Antiphospholipid Antibodies as Key Players in Systemic Lupus Erythematosus: The Relationship with Cytokines and Immune Dysregulation
Abstract
:1. Introduction
2. Pathogenic Mechanisms in APS
2.1. The Role of the Endothelium in Hemostasis
2.2. The Procoagulant and Proinflammatory Endothelial Phenotype
2.3. Binding of aPL Antibodies to Endothelial Cells
2.4. Activation of Endothelial Cells
2.5. Activation of Blood Monocytes
2.6. Activation of Platelets
2.7. Disturbances in Coagulation and Fibrinolysis
2.8. The ”Second Hit” Theory
2.9. Immunothrombosis
2.10. The Role of microRNAs
3. Antiphospholipid Antibodies and Mediators of Inflammation
3.1. Plasma Interferons
3.2. Interleukin-1
3.3. Interleukin-2
3.4. Interleukin-6
3.5. Interleukin-10
3.6. Interleukin-17
3.7. TNF-α
3.8. BLyS
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Siegel, C.H.; Sammaritano, L.R. Systemic Lupus Erythematosus: A Review. JAMA 2024, 331, 1480–1491. [Google Scholar] [CrossRef] [PubMed]
- Knight, J.S.; Branch, D.W.; Ortel, T.L. Antiphospholipid Syndrome: Advances in Diagnosis, Pathogenesis, and Management. BMJ 2023, 380, e069717. [Google Scholar] [CrossRef] [PubMed]
- Hughes, G.R. The Anticardiolipin Syndrome. Clin. Exp. Rheumatol. 1985, 3, 285–286. [Google Scholar]
- Hughes, G.R. Thrombosis, Abortion, Cerebral Disease, and the Lupus Anticoagulant. Br. Med. J. (Clin. Res. Ed.) 1983, 287, 1088–1089. [Google Scholar] [CrossRef]
- Edwards, C.J.; Hughes, G.R.V. Hughes Syndrome (the Antiphospholipid Syndrome): 25 Years Old. Mod. Rheumatol. 2008, 18, 119–124. [Google Scholar] [CrossRef]
- El Hasbani, G.; Taher, A.T.; Sciascia, S.; Uthman, I. Antiphospholipid Syndrome: The Need for New International Classification Criteria. Expert Rev. Clin. Immunol. 2021, 17, 385–394. [Google Scholar] [CrossRef] [PubMed]
- Radic, M.; Pattanaik, D. Cellular and Molecular Mechanisms of Anti-Phospholipid Syndrome. Front. Immunol. 2018, 9, 969. [Google Scholar] [CrossRef]
- Lambert, M.; Brodovitch, A.; Mège, J.-L.; Bertin, D.; Bardin, N. Biological Markers of High Risk of Thrombotic Recurrence in Patients with Antiphospholipid Syndrome: A Literature Review. Autoimmun. Rev. 2024, 23, 103585. [Google Scholar] [CrossRef] [PubMed]
- Delabio Auer, E.; Bumiller-Bini Hoch, V.; Borges da Silva, E.; Ricci Zonta, Y.; Alarcão Dias-Melicio, L.; Larocca Skare, T.; Picceli, V.F.; Messias-Reason, I.J.; Boldt, A.B.W. Association of Neutrophil Extracellular Trap Levels with Raynaud’s Phenomenon, Glomerulonephritis and Disease Index Score in SLE Patients from Brazil. Immunobiology 2024, 229, 152803. [Google Scholar] [CrossRef]
- Reshetnyak, T.; Nurbaeva, K. The Role of Neutrophil Extracellular Traps (NETs) in the Pathogenesis of Systemic Lupus Erythematosus and Antiphospholipid Syndrome. Int. J. Mol. Sci. 2023, 24, 13581. [Google Scholar] [CrossRef]
- The American Association of Neurological Surgeons (AANS); American Society of Neuroradiology (ASNR); Cardiovascular and Interventional Radiology Society of Europe (CIRSE); Canadian Interventional Radiology Association (CIRA); Congress of Neurological Surgeons (CNS); European Society of Minimally Invasive Neurological Therapy (ESMINT); European Society of Neuroradiology (ESNR); European Stroke Organization (ESO); Society for Cardiovascular Angiography and Interventions (SCAI); Society of Interventional Radiology (SIR); et al. Multisociety Consensus Quality Improvement Revised Consensus Statement for Endovascular Therapy of Acute Ischemic Stroke. Int. J. Stroke 2018, 13, 612–632. [Google Scholar] [CrossRef]
- Belizna, C.; Stojanovich, L.; Cohen-Tervaert, J.W.; Fassot, C.; Henrion, D.; Loufrani, L.; Nagy, G.; Muchardt, C.; Hasan, M.; Ungeheuer, M.N.; et al. Primary Antiphospholipid Syndrome and Antiphospholipid Syndrome Associated to Systemic Lupus: Are They Different Entities? Autoimmun. Rev. 2018, 17, 739–745. [Google Scholar] [CrossRef] [PubMed]
- Caliz, R.; Atsumi, T.; Kondeatis, E.; Amengual, O.; Khamashta, M.A.; Vaughan, R.W.; Lanchbury, J.S.; Hughes, G.R.V. HLA Class II Gene Polymorphisms in Antiphospholipid Syndrome: Haplotype Analysis in 83 Caucasoid Patients. Rheumatology 2001, 40, 31–36. [Google Scholar] [CrossRef]
- Kotyla, P.J.; Islam, M.A. MicroRNA (miRNA): A New Dimension in the Pathogenesis of Antiphospholipid Syndrome (APS). Int. J. Mol. Sci. 2020, 21, 2076. [Google Scholar] [CrossRef]
- Dabit, J.Y.; Valenzuela-Almada, M.O.; Vallejo-Ramos, S.; Duarte-García, A. Epidemiology of Antiphospholipid Syndrome in the General Population. Curr. Rheumatol. Rep. 2022, 23, 85. [Google Scholar] [CrossRef]
- Garra, W.; Carmi, O.; Kivity, S.; Levy, Y. Catastrophic Antiphospholipid Syndrome in Lupus-Associated Immune Thrombocytopenia Treated with Eltrombopag A Case Series and Literature Review. Medicine 2023, 102, e32949. [Google Scholar] [CrossRef]
- Riancho-Zarrabeitia, L.; Martínez-Taboada, V.; Rúa-Figueroa, I.; Alonso, F.; Galindo-Izquierdo, M.; Ovalles, J.; Olivé-Marqués, A.; Fernández-Nebro, A.; Calvo-Alén, J.; Menor-Almagro, R.; et al. Antiphospholipid Syndrome (APS) in Patients with Systemic Lupus Erythematosus (SLE) Implies a More Severe Disease with More Damage Accrual and Higher Mortality. Lupus 2020, 29, 1556–1565. [Google Scholar] [CrossRef] [PubMed]
- Pons-Estel, G.J.; Andreoli, L.; Scanzi, F.; Cervera, R.; Tincani, A. The Antiphospholipid Syndrome in Patients with Systemic Lupus Erythematosus. J. Autoimmun. 2017, 76, 10–20. [Google Scholar] [CrossRef]
- Tan, E.M.; Cohen, A.S.; Fries, J.F.; Masi, A.T.; Mcshane, D.J.; Rothfield, N.F.; Schaller, J.G.; Talal, N.; Winchester, R.J. The 1982 Revised Criteria for the Classification of Systemic Lupus Erythematosus. Arthritis Rheum. 1982, 25, 1271–1277. [Google Scholar] [CrossRef]
- Hochberg, M.C. Updating the American College of Rheumatology Revised Criteria for the Classification of Systemic Lupus Erythematosus. Arthritis Rheum. 1997, 40, 1725. [Google Scholar] [CrossRef]
- Miyakis, S.; Lockshin, M.D.; Atsumi, T.; Branch, D.W.; Brey, R.L.; Cervera, R.; Derksen, R.H.W.M.; DE Groot, P.G.; Koike, T.; Meroni, P.L.; et al. International Consensus Statement on an Update of the Classification Criteria for Definite Antiphospholipid Syndrome (APS). J. Thromb. Haemost. 2006, 4, 295–306. [Google Scholar] [CrossRef] [PubMed]
- Petri, M.; Orbai, A.-M.; Alarcón, G.S.; Gordon, C.; Merrill, J.T.; Fortin, P.R.; Bruce, I.N.; Isenberg, D.; Wallace, D.J.; Nived, O.; et al. Derivation and Validation of Systemic Lupus International Collaborating Clinics Classification Criteria for Systemic Lupus Erythematosus. Arthritis Rheum. 2012, 64, 2677–2686. [Google Scholar] [CrossRef] [PubMed]
- Aringer, M.; Costenbader, K.H.; Daikh, D.I.; Brinks, R.; Mosca, M.; Ramsey-Goldman, R.; Smolen, J.S.; Wofsy, D.; Boumpas, D.; Kamen, D.L.; et al. 2019 EULAR/ACR Classification Criteria for Systemic Lupus Erythematosus. Arthritis Rheumatol. 2019, 71, 1400–1412. [Google Scholar] [CrossRef]
- Barbhaiya, M.; Zuily, S.; Naden, R.; Hendry, A.; Manneville, F.; Amigo, M.-C.; Amoura, Z.; Andrade, D.; Andreoli, L.; Artim-Esen, B.; et al. 2023 ACR/EULAR Antiphospholipid Syndrome Classification Criteria. Ann. Rheum. Dis. 2023, 82, 1258–1270. [Google Scholar] [CrossRef]
- Mehdi, A.A.; Uthman, I.; Khamashta, M. Antiphospholipid Syndrome: Pathogenesis and a Window of Treatment Opportunities in the Future. Eur. J. Clin. Investig. 2010, 40, 451–464. [Google Scholar] [CrossRef]
- Neubauer, K.; Zieger, B. Endothelial Cells and Coagulation. Cell Tissue Res. 2022, 387, 391–398. [Google Scholar] [CrossRef] [PubMed]
- Riboldi, P.; Gerosa, M.; Raschi, E.; Testoni, C.; Meroni, P.L. Endothelium as a Target for Antiphospholipid Antibodies. Immunobiology 2003, 207, 29–36. [Google Scholar] [CrossRef]
- Saulescu, I. Immune Mechanisms in Rheumatology—Andra-Rodica Balanescu; Medical: Bucharest, Romania, 2019. [Google Scholar]
- McNeil, H.P.; Simpson, R.J.; Chesterman, C.N.; Krilis, S.A. Anti-Phospholipid Antibodies Are Directed against a Complex Antigen That Includes a Lipid-Binding Inhibitor of Coagulation: Beta 2-Glycoprotein I (Apolipoprotein H). Proc. Natl. Acad. Sci. USA 1990, 87, 4120–4124. [Google Scholar] [CrossRef] [PubMed]
- de Laat, H.B.; Derksen, R.H.W.M.; Urbanus, R.T.; Roest, M.; de Groot, P.G. Beta2-Glycoprotein I-Dependent Lupus Anticoagulant Highly Correlates with Thrombosis in the Antiphospholipid Syndrome. Blood 2004, 104, 3598–3602. [Google Scholar] [CrossRef]
- McDonnell, T.; Wincup, C.; Buchholz, I.; Pericleous, C.; Giles, I.; Ripoll, V.; Cohen, H.; Delcea, M.; Rahman, A. The Role of Beta-2-Glycoprotein I in Health and Disease Associating Structure with Function: More than Just APS. Blood Rev. 2020, 39, 100610. [Google Scholar] [CrossRef]
- Ioannou, Y.; Zhang, J.-Y.; Passam, F.H.; Rahgozar, S.; Qi, J.C.; Giannakopoulos, B.; Qi, M.; Yu, P.; Yu, D.M.; Hogg, P.J.; et al. Naturally Occurring Free Thiols within Beta 2-Glycoprotein I in Vivo: Nitrosylation, Redox Modification by Endothelial Cells, and Regulation of Oxidative Stress-Induced Cell Injury. Blood 2010, 116, 1961–1970. [Google Scholar] [CrossRef] [PubMed]
- Ioannou, Y.; Zhang, J.-Y.; Qi, M.; Gao, L.; Qi, J.C.; Yu, D.-M.; Lau, H.; Sturgess, A.D.; Vlachoyiannopoulos, P.G.; Moutsopoulos, H.M.; et al. Novel Assays of Thrombogenic Pathogenicity in the Antiphospholipid Syndrome Based on the Detection of Molecular Oxidative Modification of the Major Autoantigen Β2-Glycoprotein I. Arthritis Rheum. 2011, 63, 2774–2782. [Google Scholar] [CrossRef] [PubMed]
- de Groot, P.G.; Meijers, J.C.M. β2-Glycoprotein I: Evolution, Structure and Function. J. Thromb. Haemost. 2011, 9, 1275–1284. [Google Scholar] [CrossRef]
- Arachchillage, D.R.J.; Laffan, M. Pathogenesis and Management of Antiphospholipid Syndrome. Br. J. Haematol. 2017, 178, 181–195. [Google Scholar] [CrossRef]
- Gropp, K.; Weber, N.; Reuter, M.; Micklisch, S.; Kopka, I.; Hallström, T.; Skerka, C. Β2-Glycoprotein I, the Major Target in Antiphospholipid Syndrome, Is a Special Human Complement Regulator. Blood 2011, 118, 2774–2783. [Google Scholar] [CrossRef]
- Agar, C.; de Groot, P.G.; Mörgelin, M.; Monk, S.D.D.C.; van Os, G.; Levels, J.H.M.; de Laat, B.; Urbanus, R.T.; Herwald, H.; van der Poll, T.; et al. Β2-Glycoprotein I: A Novel Component of Innate Immunity. Blood 2011, 117, 6939–6947. [Google Scholar] [CrossRef]
- Cockrell, E.; Espinola, R.G.; McCrae, K.R. Annexin A2: Biology and Relevance to the Antiphospholipid Syndrome. Lupus 2008, 17, 943–951. [Google Scholar] [CrossRef]
- Zhang, J.; McCrae, K.R. Annexin A2 Mediates Endothelial Cell Activation by Antiphospholipid/Anti-Beta2 Glycoprotein I Antibodies. Blood 2005, 105, 1964–1969. [Google Scholar] [CrossRef] [PubMed]
- Cervera, R.; Espinosa, G. Antiphospholipid Syndrome: Long-Time Research on Pathogenic Mechanisms Has Finally Lead to New Therapeutic Strategies. Expert Opin. Ther. Targets 2010, 14, 1279–1282. [Google Scholar] [CrossRef]
- Li, C.; Yu, J.; Liao, D.; Su, X.; Yi, X.; Yang, X.; He, J. Annexin A2: The Missing Piece in the Puzzle of Pathogen-Induced Damage. Virulence 2023, 14, 2237222. [Google Scholar] [CrossRef]
- Xie, H.; Sheng, L.; Zhou, H.; Yan, J. The Role of TLR4 in Pathophysiology of Antiphospholipid Syndrome-Associated Thrombosis and Pregnancy Morbidity. Br. J. Haematol. 2014, 164, 165–176. [Google Scholar] [CrossRef] [PubMed]
- Zheng, M.; Ambesi, A.; J. McKeown-Longo, P. Role of TLR4 Receptor Complex in the Regulation of the Innate Immune Response by Fibronectin. Cells 2020, 9, 216. [Google Scholar] [CrossRef] [PubMed]
- Meroni, P.L.; Tsokos, G.C. Editorial: Systemic Lupus Erythematosus and Antiphospholipid Syndrome. Front. Immunol. 2019, 10, 199. [Google Scholar] [CrossRef] [PubMed]
- Dunoyer-Geindre, S.; de Moerloose, P.; Galve-de Rochemonteix, B.; Reber, G.; Kruithof, E.K.O. NFkappaB Is an Essential Intermediate in the Activation of Endothelial Cells by Anti-Beta(2)-Glycoprotein 1 Antibodies. Thromb. Haemost. 2002, 88, 851–857. [Google Scholar] [CrossRef]
- Noureldine, M.H.A.; Nour-Eldine, W.; Khamashta, M.A.; Uthman, I. Insights into the Diagnosis and Pathogenesis of the Antiphospholipid Syndrome. Semin. Arthritis Rheum. 2019, 48, 860–866. [Google Scholar] [CrossRef] [PubMed]
- Canaud, G.; Bienaimé, F.; Tabarin, F.; Bataillon, G.; Seilhean, D.; Noël, L.-H.; Dragon-Durey, M.-A.; Snanoudj, R.; Friedlander, G.; Halbwachs-Mecarelli, L.; et al. Inhibition of the mTORC Pathway in the Antiphospholipid Syndrome. N. Engl. J. Med. 2014, 371, 303–312. [Google Scholar] [CrossRef]
- Sacharidou, A.; Shaul, P.W.; Mineo, C. New Insights in the Pathophysiology of Antiphospholipid Syndrome. Semin. Thromb. Hemost. 2018, 44, 475–482. [Google Scholar] [CrossRef]
- Tranquilli, A. Thrombophilia; InTech: Logan, UT, USA, 2011; ISBN 978-953-307-872-4. [Google Scholar]
- Nimpf, J.; Wurm, H.; Kostner, G.M. Beta 2-Glycoprotein-I (Apo-H) Inhibits the Release Reaction of Human Platelets during ADP-Induced Aggregation. Atherosclerosis 1987, 63, 109–114. [Google Scholar] [CrossRef]
- Marín Oyarzún, C.P.; Glembotsky, A.C.; Goette, N.P.; Lev, P.R.; De Luca, G.; Baroni Pietto, M.C.; Moiraghi, B.; Castro Ríos, M.A.; Vicente, A.; Marta, R.F.; et al. Platelet Toll-Like Receptors Mediate Thromboinflammatory Responses in Patients with Essential Thrombocythemia. Front. Immunol. 2020, 11, 705. [Google Scholar] [CrossRef]
- Huang, S.; Ninivaggi, M.; Chayoua, W.; de Laat, B. VWF, Platelets and the Antiphospholipid Syndrome. Int. J. Mol. Sci. 2021, 22, 4200. [Google Scholar] [CrossRef]
- Chayoua, W.; Nicolson, P.L.R.; Meijers, J.C.M.; Kardeby, C.; Garcia-Quintanilla, L.; Devreese, K.M.J.; de Laat, B.; Watson, S.P.; de Groot, P.G. Antiprothrombin Antibodies Induce Platelet Activation: A Possible Explanation for anti-FXa Therapy Failure in Patients with Antiphospholipid Syndrome? J. Thromb. Haemost. 2021, 19, 1776–1782. [Google Scholar] [CrossRef] [PubMed]
- Hell, L.; Lurger, K.; Mauracher, L.-M.; Grilz, E.; Reumiller, C.M.; Schmidt, G.J.; Ercan, H.; Koder, S.; Assinger, A.; Basilio, J.; et al. Altered Platelet Proteome in Lupus Anticoagulant (LA)-Positive Patients—Protein Disulfide Isomerase and NETosis as New Players in LA-Related Thrombosis. Exp. Mol. Med. 2020, 52, 66–78. [Google Scholar] [CrossRef] [PubMed]
- van Genderen, H.O.; Kenis, H.; Hofstra, L.; Narula, J.; Reutelingsperger, C.P.M. Extracellular Annexin A5: Functions of Phosphatidylserine-Binding and Two-Dimensional Crystallization. Biochim. Biophys. Acta 2008, 1783, 953–963. [Google Scholar] [CrossRef]
- Membre, A.; Wahl, D.; Latger-Cannard, V.; Max, J.-P.; Lacolley, P.; Lecompte, T.; Regnault, V. The Effect of Platelet Activation on the Hypercoagulability Induced by Murine Monoclonal Antiphospholipid Antibodies. Haematologica 2008, 93, 566–573. [Google Scholar] [CrossRef]
- Rand, J.H.; Wu, X.-X.; Quinn, A.S.; Taatjes, D.J. The Annexin A5-Mediated Pathogenic Mechanism in the Antiphospholipid Syndrome: Role in Pregnancy Losses and Thrombosis. Lupus 2010, 19, 460–469. [Google Scholar] [CrossRef]
- Arachchillage, D.R.J.; Efthymiou, M.; Mackie, I.J.; Lawrie, A.S.; Machin, S.J.; Cohen, H. Anti-Protein C Antibodies Are Associated with Resistance to Endogenous Protein C Activation and a Severe Thrombotic Phenotype in Antiphospholipid Syndrome. J. Thromb. Haemost. 2014, 12, 1801–1809. [Google Scholar] [CrossRef]
- van der Meer, J.W.M.; Simon, A. The Challenge of Autoinflammatory Syndromes: With an Emphasis on Hyper-IgD Syndrome. Rheumatology 2016, 55, ii23–ii29. [Google Scholar] [CrossRef] [PubMed]
- Ombrello, M.J. Advances in the Genetically-Complex Autoinflammatory Diseases. Semin. Immunopathol. 2015, 37, 403–406. [Google Scholar] [CrossRef] [PubMed]
- Urbanus, R.T.; de Laat, H.B.; de Groot, P.G.; Derksen, R.H.W.M. Prolonged Bleeding Time and Lupus Anticoagulant: A Second Paradox in the Antiphospholipid Syndrome. Arthritis Rheum. 2004, 50, 3605–3609. [Google Scholar] [CrossRef]
- Stallone, G.; Pontrelli, P.; Rascio, F.; Castellano, G.; Gesualdo, L.; Grandaliano, G. Coagulation and Fibrinolysis in Kidney Graft Rejection. Front. Immunol. 2020, 11, 1807. [Google Scholar] [CrossRef]
- Krone, K.A.; Allen, K.L.; McCrae, K.R. Impaired Fibrinolysis in the Antiphospholipid Syndrome. Curr. Rheumatol. Rep. 2010, 12, 53–57. [Google Scholar] [CrossRef] [PubMed]
- Sène, D.; Piette, J.-C.; Cacoub, P. Antiphospholipid Antibodies, Antiphospholipid Syndrome and Infections. Autoimmun. Rev. 2008, 7, 272–277. [Google Scholar] [CrossRef] [PubMed]
- Pengo, V.; Ruffatti, A.; Legnani, C.; Testa, S.; Fierro, T.; Marongiu, F.; De Micheli, V.; Gresele, P.; Tonello, M.; Ghirarduzzi, A.; et al. Incidence of a First Thromboembolic Event in Asymptomatic Carriers of High-Risk Antiphospholipid Antibody Profile: A Multicenter Prospective Study. Blood 2011, 118, 4714–4718. [Google Scholar] [CrossRef] [PubMed]
- Chaturvedi, S.; Braunstein, E.M.; Brodsky, R.A. Antiphospholipid Syndrome: Complement Activation, Complement Gene Mutations, and Therapeutic Implications. J. Thromb. Haemost. 2021, 19, 607–616. [Google Scholar] [CrossRef] [PubMed]
- Yalavarthi, S.; Gould, T.J.; Rao, A.N.; Mazza, L.F.; Morris, A.E.; Núñez-Álvarez, C.; Hernández-Ramírez, D.; Bockenstedt, P.L.; Liaw, P.C.; Cabral, A.R.; et al. Release of Neutrophil Extracellular Traps by Neutrophils Stimulated with Antiphospholipid Antibodies: A Newly Identified Mechanism of Thrombosis in the Antiphospholipid Syndrome. Arthritis Rheumatol. 2015, 67, 2990–3003. [Google Scholar] [CrossRef]
- Sule, G.; Kelley, W.J.; Gockman, K.; Yalavarthi, S.; Vreede, A.P.; Banka, A.L.; Bockenstedt, P.L.; Eniola-Adefeso, O.; Knight, J.S. Increased Adhesive Potential of Antiphospholipid Syndrome Neutrophils Mediated by Β2 Integrin Mac-1. Arthritis Rheumatol. 2020, 72, 114–124. [Google Scholar] [CrossRef]
- Vinuesa, C.G.; Rigby, R.J.; Yu, D. Logic and Extent of miRNA-Mediated Control of Autoimmune Gene Expression. Int. Rev. Immunol. 2009, 28, 112–138. [Google Scholar] [CrossRef]
- Perez-Sanchez, C.; Font-Ugalde, P.; Ruiz-Limon, P.; Lopez-Pedrera, C.; Castro-Villegas, M.C.; Abalos-Aguilera, M.C.; Barbarroja, N.; Arias-de la Rosa, I.; Lopez-Montilla, M.D.; Escudero-Contreras, A.; et al. Circulating microRNAs as Potential Biomarkers of Disease Activity and Structural Damage in Ankylosing Spondylitis Patients. Hum. Mol. Genet. 2018, 27, 875–890. [Google Scholar] [CrossRef]
- Juárez-Vicuña, Y.; Guzmán-Martín, C.A.; Martínez-Martínez, L.A.; Hernández-Díazcouder, A.; Huesca-Gómez, C.; Gamboa, R.; Amezcua-Guerra, L.M.; Chacon-Perez, M.; Amigo, M.C.; Sánchez-Muñoz, F. miR-19b-3p and miR-20a-5p Are Associated with the Levels of Antiphospholipid Antibodies in Patients with Antiphospholipid Syndrome. Rheumatol. Int. 2021, 41, 1329–1335. [Google Scholar] [CrossRef]
- Lambrianides, A.; Carroll, C.J.; Pierangeli, S.S.; Pericleous, C.; Branch, W.; Rice, J.; Latchman, D.S.; Townsend, P.; Isenberg, D.A.; Rahman, A.; et al. Effects of Polyclonal IgG Derived from Patients with Different Clinical Types of the Antiphospholipid Syndrome on Monocyte Signalling Pathways. J. Immunol. 2010, 184, 6622–6628. [Google Scholar] [CrossRef]
- Teruel, R.; Pérez-Sánchez, C.; Corral, J.; Herranz, M.T.; Pérez-Andreu, V.; Saiz, E.; García-Barberá, N.; Martínez-Martínez, I.; Roldán, V.; Vicente, V.; et al. Identification of miRNAs as Potential Modulators of Tissue Factor Expression in Patients with Systemic Lupus Erythematosus and Antiphospholipid Syndrome. J. Thromb. Haemost. 2011, 9, 1985–1992. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Ren, J.; Xu, N.; Zhang, J.; Geng, Q.; Cao, C.; Lee, C.; Song, J.; Li, J.; Chen, H. MicroRNA-19b Functions as Potential Anti-Thrombotic Protector in Patients with Unstable Angina by Targeting Tissue Factor. J. Mol. Cell. Cardiol. 2014, 75, 49–57. [Google Scholar] [CrossRef] [PubMed]
- Solé, C.; Royo, M.; Sandoval, S.; Moliné, T.; Cortés-Hernández, J. Small-Extracellular-Vesicle-Derived miRNA Profile Identifies miR-483-3p and miR-326 as Regulators in the Pathogenesis of Antiphospholipid Syndrome (APS). Int. J. Mol. Sci. 2023, 24, 11607. [Google Scholar] [CrossRef]
- Coenen, C.S.; Hidalgo, T.N.; Lynn, T.; Jones, D.M.; Salmon, J.E.; Chamley, L.W.; Abrahams, V.M. Antiphospholipid-Exposed Trophoblast-Derived Extracellular Vesicles Express Elevated Levels of TLR7/8-Activating microRNAs and Induce Endometrial Endothelial Activation, in Part, through TLR7. J. Reprod. Immunol. 2024, 164, 104255. [Google Scholar] [CrossRef]
- Jin, S.; Yu, C.; Yu, B. Changes of Serum IL-6, IL-10 and TNF-α Levels in Patients with Systemic Lupus Erythematosus and Their Clinical Value. Am. J. Transl. Res. 2021, 13, 2867–2874. [Google Scholar]
- Shen, H.-H.; Fan, Y.; Wang, Y.-N.; Zhao, C.-N.; Zhang, Z.-K.; Pan, H.-F.; Wu, G.-C. Elevated Circulating Interleukin-17 Levels in Patients with Systemic Lupus Erythematosus: A Meta-Analysis. Immunol. Investig. 2020, 49, 662–675. [Google Scholar] [CrossRef] [PubMed]
- Chasset, F.; Mathian, A.; Dorgham, K.; Ribi, C.; Trendelenburg, M.; Huynh-Do, U.; Roux-Lombard, P.; Courvoisier, D.S.; Amoura, Z.; Gorochov, G.; et al. Serum Interferon-α Levels and IFN Type I-Stimulated Genes Score Perform Equally to Assess Systemic Lupus Erythematosus Disease Activity. Ann. Rheum. Dis. 2022, 81, 901–903. [Google Scholar] [CrossRef] [PubMed]
- Möckel, T.; Basta, F.; Weinmann-Menke, J.; Schwarting, A. B Cell Activating Factor (BAFF): Structure, Functions, Autoimmunity and Clinical Implications in Systemic Lupus Erythematosus (SLE). Autoimmun. Rev. 2021, 20, 102736. [Google Scholar] [CrossRef]
- Popovic-Kuzmanovic, D.; Novakovic, I.; Stojanovich, L.; Aksentijevich, I.; Zogovic, N.; Tovilovic, G.; Trajkovic, V. Increased Activity of Interleukin-23/Interleukin-17 Cytokine Axis in Primary Antiphospholipid Syndrome. Immunobiology 2013, 218, 186–191. [Google Scholar] [CrossRef]
- Yelnik, C.M.; Lambert, M.; Drumez, E.; Martin, C.; Grolaux, G.; Launay, D.; Hachulla, E.; Rogeau, S.; Dubucquoi, S.; Boulanger, E.; et al. Relevance of Inflammatory and Complement Activation Biomarkers Profiling in Antiphospholipid Syndrome Patients Outside Acute Thrombosis. Clin. Exp. Rheumatol. 2023, 41, 1875–1881. [Google Scholar] [CrossRef]
- Dema, B.; Charles, N. Autoantibodies in SLE: Specificities, Isotypes and Receptors. Antibodies 2016, 5, 2. [Google Scholar] [CrossRef] [PubMed]
- Bodewes, I.L.A.; Al-Ali, S.; van Helden-Meeuwsen, C.G.; Maria, N.I.; Tarn, J.; Lendrem, D.W.; Schreurs, M.W.J.; Steenwijk, E.C.; van Daele, P.L.A.; Both, T.; et al. Systemic Interferon Type I and Type II Signatures in Primary Sjögren’s Syndrome Reveal Differences in Biological Disease Activity. Rheumatology 2018, 57, 921–930. [Google Scholar] [CrossRef] [PubMed]
- Bodewes, I.L.A.; Björk, A.; Versnel, M.A.; Wahren-Herlenius, M. Innate Immunity and Interferons in the Pathogenesis of Sjögren’s Syndrome. Rheumatology 2021, 60, 2561–2573. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.M.A.; Isaacs, J.D.; Cooles, F.A.H. Role of IFN-α in Rheumatoid Arthritis. Curr. Rheumatol. Rep. 2024, 26, 37–52. [Google Scholar] [CrossRef]
- Skaug, B.; Assassi, S. Type I Interferon Dysregulation in Systemic Sclerosis. Cytokine 2020, 132, 154635. [Google Scholar] [CrossRef]
- Pinal-Fernandez, I.; Casal-Dominguez, M.; Derfoul, A.; Pak, K.; Plotz, P.; Miller, F.W.; Milisenda, J.C.; Grau-Junyent, J.M.; Selva-O’Callaghan, A.; Paik, J.; et al. Identification of Distinctive Interferon Gene Signatures in Different Types of Myositis. Neurology 2019, 93, e1193–e1204. [Google Scholar] [CrossRef]
- Postal, M.; Vivaldo, J.F.; Fernandez-Ruiz, R.; Paredes, J.L.; Appenzeller, S.; Niewold, T.B. Type I Interferon in the Pathogenesis of Systemic Lupus Erythematosus. Curr. Opin. Immunol. 2020, 67, 87–94. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Bañuelos, E.; Goldman, D.W.; Andrade, V.; Darrah, E.; Petri, M.; Andrade, F. Uncoupling Interferons and the Interferon Signature Explains Clinical and Transcriptional Subsets in SLE. CR Med. 2024, 5, 101569. [Google Scholar] [CrossRef]
- Mathian, A.; Mouries-Martin, S.; Dorgham, K.; Devilliers, H.; Barnabei, L.; Ben Salah, E.; Cohen-Aubart, F.; Garrido Castillo, L.; Haroche, J.; Hie, M.; et al. Monitoring Disease Activity in Systemic Lupus Erythematosus with Single-Molecule Array Digital Enzyme-Linked Immunosorbent Assay Quantification of Serum Interferon-α. Arthritis Rheumatol. 2019, 71, 756–765. [Google Scholar] [CrossRef]
- Infante, B.; Mercuri, S.; Dello Strologo, A.; Franzin, R.; Catalano, V.; Troise, D.; Cataldo, E.; Pontrelli, P.; Alfieri, C.; Binda, V.; et al. Unraveling the Link between Interferon-α and Systemic Lupus Erythematosus: From the Molecular Mechanisms to Target Therapies. Int. J. Mol. Sci. 2022, 23, 15998. [Google Scholar] [CrossRef]
- Meisalu, S.; Kisand, K.; Haljasmagi, L. Ab0692 Serum Interferon A (Ifnα) Levels and Systemic Lupus Erythematosus (Sle) Disease Activity in Sle Patients in Estonia. a Prospective Cohort Study of 40 Sle Patients in Estonia. Ann. Rheum. Dis. 2023, 82, 1549–1550. [Google Scholar] [CrossRef]
- Torell, A.; Stockfelt, M.; Larsson, G.; Blennow, K.; Zetterberg, H.; Leonard, D.; Rönnblom, L.; Saleh, M.; Sjöwall, C.; Strevens, H.; et al. Low-Density Granulocytes Are Related to Shorter Pregnancy Duration but Not to Interferon Alpha Protein Blood Levels in Systemic Lupus Erythematosus. Arthritis Res. Ther. 2023, 25, 107. [Google Scholar] [CrossRef]
- Pattanaik, S.S.; Panda, A.K.; Pati, A.; Padhi, S.; Tripathy, R.; Tripathy, S.R.; Parida, M.K.; Das, B.K. Role of Interleukin-6 and Interferon-α in Systemic Lupus Erythematosus: A Case-Control Study and Meta-Analysis. Lupus 2022, 31, 1094–1103. [Google Scholar] [CrossRef]
- Cecchi, I.; Radin, M.; Rodríguez-Carrio, J.; Tambralli, A.; Knight, J.S.; Sciascia, S. Utilizing Type I Interferon Expression in the Identification of Antiphospholipid Syndrome Subsets. Expert Rev. Clin. Immunol. 2021, 17, 395–406. [Google Scholar] [CrossRef] [PubMed]
- White, W.I.; Richmond, J.M.; Psarras, A. Editorial: New Insights into Interferons and Proinflammatory Cytokines in Lupus. Front. Lupus 2024, 2, 1465771. [Google Scholar] [CrossRef]
- Palli, E.; Kravvariti, E.; Tektonidou, M.G. Type I Interferon Signature in Primary Antiphospholipid Syndrome: Clinical and Laboratory Associations. Front. Immunol. 2019, 10, 487. [Google Scholar] [CrossRef] [PubMed]
- Bernales, I.; Fullaondo, A.; Marín-Vidalled, M.J.; Ucar, E.; Martínez-Taboada, V.; López-Hoyos, M.; Zubiaga, A.M. Innate Immune Response Gene Expression Profiles Characterize Primary Antiphospholipid Syndrome. Genes Immun. 2008, 9, 38–46. [Google Scholar] [CrossRef]
- Grenn, R.C.; Yalavarthi, S.; Gandhi, A.A.; Kazzaz, N.M.; Núñez-Álvarez, C.; Hernández-Ramírez, D.; Cabral, A.R.; McCune, W.J.; Bockenstedt, P.L.; Knight, J.S. Endothelial Progenitor Dysfunction Associates with a Type I Interferon Signature in Primary Antiphospholipid Syndrome. Ann. Rheum. Dis. 2017, 76, 450–457. [Google Scholar] [CrossRef]
- van den Hoogen, L.L.; Fritsch-Stork, R.D.E.; Versnel, M.A.; Derksen, R.H.W.; van Roon, J.A.G.; Radstake, T.R.D. Monocyte Type I Interferon Signature in Antiphospholipid Syndrome Is Related to Proinflammatory Monocyte Subsets, Hydroxychloroquine and Statin Use. Ann. Rheum. Dis. 2016, 75, e81. [Google Scholar] [CrossRef]
- De Ceuninck, F.; Duguet, F.; Aussy, A.; Laigle, L.; Moingeon, P. IFN-α: A Key Therapeutic Target for Multiple Autoimmune Rheumatic Diseases. Drug Discov. Today 2021, 26, 2465–2473. [Google Scholar] [CrossRef]
- Stockfelt, M.; Torell, A.; Gunnarsson, I.; Svenungsson, E.; Zickert, A.; Majcuk Sennström, M.; Trysberg, E.; Bengtsson, A.A.; Jönsen, A.; Strevens, H.; et al. Plasma Interferon-Alpha Protein Levels during Pregnancy Are Associated with Lower Birth Weight in Systemic Lupus Erythematosus. Rheumatology 2024, keae332. [Google Scholar] [CrossRef] [PubMed]
- Fernández Matilla, M.; Grau García, E.; Fernández-Llanio Comella, N.; Chalmeta Verdejo, I.; Ivorra Cortés, J.; Castellano Cuesta, J.A.; Román Ivorra, J.A. Increased Interferon-1α, Interleukin-10 and BLyS Concentrations as Clinical Activity Biomarkers in Systemic Lupus Erythematosus. Med. Clin. 2019, 153, 225–231. [Google Scholar] [CrossRef] [PubMed]
- Nikolopoulos, D.; Loukogiannaki, C.; Sentis, G.; Garantziotis, P.; Manolakou, T.; Kapsala, N.; Nikoloudaki, M.; Pieta, A.; Flouda, S.; Parodis, I.; et al. Disentangling the Riddle of Systemic Lupus Erythematosus with Antiphospholipid Syndrome: Blood Transcriptome Analysis Reveals a Less-Pronounced IFN-Signature and Distinct Molecular Profiles in Venous versus Arterial Events. Ann. Rheum. Dis. 2024, 83, 1132–1143. [Google Scholar] [CrossRef]
- Hurst, J.; Prinz, N.; Lorenz, M.; Bauer, S.; Chapman, J.; Lackner, K.J.; von Landenberg, P. TLR7 and TLR8 Ligands and Antiphospholipid Antibodies Show Synergistic Effects on the Induction of IL-1β and Caspase-1 in Monocytes and Dendritic Cells. Immunobiology 2009, 214, 683–691. [Google Scholar] [CrossRef]
- Nikiphorou, E.; de Lusignan, S.; Mallen, C.; Khavandi, K.; Roberts, J.; Buckley, C.D.; Galloway, J.; Raza, K. Haematological Abnormalities in New-Onset Rheumatoid Arthritis and Risk of Common Infections: A Population-Based Study. Rheumatology 2020, 59, 997–1005. [Google Scholar] [CrossRef]
- Humrich, J.Y.; Riemekasten, G. Restoring Regulation—IL-2 Therapy in Systemic Lupus Erythematosus. Expert Rev. Clin. Immunol. 2016, 12, 1153–1160. [Google Scholar] [CrossRef] [PubMed]
- Swadzba, J.; Iwaniec, T.; Musial, J. Increased Level of Tumor Necrosis Factor-α in Patients with Antiphospholipid Syndrome: Marker Not Only of Inflammation but Also of the Prothrombotic State. Rheumatol. Int. 2011, 31, 307–313. [Google Scholar] [CrossRef]
- Bashlakova, N.A.; Tyabut, T.D.; Buglova, A.E. AB0048 Antiphospholipid Antibodies, Interleukin-6 and Tumor Necrosis Factor-α in Atherosclerotic Process in Patients with Rheumatoid Arthritis and Systemic Lupus Erythematosus. Ann. Rheum. Dis. 2017, 76, 1063–1064. [Google Scholar] [CrossRef]
- Winikajtis-Burzyńska, A.; Brzosko, M.; Przepiera-Będzak, H. Increased Serum Interleukin 10 Levels Are Associated with Increased Disease Activity and Increased Risk of Anti-SS-A/Ro Antibody Positivity in Patients with Systemic Lupus Erythematosus. Biomolecules 2023, 13, 974. [Google Scholar] [CrossRef]
- Benagiano, M.; Borghi, M.O.; Romagnoli, J.; Mahler, M.; Bella, C.D.; Grassi, A.; Capitani, N.; Emmi, G.; Troilo, A.; Silvestri, E.; et al. Interleukin-17/Interleukin-21 and Interferon-γ Producing T Cells Specific for Β2 Glycoprotein I in Atherosclerosis Inflammation of Systemic Lupus Erythematosus Patients with Antiphospholipid Syndrome. Haematologica 2019, 104, 2519–2527. [Google Scholar] [CrossRef]
- Farzaneh-Far, A.; Roman, M.J.; Lockshin, M.D.; Devereux, R.B.; Paget, S.A.; Crow, M.K.; Davis, A.; Sammaritano, L.; Levine, D.M.; Salmon, J.E. Relationship of Antiphospholipid Antibodies to Cardiovascular Manifestations of Systemic Lupus Erythematosus. Arthritis Rheum. 2006, 54, 3918–3925. [Google Scholar] [CrossRef] [PubMed]
- Raschi, E.; Testoni, C.; Bosisio, D.; Borghi, M.O.; Koike, T.; Mantovani, A.; Meroni, P.L. Role of the MyD88 Transduction Signaling Pathway in Endothelial Activation by Antiphospholipid Antibodies. Blood 2003, 101, 3495–3500. [Google Scholar] [CrossRef] [PubMed]
- Hezi-Yamit, A.; Wong, P.W.; Bien-Ly, N.; Komuves, L.G.; Prasad, K.S.S.; Phillips, D.R.; Sinha, U. Synergistic Induction of Tissue Factor by Coagulation Factor Xa and TNF: Evidence for Involvement of Negative Regulatory Signaling Cascades. Proc. Natl. Acad. Sci. USA 2005, 102, 12077–12082. [Google Scholar] [CrossRef] [PubMed]
- Ünlü, O.; Zuily, S.; Erkan, D. The Clinical Significance of Antiphospholipid Antibodies in Systemic Lupus Erythematosus. Eur. J. Rheumatol. 2016, 3, 75–84. [Google Scholar] [CrossRef] [PubMed]
- Pisetsky, D.S. The Role of Innate Immunity in the Induction of Autoimmunity. Autoimmun. Rev. 2008, 8, 69–72. [Google Scholar] [CrossRef]
- Muñoz, L.E.; Janko, C.; Schulze, C.; Schorn, C.; Sarter, K.; Schett, G.; Herrmann, M. Autoimmunity and Chronic Inflammation—Two Clearance-Related Steps in the Etiopathogenesis of SLE. Autoimmun. Rev. 2010, 10, 38–42. [Google Scholar] [CrossRef]
- Rönnblom, L. The Importance of the Type I Interferon System in Autoimmunity. Clin. Exp. Rheumatol. 2016, 34, 21–24. [Google Scholar]
- Mayadas, T.N.; Cullere, X.; Lowell, C.A. The Multifaceted Functions of Neutrophils. Annu. Rev. Pathol. 2014, 9, 181–218. [Google Scholar] [CrossRef]
- Humrich, J.Y.; Riemekasten, G. Low-Dose IL-2 Therapy—A Complex Scenario That Remains to Be Further Explored. Nat. Rev. Rheumatol. 2017, 13, 386. [Google Scholar] [CrossRef]
- Komai, T.; Inoue, M.; Okamura, T.; Morita, K.; Iwasaki, Y.; Sumitomo, S.; Shoda, H.; Yamamoto, K.; Fujio, K. Transforming Growth Factor-β and Interleukin-10 Synergistically Regulate Humoral Immunity via Modulating Metabolic Signals. Front. Immunol. 2018, 9, 1364. [Google Scholar] [CrossRef]
- Stark, K.; Massberg, S. Interplay between Inflammation and Thrombosis in Cardiovascular Pathology. Nat. Rev. Cardiol. 2021, 18, 666–682. [Google Scholar] [CrossRef] [PubMed]
- Marcos-Jubilar, M.; Lecumberri, R.; Páramo, J.A. Immunothrombosis: Molecular Aspects and New Therapeutic Perspectives. J. Clin. Med. 2023, 12, 1399. [Google Scholar] [CrossRef]
- Pengo, V.; Denas, G.; Zoppellaro, G.; Jose, S.P.; Hoxha, A.; Ruffatti, A.; Andreoli, L.; Tincani, A.; Cenci, C.; Prisco, D.; et al. Rivaroxaban vs Warfarin in High-Risk Patients with Antiphospholipid Syndrome. Blood 2018, 132, 1365–1371. [Google Scholar] [CrossRef]
- Gadi, I.; Fatima, S.; Elwakiel, A.; Nazir, S.; Mohanad Al-Dabet, M.; Rana, R.; Bock, F.; Manoharan, J.; Gupta, D.; Biemann, R.; et al. Different DOACs Control Inflammation in Cardiac Ischemia-Reperfusion Differently. Circ. Res. 2021, 128, 513–529. [Google Scholar] [CrossRef] [PubMed]
- Goldhaber, S.Z.; Eriksson, H.; Kakkar, A.; Schellong, S.; Feuring, M.; Fraessdorf, M.; Kreuzer, J.; Schueler, E.; Schulman, S. Efficacy of Dabigatran versus Warfarin in Patients with Acute Venous Thromboembolism in the Presence of Thrombophilia: Findings from RE-COVER®, RE-COVERTM II, and RE-MEDYTM. Vasc. Med. 2016, 21, 506–514. [Google Scholar] [CrossRef]
- Navarro, G.; Gómez-Autet, M.; Morales, P.; Rebassa, J.B.; Llinas Del Torrent, C.; Jagerovic, N.; Pardo, L.; Franco, R. Homodimerization of CB2 Cannabinoid Receptor Triggered by a Bivalent Ligand Enhances Cellular Signaling. Pharmacol. Res. 2024, 208, 107363. [Google Scholar] [CrossRef] [PubMed]
- Yun, Z.; Duan, L.; Liu, X.; Cai, Q.; Li, C. An Update on the Biologics for the Treatment of Antiphospholipid Syndrome. Front. Immunol. 2023, 14, 1145145. [Google Scholar] [CrossRef]
- Kvacskay, P.; Merkt, W.; Günther, J.; Blank, N.; Lorenz, H.-M. Obinutuzumab in Connective Tissue Diseases after Former Rituximab-Non-Response: A Case Series. Ann. Rheum. Dis. 2022, 81, 744–746. [Google Scholar] [CrossRef]
- van den Hoogen, L.L.; Palla, G.; Bekker, C.P.J.; Fritsch-Stork, R.D.E.; Radstake, T.R.D.J.; van Roon, J.A.G. Increased B-Cell Activating Factor (BAFF)/B-Lymphocyte Stimulator (BLyS) in Primary Antiphospholipid Syndrome Is Associated with Higher Adjusted Global Antiphospholipid Syndrome Scores. RMD Open 2018, 4, e000693. [Google Scholar] [CrossRef]
- Zhang, D.; Sun, F.; Ye, S. Successful Treatment of Sirolimus in a Chinese Patient with Refractory LN and APS: A Case Report. Ther. Adv. Musculoskelet. 2022, 14, 1759720X221079253. [Google Scholar] [CrossRef]
- Hu, C.; Zhang, J.; Hong, S.; Li, H.; Lu, L.; Xie, G.; Luo, W.; Du, Y.; Xie, Z.; Han, X.; et al. Oxidative Stress-Induced Aberrant Lipid Metabolism is an Important Causal Factor for Dysfunction of Immunocytes from Patients with Systemic Lupus Erythematosus. Free. Radic. Biol. Med. 2021, 163, 210–219. [Google Scholar] [CrossRef] [PubMed]
Study, Year | Disease | Cytokine | Relationship with aPL Antibodies |
---|---|---|---|
Palli et al., 2019 [98] | Primary APS | Type I IFN | Positive correlation between serum aβ2GPI antibodies and elevated IFN score |
Stockfelt et al., 2024 [103] | Pregnant women with SLE | IFN-α | Negative correlation between aPL antibodies (aβ2GPI and aCL) and IFN-α protein level in plasma |
Fernández Matilla et al., 2018 [104] | SLE | INF-α | Significant correlation between elevated levels of IFN-α and the presence of aPL antibodies |
Bashlakova et al., 2017 [110] | SLE | IL-6 | Association between aCL and aβ2GPI antibodies and IL-6 levels |
Winikajtis-Burzyńska et al., 2023 [111] | SLE | IL-6 | No relationship between high IL-6 levels and the presence of aCL and aβ2GPI antibodies |
Winikajtis-Burzyńska et al., 2023 [111] | SLE | IL-10 | No relationship between high IL-10 levels and the presence of aCL and aβ2GPI antibodies |
Fernández Matilla et al., 2018 [104] | SLE | IL-10 | No relationship between IL-10 levels and the production of antibodies |
Benagiano et al., 2019 [112] | SLE-APS | IL-17 | IL-17 production is triggered by β2GPI action on T lymphocytes from atherosclerotic plaques of SLE–APS patients |
Bashlakova et al., 2017 [110] | SLE | TNF-α | Association between aCL and aβ2GPI antibodies and TNF-α levels |
Bashlakova et al., 2017 [110] | SLE patients with carotid atherosclerosis | TNF-α | Significant association between aCL antibodies and TNF-α levels |
Farzaneh-Far et al., 2006 [113] | SLE | TNF receptor | Significantly elevated levels of TNFRp55 and TNFRp75 in aPL antibody-positive patients versus aPL antibody-negative patients |
Swadzba et al., 2011 [109] | APS | TNF-α | Elevated TNF-α levels in patients positive for LA, aCL, and aβ2GPI antibodies compared to patients without aPL antibodies |
Fernández Matilla et al., 2018 [104] | SLE | BLyS | No significant correlation between BLyS and aPL antibodies |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Richter, P.; Badescu, M.C.; Rezus, C.; Ouatu, A.; Dima, N.; Popescu, D.; Burlui, A.M.; Bratoiu, I.; Mihai, I.R.; Rezus, E. Antiphospholipid Antibodies as Key Players in Systemic Lupus Erythematosus: The Relationship with Cytokines and Immune Dysregulation. Int. J. Mol. Sci. 2024, 25, 11281. https://doi.org/10.3390/ijms252011281
Richter P, Badescu MC, Rezus C, Ouatu A, Dima N, Popescu D, Burlui AM, Bratoiu I, Mihai IR, Rezus E. Antiphospholipid Antibodies as Key Players in Systemic Lupus Erythematosus: The Relationship with Cytokines and Immune Dysregulation. International Journal of Molecular Sciences. 2024; 25(20):11281. https://doi.org/10.3390/ijms252011281
Chicago/Turabian StyleRichter, Patricia, Minerva Codruta Badescu, Ciprian Rezus, Anca Ouatu, Nicoleta Dima, Diana Popescu, Alexandra Maria Burlui, Ioana Bratoiu, Ioana Ruxandra Mihai, and Elena Rezus. 2024. "Antiphospholipid Antibodies as Key Players in Systemic Lupus Erythematosus: The Relationship with Cytokines and Immune Dysregulation" International Journal of Molecular Sciences 25, no. 20: 11281. https://doi.org/10.3390/ijms252011281
APA StyleRichter, P., Badescu, M. C., Rezus, C., Ouatu, A., Dima, N., Popescu, D., Burlui, A. M., Bratoiu, I., Mihai, I. R., & Rezus, E. (2024). Antiphospholipid Antibodies as Key Players in Systemic Lupus Erythematosus: The Relationship with Cytokines and Immune Dysregulation. International Journal of Molecular Sciences, 25(20), 11281. https://doi.org/10.3390/ijms252011281