
- Luewan, S.; Charoenkwan, P.; Sirichotiyakul, S.; Tongsong, T. Fetal haemoglobin H-Constant Spring disease: A role for intrauterine management. Br. J. Haematol. 2020, 190, e233–e236. [Google Scholar] [CrossRef] [PubMed]
- Charoenkwan, P.; Sirichotiyakul, S.; Chanprapaph, P.; Tongprasert, F.; Taweephol, R.; Sae-Tung, R.; Sanguansermsri, T. Anemia and hydrops in a fetus with homozygous hemoglobin constant spring. J. Pediatr. Hematol. Oncol. 2006, 28, 827–830. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Zhao, Y.; Lou, J.W.; Liu, Y.H.; Li, D.Z. Fetal Anemia and Hydrops Fetalis Associated with Homozygous Hb Constant Spring (HBA2: C.427T>C). Hemoglobin 2016, 40, 97–101. [Google Scholar] [CrossRef] [PubMed]
- Komvilaisak, P.; Komvilaisak, R.; Jetsrisuparb, A.; Wiangnon, S.; Jirapradittha, J.; Kiatchoosakun, P.; Fucharoen, G. Fetal anemia causing hydrops fetalis from an alpha-globin variant: Homozygous hemoglobin Constant Spring. J. Pediatr. Hematol. Oncol. 2018, 40, 405–408. [Google Scholar] [CrossRef]
- Tang, H.S.; Xiong, Y.; Li, D.Z. Fetal Hemoglobin H Hydrops Fetalis: Another Three Case Reports. Hemoglobin 2023, 47, 102–104. [Google Scholar] [CrossRef]
- Sirilert, S.; Charoenkwan, P.; Sirichotiyakul, S.; Tongprasert, F.; Srisupundit, K.; Luewan, S.; Tongsong, T. Prenatal diagnosis and management of homozygous hemoglobin constant spring disease. J. Perinatol. 2019, 39, 927–933. [Google Scholar] [CrossRef]
- Taghavifar, F.; Hamid, M.; Shariati, G. Gene expression in blood from an individual with β-thalassemia: An RNA sequence analysis. Mol. Genet. Genom. Med. 2019, 7, e00740. [Google Scholar] [CrossRef]
- Fakhr-Eldeen, A.; Toraih, E.A.; Fawzy, M.S. Long non-coding RNAs MALAT1, MIAT and ANRIL gene expression profiles in beta-thalassemia patients: A cross-sectional analysis. Hematology 2019, 24, 308–317. [Google Scholar] [CrossRef]
- Zhou, G.; Zhang, H.; Lin, A.; Wu, Z.; Li, T.; Zhang, X.; Chen, H.; Lu, D. Multi-Omics Analysis in β-Thalassemia Using an HBB Gene-Knockout Human Erythroid Progenitor Cell Model. Int. J. Mol. Sci. 2022, 23, 2807. [Google Scholar] [CrossRef]
- Mahmoud, H.M.; Shoeib, A.A.; Abd El Ghany, S.M.; Reda, M.M.; Ragab, I.A. Study of alpha hemoglobin stabilizing protein expression in patients with β thalassemia and sickle cell anemia and its impact on clinical severity. Blood Cells Mol. Dis. 2015, 55, 358–362. [Google Scholar] [CrossRef]
- Forster, L.; McCooke, J.; Bellgard, M.; Joske, D.; Finlayson, J.; Ghassemifar, R. Differential gene expression analysis in early and late erythroid progenitor cells in β-thalassaemia. Br. J. Haematol. 2015, 170, 257–267. [Google Scholar] [CrossRef] [PubMed]
- Kaewsakulthong, W.; Suriyun, T.; Chumchuen, S.; Anurathapan, U.; Hongeng, S.; Fucharoen, S.; Sripichai, O. In Vitro Study of Ineffective Erythropoiesis in Thalassemia: Diverse Intrinsic Pathophysiological Features of Erythroid Cells Derived from Various Thalassemia Syndromes. J. Clin. Med. 2022, 11, 5356. [Google Scholar] [CrossRef] [PubMed]
- Sriiam, S.; Leecharoenkiat, A.; Lithanatudom, P.; Wannatung, T.; Svasti, S.; Fucharoen, S.; Svasti, J.; Chokchaichamnankit, D.; Srisomsap, C.; Smith, D.R. Proteomic analysis of hemoglobin H-constant spring (Hb H-CS) erythroblasts. Blood Cells Mol. Dis. 2012, 48, 77–85. [Google Scholar] [CrossRef]
- Roden, J.C.; King, B.W.; Trout, D.; Mortazavi, A.; Wold, B.J.; Hart, C.E. Mining gene expression data by interpreting principal components. BMC Bioinform. 2006, 7, 194. [Google Scholar] [CrossRef] [PubMed]
- Singh, M.K.; Yu, J. Accumulation of a heat shock-like protein during differentiation of human erythroid cell line K562. Nature 1984, 309, 631–633. [Google Scholar] [CrossRef] [PubMed]
- Arlet, J.B.; Ribeil, J.A.; Guillem, F.; Negre, O.; Hazoume, A.; Marcion, G.; Beuzard, Y.; Dussiot, M.; Moura, I.C.; Demarest, S.; et al. HSP70 sequestration by free alpha-globin promotes ineffective erythropoiesis in beta-thalassaemia. Nature 2014, 514, 242–246. [Google Scholar] [CrossRef]
- Kruta, M.; Sunshine, M.J.; Chua, B.A.; Fu, Y.; Chawla, A.; Dillingham, C.H.; Hidalgo San Jose, L.; De Jong, B.; Zhou, F.J.; Signer, R.A. Hsf1 promotes hematopoietic stem cell fitness and proteostasis in response to ex vivo culture stress and aging. Cell Stem Cell 2021, 28, 1950–1965.e6. [Google Scholar] [CrossRef]
- Weiss, M.J.; dos Santos, C.O. Chaperoning erythropoiesis. Blood 2009, 113, 2136–2144. [Google Scholar] [CrossRef]
- Ribeil, J.A.; Zermati, Y.; Vandekerckhove, J.; Cathelin, S.; Kersual, J.; Dussiot, M.; Coulon, S.; Moura, I.C.; Zeuner, A.; Kirkegaard-Sørensen, T.; et al. Hsp70 regulates erythropoiesis by preventing caspase-3-mediated cleavage of GATA-1. Nature 2007, 445, 102–105. [Google Scholar] [CrossRef]
- Mathangasinghe, Y.; Fauvet, B.; Jane, S.M.; Goloubinoff, P.; Nillegoda, N.B. The Hsp70 chaperone system: Distinct roles in erythrocyte formation and maintenance. Haematologica 2021, 106, 1519–1534. [Google Scholar] [CrossRef]
- Que, Y.; Qiu, Y.; Ding, Z.; Zhang, S.; Wei, R.; Xia, J.; Lin, Y. The role of molecular chaperone CCT/TRiC in translation elongation: A literature review. Heliyon 2024, 10, e29029. [Google Scholar] [CrossRef] [PubMed]
- Roobol, A.; Roobol, J.; Carden, M.J.; Smith, M.E.; Hershey, J.W.; Bastide, A.; Knight, J.R.; Willis, A.E.; Smales, C.M. The chaperonin CCT interacts with and mediates the correct folding and activity of three subunits of translation initiation factor eIF3: B, i and h. Biochem. J. 2014, 458, 213–224. [Google Scholar] [CrossRef] [PubMed]
- Kihm, A.J.; Kong, Y.; Hong, W.; Russell, J.E.; Rouda, S.; Adachi, K.; Simon, M.C.; Blobel, G.A.; Weiss, M.J. An abundant erythroid protein that stabilizes free alpha-haemoglobin. Nature 2002, 417, 758–763. [Google Scholar] [CrossRef] [PubMed]
- Bunyaratvej, A.; Sahaphong, S.; Bhamarapravati, N.; Wasi, P. Different patterns of intraerythrocytic inclusion body distribution in the two types of haemoglobin H disease. An Ultrastructural Study. Acta Haematol. 1983, 69, 314–318. [Google Scholar] [CrossRef] [PubMed]
- Thrash, A.; Arick, M., 2nd; Peterson, D.G. Quack: A quality assurance tool for high throughput sequence data. Anal. Biochem. 2018, 548, 38–43. [Google Scholar] [CrossRef]
- Chen, S.; Zhou, Y.; Chen, Y.; Gu, J. fastp: An ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 2018, 34, i884–i890. [Google Scholar] [CrossRef]
- Kopylova, E.; Noé, L.; Touzet, H. SortMeRNA: Fast and accurate filtering of ribosomal RNAs in metatranscriptomic data. Bioinformatics 2012, 28, 3211–3217. [Google Scholar] [CrossRef]
- Kim, D.; Paggi, J.M.; Park, C.; Bennett, C.; Salzberg, S.L. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat. Biotechnol. 2019, 37, 907–915. [Google Scholar] [CrossRef]
- Liao, Y.; Smyth, G.K.; Shi, W. featureCounts: An efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 2014, 30, 923–930. [Google Scholar] [CrossRef]
- Lataretu, M.; Hölzer, M. RNAflow: An Effective and Simple RNA-Seq Differential Gene Expression Pipeline Using Nextflow. Genes 2020, 11, 1487. [Google Scholar] [CrossRef]
- Smedley, D.; Haider, S.; Ballester, B.; Holland, R.; London, D.; Thorisson, G.; Kasprzyk, A. BioMart–biological queries made easy. BMC Genom. 2009, 10, 22. [Google Scholar] [CrossRef]
- Lê, S.; Josse, J.; Husson, F. FactoMineR: An R Package for Multivariate Analysis. J. Stat. Softw. 2008, 25, 1–18. [Google Scholar] [CrossRef]
- Kassambara, A.; Mundt, F. Factoextra: Extract and Visualize the Results of Multivariate Data Analyses 2020. Available online: https://CRAN.R-project.org/package=factoextra (accessed on 1 July 2024).
- Kolde, R. Pheatmap: Pretty Heatmaps. 2019. Available online: https://CRAN.R-project.org/package=pheatmap (accessed on 1 July 2024).
Patients with Hb H/CS Disease (N = 12) | Normal Controls (N = 5) | p-Value | |
---|---|---|---|
Age | 19.8 ± 7.8 | 28.8 ± 6.2 | 0.038 |
Male sex | 7 (58.3%) | 3 (60.0%) | >0.999 |
Hb (g/dL) | 8.5 ± 1.5 | 14.0 ± 1.5 | <0.001 |
Hct (%) | 32.7 ± 5.1 | 44.3 ± 4.5 | 0.001 |
RBC (×106/mm3) | 4.4 ± 0.9 | 4.9 ± 0.7 | 0.351 |
MCV (fL) | 73.1 ± 9.5 | 91.1 ± 4.4 | 0.001 |
MCH (pg) | 19.6 ± 1.6 | 28.8 ± 1.8 | <0.001 |
MCHC (g/dL) | 27.0 ± 2.2 | 31.6 ± 0.9 | <0.001 |
RDW (%) | 24.2 ± 4.1 | 13.3 ± 0.9 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wongkhammul, N.; Khamphikham, P.; Tongjai, S.; Tantiworawit, A.; Fanhchaksai, K.; Wongpalee, S.P.; Tubsuwan, A.; Maneekesorn, S.; Charoenkwan, P. Erythropoiesis and Gene Expression Analysis in Erythroid Progenitor Cells Derived from Patients with Hemoglobin H/Constant Spring Disease. Int. J. Mol. Sci. 2024, 25, 11246. https://doi.org/10.3390/ijms252011246
Wongkhammul N, Khamphikham P, Tongjai S, Tantiworawit A, Fanhchaksai K, Wongpalee SP, Tubsuwan A, Maneekesorn S, Charoenkwan P. Erythropoiesis and Gene Expression Analysis in Erythroid Progenitor Cells Derived from Patients with Hemoglobin H/Constant Spring Disease. International Journal of Molecular Sciences. 2024; 25(20):11246. https://doi.org/10.3390/ijms252011246
Chicago/Turabian StyleWongkhammul, Narawich, Pinyaphat Khamphikham, Siripong Tongjai, Adisak Tantiworawit, Kanda Fanhchaksai, Somsakul Pop Wongpalee, Alisa Tubsuwan, Supawadee Maneekesorn, and Pimlak Charoenkwan. 2024. "Erythropoiesis and Gene Expression Analysis in Erythroid Progenitor Cells Derived from Patients with Hemoglobin H/Constant Spring Disease" International Journal of Molecular Sciences 25, no. 20: 11246. https://doi.org/10.3390/ijms252011246
APA StyleWongkhammul, N., Khamphikham, P., Tongjai, S., Tantiworawit, A., Fanhchaksai, K., Wongpalee, S. P., Tubsuwan, A., Maneekesorn, S., & Charoenkwan, P. (2024). Erythropoiesis and Gene Expression Analysis in Erythroid Progenitor Cells Derived from Patients with Hemoglobin H/Constant Spring Disease. International Journal of Molecular Sciences, 25(20), 11246. https://doi.org/10.3390/ijms252011246