CYP3A4*1B but Not CYP3A5*3 as Determinant of Long-Term Tacrolimus Dose Requirements in Spanish Solid Organ Transplant Patients
Abstract
:1. Introduction
2. Results
2.1. Patient Characteristics and Pharmacotherapy
2.2. Genotyping Results
3. Discussion
4. Materials and Methods
4.1. Patient Enrolment and Data Collection
4.2. Genotype Analysis
4.3. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tönshoff, B. Immunosuppressants in Organ Transplantation. Exp. Pharmacol. 2020, 261, 441–469. [Google Scholar]
- Haddad, I.; Thomas, A.; Karakattu, S.; Cornwell, K. Tacrolimus vs. Cyclosporine as Primary Maintenance Immunosuppressant for Lung Transplant Recipients: A Systematic Review and Meta-Analysis. Chest 2020, 158, A2404. [Google Scholar] [CrossRef]
- Grinyó, J.M.; Ekberg, H.; Mamelok, R.D.; Oppenheimer, F.; Sánchez-Plumed, J.; Gentil, M.A.; Hernandez, D.; Kuypers, D.R.; Brunet, M. The pharmacokinetics of mycophenolate mofetil in renal transplant recipients receiving standard-dose or low-dose cyclosporine, low-dose tacrolimus or low-dose sirolimus: The Symphony pharmacokinetic substudy. Nephrol. Dial. Transplant. 2009, 24, 2269–2276. [Google Scholar] [CrossRef]
- Thongprayoon, C.; Hansrivijit, P.; Kovvuru, K.; Kanduri, S.R.; Bathini, T.; Pivovarova, A.; Smith, J.R.; Cheungpasitporn, W. Impacts of high intra-and inter-individual variability in tacrolimus pharmacokinetics and fast tacrolimus metabolism on outcomes of solid organ transplant recipients. J. Clin. Med. 2020, 9, 2193. [Google Scholar] [CrossRef]
- Francke, M.I.; de Winter, B.C.; Elens, L.; Lloberas, N.; Hesselink, D.A. The pharmacogenetics of tacrolimus and its implications for personalized therapy in kidney transplant recipients. Expert Rev. Precis. Med. Drug. Dev. 2020, 5, 313–316. [Google Scholar] [CrossRef]
- Birdwell, K.A.; Decker, B.; Barbarino, J.M.; Peterson, J.F.; Stein, C.M.; Sadee, W.; Wang, D.; Vinks, A.A.; He, Y.; Swen, J.J.; et al. Clinical Pharmacogenetics Implementation Consortium (CPIC) guidelines for CYP3A5 genotype and tacrolimus dosing. Clin. Pharmacol. Ther. 2015, 98, 19–24. [Google Scholar] [CrossRef]
- Whirl-Carrillo, M.; McDonagh, E.M.; Hebert, J.M.; Gong, L.; Sangkuhl, K.; Thorn, C.F.; Altman, R.B.; Klein, T.E. Pharmacogenomics knowledge for personalized medicine. Clin. Pharmacol. Ther. 2012, 92, 414–417. [Google Scholar] [CrossRef]
- The International Genome Sample Resourc. 1000 Genomes Project. Available online: https://www.internationalgenome.org/ (accessed on 20 July 2024).
- Cheng, F.; Li, Q.; Wang, J.; Hu, M.; Zeng, F.; Wang, Z.; Zhang, Y. Genetic polymorphisms affecting tacrolimus metabolism and the relationship to post-transplant outcomes in kidney transplant recipients. Pharmacogenom. Pers. Med. 2021, 14, 1463–1474. [Google Scholar] [CrossRef] [PubMed]
- Pascual, T.; Apellániz-Ruiz, M.; Pernaut, C.; Cueto-Felgueroso, C.; Villalba, P.; Álvarez, C.; Manso, L.; Inglada-Pérez, L.; Robledo, M.; Rodríguez-Antona, C.; et al. Polymorphisms associated with everolimus pharmacokinetics, toxicity and survival in metastatic breast cancer. PLoS ONE 2017, 12, e0180192. [Google Scholar] [CrossRef]
- Amirimani, B.; Ning, B.; Deitz, A.C.; Weber, B.L.; Kadlubar, F.F.; Rebbeck, T.R. Increased Transcriptional Activity of the CYP3A4* 1B Promoter Variant. Environ. Mol. Mutagen. 2003, 42, 299–305. [Google Scholar] [CrossRef]
- Šimičević, L.; Canjuga, I.; Zibar, L.; Borić-Bilušić, A.; Ganoci, L.; Božina, N. Rapid clearance of tacrolimus blood concentration triggered by variant pharmacogenes. J. Clin. Pharm. Ther. 2022, 47, 1461–1465. [Google Scholar] [CrossRef] [PubMed]
- Shi, W.L.; Tang, H.L.; Zhai, S.D. Effects of the CYP3A4*1B genetic polymorphism on the pharmacokinetics of tacrolimus in adult renal transplant recipients: A meta-analysis. PLoS ONE 2015, 10, e0127995. [Google Scholar] [CrossRef] [PubMed]
- Tian, Y.; Lei, Y.; Wang, Y.; Lai, J.; Wang, J.; Xia, F. Mechanism of multidrug resistance to chemotherapy mediated by P-glycoprotein (Review). Int. J. Oncol. 2023, 63, 119. [Google Scholar] [CrossRef] [PubMed]
- Si, S.; Wang, Z.; Yang, H.; Han, Z.; Tao, J.; Chen, H.; Wang, K.; Guo, M.; Tan, R.; Wei, J.F.; et al. Impact of single nucleotide polymorphisms on P450 oxidoreductase and peroxisome proliferator-activated receptor alpha on tacrolimus pharmacokinetics in renal transplant recipients. Pharmacogenom. J. 2019, 19, 42–52. [Google Scholar] [CrossRef]
- Lamba, J.; Lamba, V.; Strom, S.; Venkataramanan, R.; Schuetz, E. Novel single nucleotide polymorphisms in the promoter and intron 1 of human pregnane X receptor/NR1I2 and their association with CYP3A4 expression. Drug Metab. Dispos. 2008, 36, 169–181. [Google Scholar] [CrossRef]
- Zhao, W.; Fakhoury, M.; Maisin, A.; Baodouin, V.; Storme, T.; Deschenes, G.; Jacqz-Agrain, E. Pharmacogenetic determinant of the drug Interaction between tacrolimus and omeprazole. Ther. Drug Monit. 2012, 34, 739–741. [Google Scholar] [CrossRef] [PubMed]
- Shariq, O.A.; Mckenzie, T.J. Obesity-related hypertension: A review of pathophysiology, management, and the role of metabolic surgery. Gland. Surgery. 2020, 9, 80–93. [Google Scholar] [CrossRef]
- Apellániz-Ruiz, M.; Inglada-Pérez, L.; Naranjo, M.E.; Sánchez, L.; Mancikova, V.; Currás-Freixes, M.; de Cubas, A.A.; Comino-Méndez, I.; Triki, S.; Rebai, A.; et al. High frequency and founder effect of the CYP3A4*20 loss-of-function allele in the Spanish population classifies CYP3A4 as a polymorphic enzyme. Pharmacogenom. J. 2015, 15, 288–292. [Google Scholar] [CrossRef]
- Khan, A.R.; Raza, A.; Firasat, S.; Abid, A. CYP3A5 gene polymorphisms and their impact on dosage and trough concentration of tacrolimus among kidney transplant patients: A systematic review and meta-analysis. Pharmacogenom. J. 2020, 20, 553–562. [Google Scholar] [CrossRef]
- Lee, D.-H.; Lee, H.; Yoon, H.-Y.; Yee, J.; Gwak, H.-S. Association of P450 Oxidoreductase Gene Polymorphism with Tacrolimus Pharmacokinetics in Renal Transplant Recipients: A Systematic Review and Meta-Analysis. Pharmaceutics 2022, 14, 261. [Google Scholar] [CrossRef]
- Li, Y.; Hu, X.; Cai, B.; Chen, J.; Bai, Y.; Tang, J.; Liao, Y.; Wang, L. Meta-analysis of the effect of MDR1 C3435 polymorphism on tacrolimus pharmacokinetics in renal transplant recipients. Transpl. Immunol. 2012, 27, 12–18. [Google Scholar] [CrossRef] [PubMed]
- Lloberas, N.; Elens, L.; Llaudó, I.; Padullés, A.; van Gelder, T.; Hesselink, D.A.; Colom, H.; Andreu, F.; Torras, J.; Bestard, O.; et al. The combination of CYP3A4*22 and CYP3A5*3 single-nucleotide polymorphisms determines tacrolimus dose requirement after kidney transplantation. Pharmacogenet. Genom. 2017, 27, 313–322. [Google Scholar] [CrossRef]
- Lu, T.; Zhu, X.; Xu, S.; Zhao, M.; Huang, X.; Wang, Z.; Zhao, L. Dosage Optimization Based on Population Pharmacokinetic Analysis of Tacrolimus in Chinese Patients with Nephrotic Syndrome. Pharm. Res. 2019, 36, 45. [Google Scholar] [CrossRef]
- Yang, S.; Jiang, H.; Li, C.; Lu, H.; Li, C.; Ye, D.; Qi, H.; Xu, W.; Bao, X.; Maseko, N.; et al. Genomewide association study identifies a novel variant associated with tacrolimus trough concentration in Chinese renal transplant recipients. Clin. Transl. Sci. 2022, 15, 2640–2651. [Google Scholar] [CrossRef]
- Hannachi, I.; Ben Fredj, N.; Chadli, Z.; Ben Fadhel, N.; Ben Romdhane, H.; Touitou, Y.; Boughattas, N.A.; Chaabane, A.; Aouam, K. Effect of CYP3A4*22 and CYP3A4*1B but not CYP3A5*3 polymorphisms on tacrolimus pharmacokinetic model in Tunisian kidney transplant. Toxicol. Appl. Pharmacol. 2020, 396, 115000. [Google Scholar] [CrossRef] [PubMed]
- Semiz, S.; Dujić, T.; Ostanek, B.; Prnjavorac, B.; Bego, T.; Malenica, M.; Mlinar, B.; Marc, J.; Causević, A. Analysis of CYP3A4*1B and CYP3A5*3 polymorphisms in population of Bosnia and Herzegovina. Med. Glas. 2011, 8, 84–89. [Google Scholar]
- Miao, J.; Jin, Y.; Marunde, R.L.; Kim, S.; Quinney, S.; Radovich, M.; Li, L.; Hall, S.D. Association of genotypes of the CYP3A cluster with midazolam disposition in vivo. Pharmacogenom. J. 2009, 9, 319–326. [Google Scholar] [CrossRef] [PubMed]
- Zeigler-Johnson, C.; Friebel, T.; Walker, A.H.; Wang, Y.; Spangler, E.; Panossian, S.; Patacsil, M.; Aplenc, R.; Wein, A.J.; Malkowicz, S.B.; et al. CYP3A4, CYP3A5, and CYP3A43 genotypes and haplotypes in the etiology and severity of prostate cancer. Cancer Res. 2004, 64, 8461–8467. [Google Scholar] [CrossRef]
- Chitnis, S.D.; Ogasawara, K.; Schniedewind, B.; Gohh, R.Y.; Christians, U.; Akhlaghi, F. Concentration of tacrolimus and major metabolites in kidney transplant recipients as a function of diabetes mellitus and cytochrome P450 3A gene polymorphism. Xenobiotica 2013, 43, 641–649. [Google Scholar] [CrossRef]
- Tavira, B.; Díaz-Corte, C.; Coronel, D.; Ortega, F.; Coto, E. Farmacogenética del tacrolimus: ¿del laboratorio al paciente? Nefrologia 2014, 34, 11–17. [Google Scholar]
- Brunet, M.; Pastor-Anglada, M. Insights into the Pharmacogenetics of Tacrolimus Pharmacokinetics and Pharmacodynamics. Pharmaceutics 2022, 14, 1755. [Google Scholar] [CrossRef] [PubMed]
- Kisor, D.F.; Bodzin, A.S. Pharmacogenomics in liver transplantation: Testing the recipient and the ex-vivo donor liver. Pharmacogenomics 2018, 19, 753–756. [Google Scholar] [CrossRef]
- Sookoian, S.; Castaño, G.O.; Burgueño, A.L.; Gianotti, T.F.; Rosselli, M.S.; Pirola, C.J. The nuclear receptor PXR gene variants are associated with liver injury in nonalcoholic fatty liver disease. Pharmacogenet. Genom. 2010, 20, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.Y.; Tsai, C.H.; Lee, Y.L.; Na Lee, L.; Hsu, C.L.; Chang, H.C.; Chen, J.M.; Hsu, C.A.; Yu, C.J.; Yang, P.C. Gender-Dimorphic Impact of PXR Genotype and Haplotype on Hepatotoxicity during Antituberculosis Treatment. Medicine 2015, 94, e982. [Google Scholar] [CrossRef]
- Xie, Y.; Xu, M.; Deng, M.; Li, Z.; Wang, P.; Ren, S.; Guo, Y.; Ma, X.; Fan, J.; Billiar, T.R.; et al. Activation of Pregnane X Receptor Sensitizes Mice to Hemorrhagic Shock-Induced Liver Injury. Hepatology 2019, 70, 995–1010. [Google Scholar] [CrossRef]
- Wang, Y.-M.; Chai, S.C.; Brewer, C.T.; Chen, T. Pregnane X receptor and drug-induced liver injury. Exp. Opin. Drug Metabol. Toxicol. 2014, 10, 1521–1532. [Google Scholar] [CrossRef] [PubMed]
- Sridharan, K.; Shah, S.; Jassim, A.; Hammad, M.; Al Gadhban, J.E.; Al Segai, O. Evaluation of Pharmacogenetics of Drug-Metabolizing Enzymes and Drug Efflux Transporter in Renal Transplants Receiving Immunosuppressants. J. Pers. Med. 2022, 12, 823. [Google Scholar] [CrossRef]
- Simon, N.; Shallat, J.; Wietzikoski, C.W.; Harrington, E.W. Optimization of Chelex 100 resin-based extraction of genomic DNA from dried blood spots. Biol. Methods Protoc. 2020, 5, bpaa009. [Google Scholar] [CrossRef]
- Wei-lin, W.; Jing, J.; Shu-sen, Z.; Li-hua, W.; Ting-bo, L.; Song-feng, Y.; Sheng, Y. Tacrolimus dose requirement in relation to donor and recipientABCB1 andCYP3A5 gene polymorphisms in Chinese liver transplant patients. Liver Transpl. 2006, 12, 775–780. [Google Scholar] [CrossRef]
- Nieuwoudt, E. Effect of Genetic Variants in Genes Encoding Two Nuclear Receptors (PXR and CAR) on Efavirenz Levels and Treatment Outcome in South African HIV-Infected Females. Master’s Thesis, Stellenbosch University, Stellenbosch, South Africa, 2014. [Google Scholar]
- Kattel, K.; Evande, R.; Tan, C.; Mondal, G.; Grem, J.L.; Mahato, R.I. Impact of CYP2C19 polymorphism on the pharmacokinetics of nelfinavir in patients with pancreatic cancer. Br. J. Clin. Pharmacol. 2015, 80, 267–275. [Google Scholar] [CrossRef]
Demographic Characteristic | Value | |
---|---|---|
Age (Years) | 51.04 (±19.26); 52 (27) | |
Sex | Male | 10 (38.5) |
Female | 16 (61.5) | |
Weight (kg) | 64.93 (±14.0); 66 (25.3) | |
BMI (kg/m2) | 23.89 (±3.8); 24.09 (7.0) | |
Transplant Type | Hepatic | 14 (53.8) |
Renal | 9 (34.6) | |
Cardiac | 2 (7.7) | |
Pulmonary | 1 (3.8) | |
Signs of Allograft Rejection | Acute | 5 (19.2) |
Chronic | 5 (19.2) | |
General | 9 (34.6) | |
Re-transplantation | 2 (7.4) |
Variable | Value | |
---|---|---|
Total Daily Dose (mg) | 3.04 (±1.55); 3 (2.0) | |
Weight-Adjusted Dose (mg/kg) | 0.049 (±0.025); 0.047 (0.026) | |
Co (ng/mL) * | 4.77 (±1.98); 4.20 (2.7) | |
Co/Dose (ng/mL/mg) * | 2.48 (±3.21); 1.40 (1.2) | |
Co/Weight-Adjusted Dose (ng/mL/mg/kg) * | 175.87 (±275.6); 83 (80.3) | |
Concomitant Therapy | Mycophenolic acid (MFA) | 13 (50) |
Corticoids | 13 (50) | |
Proton pump inhibitors (excluded rabeprazole) | 12 (44.4) | |
Antihypertensives | 10 (38.5) | |
Ursodeoxycholic acid | 4 (14.8) | |
Statins | 4 (14.8) | |
mTOR inhibitors | 1 (3.7) |
SNP (rs Number) | Genotype | Observed Frequency, N (%) |
---|---|---|
CYP3A5*3 (rs776746) | AG | 4 (16) |
GG | 22 (84) | |
CYP3A4*1B (rs2740574) | AA | 24 (92) |
AG | 2 (8) | |
CYP3A4*22 (rs35599367) | CC | 24 (92) |
CT | 2 (8) | |
CYP3A4*20 (Ins A) (rs67666821) | No Ins | 26 (100) |
POR*28 (rs1057868) | CC | 12 (46) |
CT | 12 (46) | |
TT | 2 (8) | |
ABCB1 (3435C>T) (rs1045642) | CC | 8 (30) |
CT | 13 (50) | |
TT | 5 (20) | |
ABCB1 (1236C>T) (rs1128503) | CC | 6 (23) |
CT | 16 (61) | |
TT | 4 (16) | |
ABCB1 (2677G>T/A) (rs2032582) | GG | 8 (30) |
GT/GA | 15 (57) | |
TT | 3 (13) | |
PXR (c.69789A>G) (rs7643645) | AA | 8 (30) |
AG | 12 (46) | |
GG | 6 (24) | |
PXR (c.63396C>T) (rs2472677) | CC | 6 (23) |
CT | 8 (30) | |
TT | 12 (47) | |
CYP2C19*2 (rs4244285) | GG | 18 (69) |
GA | 7 (27) | |
AA | 1 (4) | |
CYP2C19*3 (rs4986893) | GG | 26 (1) |
GA | 0 (0) | |
AA | 0 (0) | |
CYP2C19*17 (rs12248560) | CC | 19 (73) |
CT | 6 (23) | |
TT | 1 (4) |
Genotype (n) | Dose (mg) | Weight-Adjusted Dose (mg/kg) | Co/Dose (ng/mL/mg) ** | |
---|---|---|---|---|
CYP3A5*3/*3 | CYP3A4*1/*1 (22) | 2.72 (1.35) | 0.044 (0.021) | 2.88 (3.02) |
CYP3A5*3/*1 | CYP3A4*1/*1 (2) | 3.5 (0.70) | 0.047 (0.04) | - |
CYP3A4*1/*1B (2) | 5.5 (2.12) | 0.101 (0.001) | 0.72 (0.28) |
Gen | Variant | Methodology/ID Assay | Fluorophore or Primers (Endonuclease) |
---|---|---|---|
CYP3A5 (NM_000777.5) | rs776746 | rhAmp®/Hs.ADME.rs776746.C.1 | FAM: A (*1) VIC: G (*3) |
CYP3A4 (NM_001202855.3) | rs2740574 | rhAmp®/Hs.CT.rs2740574 | FAM: G (*1B) VIC: A (*1) |
CYP3A4 (NM_001202855.3) | rs35599367 | TaqMan™/C_59013445_10 | FAM: *22 VIC: *1 |
POR (NM_000941.3) | rs1057868 | rhAmp®/Hs.GT.rs1057868.T.1 | FAM: C VIC: T |
ABCB1 (NM_000927.3) | rs1045642 | rhAmp®/Hs.ADME.rs1045642.T.1 | FAM: T VIC: C |
ABCB1 (NM_000927.3) | rs1128503 | rhAmp®/Hs.ADME.rs1128503.G.11 | FAM: T VIC: C |
ABCB1 (NM_000927.3) | rs2032582 | TaqMan™/C_11711720D_40 | FAM: T VIC: G |
PXR (NM_022002.2) | rs7643645 | rhAmp®/Hs.GT.rs7643645.G.a1 | FAM: A VIC: G |
CYP2C19*2 (NM_000769.4) | rs4244285 | rhAmp®/Hs.ADME.rs4244285.A.1 | FAM: G VIC: A |
CYP2C19*17 (NM_000769.4) | rs12248560 | TaqMan™/C_469857_10 | FAM: *17 VIC: *1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Concha, J.; Sangüesa, E.; Ribate, M.P.; García, C.B. CYP3A4*1B but Not CYP3A5*3 as Determinant of Long-Term Tacrolimus Dose Requirements in Spanish Solid Organ Transplant Patients. Int. J. Mol. Sci. 2024, 25, 11327. https://doi.org/10.3390/ijms252011327
Concha J, Sangüesa E, Ribate MP, García CB. CYP3A4*1B but Not CYP3A5*3 as Determinant of Long-Term Tacrolimus Dose Requirements in Spanish Solid Organ Transplant Patients. International Journal of Molecular Sciences. 2024; 25(20):11327. https://doi.org/10.3390/ijms252011327
Chicago/Turabian StyleConcha, Julia, Estela Sangüesa, María Pilar Ribate, and Cristina B. García. 2024. "CYP3A4*1B but Not CYP3A5*3 as Determinant of Long-Term Tacrolimus Dose Requirements in Spanish Solid Organ Transplant Patients" International Journal of Molecular Sciences 25, no. 20: 11327. https://doi.org/10.3390/ijms252011327
APA StyleConcha, J., Sangüesa, E., Ribate, M. P., & García, C. B. (2024). CYP3A4*1B but Not CYP3A5*3 as Determinant of Long-Term Tacrolimus Dose Requirements in Spanish Solid Organ Transplant Patients. International Journal of Molecular Sciences, 25(20), 11327. https://doi.org/10.3390/ijms252011327