Wound Healing, Anti-Inflammatory and Anti-Oxidant Activities, and Chemical Composition of Korean Propolis from Different Sources
Abstract
:1. Introduction
2. Results and Discussion
2.1. Extract Yield
2.2. Thin-Layer Chromatography (TLC) Analysis
2.3. Chemical Composition
2.4. Antioxidant Activity
2.5. Acute Dermal Toxicity
2.6. Wound Healing Activity
2.6.1. Excision Model
Wound Contraction
Epithelialization Period (EP)
2.6.2. Incision Model
2.6.3. Estimation of Hydroxyproline Content
2.7. Anti-Inflammatory Activity
3. Materials and Methods
3.1. Cell Culture Media and Chemicals
3.2. Sample Collection
3.3. Extraction
3.4. Thin-Layer Chromatography (TLC) Analysis
3.5. Derivatization of EEP-K
3.6. GC–MS Condition
3.7. Evaluation of DPPH Radical Scavenging Activity
3.8. Cell Culture and Treatment
3.9. Measurement of Nitric Oxide (NO) Production
3.10. Reverse Transcription Polymerase Chain Reaction (RT-PCR)
3.11. Experimental Animals
3.12. Ointment Formulation
3.13. Acute Dermal Toxicity Test
3.14. Grouping and Dosing of Animals
3.15. Wound Healing Activity Tests
3.15.1. Excision Wound Healing Models
Measurement of Wound Contraction
Epithelialization Period Measurement
3.15.2. Incision Wound Model
Measurement of Tensile Strength
3.15.3. Dead Space Model
Determination of Hydroxyproline Contents
3.16. Statistical Analysis
3.17. Ethical Considerations
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Eyng, C.; Murakami, A.; Santos, T.; Silveira, T.; Pedroso, R.; Lourenço, D. Immune responses in broiler chicks fed propolis extraction residue-supplemented diets. Asian-Australas. J. Anim. Sci. 2015, 28, 135. [Google Scholar] [CrossRef] [PubMed]
- Oryan, A.; Alemzadeh, E.; Moshiri, A. Potential role of propolis in wound healing: Biological properties and therapeutic activities. Biomed. Pharmacother. 2018, 98, 469–483. [Google Scholar] [CrossRef] [PubMed]
- Abu-Seida, A.M. Effect of propolis on experimental cutaneous wound healing in dogs. Vet. Med. Int. 2015, 2015, 672643. [Google Scholar] [CrossRef] [PubMed]
- Stavrou, D. Neovascularisation in wound healing. J. Wound Care 2008, 17, 298–302. [Google Scholar] [CrossRef] [PubMed]
- Datiashvili, R.O.; Yueh, J.H. Management of complicated wounds of the extremities with scapular fascial free flaps. J. Reconstr. Microsurg. 2012, 28, 521–528. [Google Scholar] [CrossRef]
- Hasan, M.Y.; Teo, R.; Nather, A. Negative-pressure wound therapy for management of diabetic foot wounds: A review of the mechanism of action, clinical applications, and recent developments. Diabet. Foot Ankle 2015, 6, 27618. [Google Scholar] [CrossRef]
- Park, Y.K.; Ikegaki, M.; Abreu, J.A.; Alcici, N.M.F. Estudo da preparação dos extratos de própolis e suas aplicações. Food Sci. Technol. 1998, 18, 313–318. [Google Scholar] [CrossRef]
- Greenaway, W.; Scaysbrook, T.; Whatley, F. The composition and plant origins of propolis: A report of work at Oxford. Bee World 1990, 71, 107–118. [Google Scholar] [CrossRef]
- Ghisalberti, E. Propolis: A review. Bee World 1979, 60, 59–84. [Google Scholar] [CrossRef]
- Bankova, V.; Christov, R.; Popov, S.; Pureb, O.; Bocari, G. Volatile constituents of propolis. Z. Naturforsch. C 1994, 49, 6–10. [Google Scholar] [CrossRef]
- Karapetsas, A.; Voulgaridou, G.-P.; Konialis, M.; Tsochantaridis, I.; Kynigopoulos, S.; Lambropoulou, M.; Stavropoulou, M.-I.; Stathopoulou, K.; Aligiannis, N.; Bozidis, P. Propolis extracts inhibit UV-induced photodamage in human experimental in vitro skin models. Antioxidants 2019, 8, 125. [Google Scholar] [CrossRef] [PubMed]
- Nna, V.U.; Abu Bakar, A.B.; Ahmad, A.; Eleazu, C.O.; Mohamed, M. Oxidative stress, NF-κb-mediated inflammation and apoptosis in the testes of streptozotocin–induced diabetic rats: Combined protective effects of malaysian propolis and metformin. Antioxidants 2019, 8, 465. [Google Scholar] [CrossRef]
- El-Sakhawy, M.; Salama, A.; Tohamy, H.-A.S. Applications of propolis-based materials in wound healing. Arch. Dermatol. Res. 2023, 316, 61. [Google Scholar] [CrossRef] [PubMed]
- Papotti, G.; Bertelli, D.; Bortolotti, L.; Plessi, M. Chemical and functional characterization of Italian propolis obtained by different harvesting methods. J. Agric. Food Chem. 2012, 60, 2852–2862. [Google Scholar] [CrossRef]
- Aguilar-Marcelino, L.; Pineda-Alegría, J.A.; Salinas-Sánchez, D.O.; Hernández-Velázquez, V.M.; Silva-Aguayo, G.I.; Navarro-Tito, N.; Sotelo-Leyva, C. In Vitro Insecticidal Effect of Commercial Fatty Acids, β-Sitosterol, and Rutin against the Sugarcane Aphid, Melanaphis sacchari Zehntner (Hemiptera: Aphididae). J. Food Prot. 2022, 85, 671–675. [Google Scholar] [CrossRef]
- Scheller, S.; Stojko, A.; Szwarnowiecka, I.; Tustanowski, J.; Obuszko, Z. Biological properties and clinical application of propolis. VI. Investigation of the influence of ethanol extracts of propolis (EEP) on cartilaginous tissue regeneration. Arzneim.-Forsch. 1977, 27, 2138–2140. [Google Scholar]
- Stojko, A.; Scheller, S.; Szwarnowiecka, I.; Tustanowski, J.; Ostach, H.; Obuszko, Z. Biological properties and clinical application of propolis. VIII. Experimental observation on the influence of ethanol extract of propolis (EEP) on the regeneration of bone tissue. Arzneim.-Forsch. 1978, 28, 35–37. [Google Scholar]
- Sforcin, J. Propolis and the immune system: A review. J. Ethnopharmacol. 2007, 113, 1–14. [Google Scholar] [CrossRef]
- Afata, T.N.; Nemo, R.; Ishete, N.; Tucho, G.T.; Dekebo, A. Phytochemical investigation, physicochemical characterization, and antimicrobial activities of ethiopian propolis. Arab. J. Chem. 2022, 15, 103931. [Google Scholar] [CrossRef]
- Afata, T.N.; Dekebo, A. Chemical composition and antimicrobial effect of western Ethiopian propolis. Chem. Biodivers. 2023, 20, e202200922. [Google Scholar] [CrossRef]
- Bankova, V.; Christov, R.; Popov, S.; Marcucci, M.; Tsvetkova, I.; Kujumgiev, A. Antibacterial activity of essential oils from Brazilian propolis. Fitoterapia (Milano) 1999, 70, 190–193. [Google Scholar] [CrossRef]
- Ramos, I.F.d.A.S.; Biz, M.T.; Paulino, N.; Scremin, A.; Della Bona, Á.; Barletta, F.B.; Figueiredo, J.A.P.d. Histopathological analysis of corticosteroid-antibiotic preparation and propolis paste formulation as intracanal medication after pulpectomy: An in vivo study. J. Appl. Oral Sci. 2012, 20, 50–56. [Google Scholar] [CrossRef] [PubMed]
- Ayari, J.; Karoui, I.J.; Abderrabba, M. A comparative study between different Tunisian propolis essential oils and their antioxidant activities. Iran. J. Chem. Chem. Eng. (IJCCE) 2020, 39, 217–231. [Google Scholar]
- Borčić, I.; Radonić, A.; Grzunov, K. Comparison of the volatile constituents of propolis gathered in different regions of Croatia. Flavour Fragr. J. 1996, 11, 311–313. [Google Scholar] [CrossRef]
- Rivero-Cruz, J.F.; Granados-Pineda, J.; Pedraza-Chaverri, J.; Pérez-Rojas, J.M.; Kumar-Passari, A.; Diaz-Ruiz, G.; Rivero-Cruz, B.E. Phytochemical constituents, antioxidant, cytotoxic, and antimicrobial activities of the ethanolic extract of Mexican brown propolis. Antioxidants 2020, 9, 70. [Google Scholar] [CrossRef]
- Melliou, E.; Stratis, E.; Chinou, I. Volatile constituents of propolis from various regions of Greece–Antimicrobial activity. Food Chem. 2007, 103, 375–380. [Google Scholar] [CrossRef]
- Jihene, A.; Karoui, I.J.; Ameni, A.; Hammami, M.; Abderrabba, M. Volatile compounds analysis of Tunisian propolis and its antifungal activity. J. Biosci. Med. 2018, 6, 115–131. [Google Scholar] [CrossRef]
- Barbosa, M.H.; Zuffi, F.B.; Maruxo, H.B.; Jorge, L.L.R. Therapeutic properties of propolis for treatment of skin lesions. Acta Paul. Enferm. 2009, 22, 318–322. [Google Scholar] [CrossRef]
- Song, M.-Y.; Lee, D.-Y.; Kim, E.-H. Anti-inflammatory and anti-oxidative effect of Korean propolis on Helicobacter pylori-induced gastric damage in vitro. J. Microbiol. 2020, 58, 878–885. [Google Scholar] [CrossRef]
- Park, E.-H.; Kim, S.-H.; Park, S.-S. Anti-inflammatory activity of propolis. Arch. Pharm. Res. 1996, 19, 337–341. [Google Scholar] [CrossRef]
- Kim, H.N.; Park, G.H.; Park, S.B.; Kim, J.D.; Eo, H.J.; Son, H.-J.; Song, J.H.; Jeong, J.B. Sageretia thea inhibits inflammation through suppression of NF-κ B and MAPK and activation of Nrf2/HO-1 signaling pathways in RAW264.7 cells. Am. J. Chin. Med. 2019, 47, 385–403. [Google Scholar] [CrossRef] [PubMed]
- Han, S.; Sung, K.-H.; Yim, D.; Lee, S.; Cho, K.; Lee, C.-K.; Ha, N.-J.; Kim, K. Activation of murine macrophage cell line RAW 264.7 by Korean propolis. Arch. Pharm. Res. 2002, 25, 895–902. [Google Scholar] [CrossRef] [PubMed]
- Uzel, A.; Önçağ, Ö.; Çoğulu, D.; Gençay, Ö. Chemical compositions and antimicrobial activities of four different Anatolian propolis samples. Microbiol. Res. 2005, 160, 189–195. [Google Scholar] [CrossRef]
- Markiewicz-Żukowska, R.; Car, H.; Naliwajko, S.; Sawicka, D.; Szynaka, B.; Chyczewski, L.; Isidorov, V.; Borawska, M. Ethanolic extract of propolis, chrysin, CAPE inhibit human astroglia cells. Adv. Med. Sci. 2012, 57, 208–216. [Google Scholar] [CrossRef]
- Popova, M.; Silici, S.; Kaftanoglu, O.; Bankova, V. Antibacterial activity of Turkish propolis and its qualitative and quantitative chemical composition. Phytomedicine 2005, 12, 221–228. [Google Scholar] [CrossRef]
- Bankova, V.S.; de Castro, S.L.; Marcucci, M.C. Propolis: Recent advances in chemistry and plant origin. Apidologie 2000, 31, 3–15. [Google Scholar] [CrossRef]
- Marcucci, M.C. Propolis: Chemical composition, biological properties and therapeutic activity. Apidologie 1995, 26, 83–99. [Google Scholar] [CrossRef]
- Tomás-Barberán, F.A.; García-Viguera, C.; Vit-Olivier, P.; Ferreres, F.; Tomás-Lorente, F. Phytochemical evidence for the botanical origin of tropical propolis from Venezuela. Phytochemistry 1993, 34, 191–196. [Google Scholar] [CrossRef]
- Kujumgiev, A.; Tsvetkova, I.; Serkedjieva, Y.; Bankova, V.; Christov, R.; Popov, S. Antibacterial, antifungal and antiviral activity of propolis of different geographic origin. J. Ethnopharmacol. 1999, 64, 235–240. [Google Scholar] [CrossRef]
- Kurek-Górecka, A.; Keskin, Ş.; Bobis, O.; Felitti, R.; Górecki, M.; Otręba, M.; Stojko, J.; Olczyk, P.; Kolayli, S.; Rzepecka-Stojko, A.J.P. Comparison of the antioxidant activity of propolis samples from different geographical regions. Plants 2022, 11, 1203. [Google Scholar] [CrossRef]
- Mohammed, I.A.; Akhtar, M.N.; Biau, F.J.; Tor, Y.S.; Zareen, S.; Binti Shahabudin, S.; Binti Abd Hamid, H.; Ul Haq, Z.; Khalil, R.; Khalaf, R.M. Isolation of cardamonin and pinostrobin chalcone from the rhizomes of Boesenbergia rotunda (L.) Mansf. and their cytotoxic effects on H-29 and MDA-MB-231 cancer cell lines. Nat. Prod. J. 2019, 9, 341–348. [Google Scholar] [CrossRef]
- Granados-Pineda, J.; Uribe-Uribe, N.; García-López, P.; Ramos-Godinez, M.D.P.; Rivero-Cruz, J.F.; Pérez-Rojas, J.M.J.M. Effect of pinocembrin isolated from Mexican brown propolis on diabetic nephropathy. Molecules 2018, 23, 852. [Google Scholar] [CrossRef] [PubMed]
- Choi, Y.; Noh, D.; Cho, S.; Suh, H.; Kim, K.M.; Kim, J.M. Antioxidant and antimicrobial activities of propolis from several regions of Korea. LWT-Food Sci. Technol. 2006, 39, 756–761. [Google Scholar] [CrossRef]
- Choi, S.J.; Shimomura, K.; Kumazawa, S.; Ahn, M.-R. Antioxidant properties and phenolic composition of propolis from diverse geographic regions in Korea. Food Sci. Technol. Res. 2013, 19, 211–222. [Google Scholar]
- Socha, R.; Gałkowska, D.; Bugaj, M.; Juszczak, L.J.N.P.R. Phenolic composition and antioxidant activity of propolis from various regions of Poland. Nat. Prod. Res. 2015, 29, 416–422. [Google Scholar] [CrossRef]
- Deshmukh, P.T.; Fernandes, J.; Atul, A.; Toppo, E. Wound healing activity of Calotropis gigantea root bark in rats. J. Ethnopharmacol. 2009, 125, 178–181. [Google Scholar] [CrossRef]
- Reddy, J.S.; Rao, P.R.; Reddy, M.S. Wound healing effects of Heliotropium indicum, Plumbago zeylanicum and Acalypha indica in rats. J. Ethnopharmacol. 2002, 79, 249–251. [Google Scholar] [CrossRef]
- Nayak, B.; Pinto Pereira, L.M. Catharanthus roseus flower extract has wound-healing activity in Sprague Dawley rats. BMC Complement. Altern. Med. 2006, 6, 1–6. [Google Scholar] [CrossRef]
- Azeez, S.; Amudhan, S.; Adiga, S.; Rao, N.; Rao, N. Wound healing profile of Areca catechu extracts on different wound models in wistar rats. Kuwait Med. J. 2007, 39, 48–52. [Google Scholar]
- Balderas-Cordero, D.; Canales-Alvarez, O.; Sánchez-Sánchez, R.; Cabrera-Wrooman, A.; Canales-Martinez, M.M.; Rodriguez-Monroy, M.A. Anti-Inflammatory and Histological Analysis of Skin Wound Healing Through Topical Application of Mexican Propolis. Int. J. Mol. Sci. 2023, 24, 11831. [Google Scholar] [CrossRef]
- Ibrahim, N.I.; Wong, S.K.; Mohamed, I.N.; Mohamed, N.; Chin, K.-Y.; Ima-Nirwana, S.; Shuid, A.N. Wound healing properties of selected natural products. Int. J. Environ. Res. Public Health. 2018, 15, 2360. [Google Scholar] [CrossRef] [PubMed]
- Iyyam Pillai, S.; Palsamy, P.; Subramanian, S.; Kandaswamy, M. Wound healing properties of Indian propolis studied on excision wound-induced rats. Pharm. Biol. 2010, 48, 1198–1206. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Pi, A.; Yan, L.; Li, J.; Nan, S.; Zhang, J.; Hao, Y. Research progress on therapeutic effect and mechanism of propolis on wound healing. Evid. Based Complement. Altern. Med. 2022, 2022, 5798941. [Google Scholar] [CrossRef] [PubMed]
- Conceição, M.; Gushiken, L.F.S.; Aldana-Mejía, J.A.; Tanimoto, M.H.; Ferreira, M.V.d.S.; Alves, A.C.M.; Miyashita, M.N.; Bastos, J.K.; Beserra, F.P.; Pellizzon, C.H. Histological, immunohistochemical and antioxidant analysis of skin wound healing influenced by the topical application of Brazilian red propolis. Antioxidants 2022, 11, 2188. [Google Scholar] [CrossRef] [PubMed]
- Barroso, P.R.; Lopes-Rocha, R.; Pereira, E.M.F.; Marinho, S.A.; de Miranda, J.L.; Lima, N.L.; Verli, F.D. Effect of propolis on mast cells in wound healing. Inflammopharmacology 2012, 20, 289–294. [Google Scholar] [CrossRef]
- Cho, M.S.; Park, W.S.; Jung, W.-K.; Qian, Z.-j.; Lee, D.-S.; Choi, J.-S.; Lee, D.-Y.; Park, S.-G.; Seo, S.-K.; Kim, H.-J. Caffeic acid phenethyl ester promotes anti-inflammatory effects by inhibiting MAPK and NF-κB signaling in activated HMC-1 human mast cells. Pharm. Biol. 2014, 52, 926–932. [Google Scholar] [CrossRef]
- Nader, M.A. Caffeic acid phenethyl ester attenuates IgE-induced immediate allergic reaction. Inflammopharmacology 2013, 21, 169–176. [Google Scholar] [CrossRef]
- Scortichini, M.; Rossi, M.P. Preliminary in vitro evaluation of the antimicrobial activity of terpenes and terpenoids towards Erwinia amylovora (Burrill) Winslow et al. J. Appl. Bacteriol. 1991, 71, 109–112. [Google Scholar] [CrossRef]
- Nakamura, R.; Nakamura, R.; Watanabe, K.; Oka, K.; Ohta, S.; Mishima, S.; Teshima, R. Effects of propolis from different areas on mast cell degranulation and identification of the effective components in propolis. Int. Immunopharmacol. 2010, 10, 1107–1112. [Google Scholar] [CrossRef]
- Bae, Y.; Lee, S.; Kim, S.-H. Chrysin suppresses mast cell-mediated allergic inflammation: Involvement of calcium, caspase-1 and nuclear factor-κB. Toxicol. Appl. Pharmacol. 2011, 254, 56–64. [Google Scholar] [CrossRef]
- Carvalho, M.T.; Araújo-Filho, H.G.; Barreto, A.S.; Quintans-Júnior, L.J.; Quintans, J.S.; Barreto, R.S. Wound healing properties of flavonoids: A systematic review highlighting the mechanisms of action. Phytomedicine 2021, 90, 153636. [Google Scholar] [CrossRef] [PubMed]
- Zulkefli, N.; Che Zahari, C.N.M.; Sayuti, N.H.; Kamarudin, A.A.; Saad, N.; Hamezah, H.S.; Bunawan, H.; Baharum, S.N.; Mediani, A.; Ahmed, Q.U. Flavonoids as potential wound-healing molecules: Emphasis on pathways perspective. Int. J. Mol. Sci. 2023, 24, 4607. [Google Scholar] [CrossRef] [PubMed]
- Mazzotta, S.; Governa, P.; Borgonetti, V.; Marcolongo, P.; Nanni, C.; Gamberucci, A.; Manetti, F.; Pessina, F.; Carullo, G.; Brizzi, A. Pinocembrin and its linolenoyl ester derivative induce wound healing activity in HaCaT cell line potentially involving a GPR120/FFA4 mediated pathway. Bioorg. Chem. 2021, 108, 104657. [Google Scholar] [CrossRef] [PubMed]
- Mohammadi, Z.; Sharif Zak, M.; Majdi, H.; Mostafavi, E.; Barati, M.; Lotfimehr, H.; Ghaseminasab, K.; Pazoki-Toroudi, H.; Webster, T.J.; Akbarzadeh, A. The effect of chrysin–curcumin-loaded nanofibres on the wound-healing process in male rats. Artif. Cells Nanomed. Biotechnol. 2019, 47, 1642–1652. [Google Scholar] [CrossRef]
- Lopez-Jornet, P.; Camacho-Alonso, F.; Gómez-Garcia, F.; Molina Minano, F.; Canas, X.; Serafín, A.; Castillo, J.; Vicente-Ortega, V. Effects of potassium apigenin and verbena extract on the wound healing process of SKH-1 mouse skin. Int. Wound J. 2014, 11, 489–495. [Google Scholar] [CrossRef]
- Kurek-Górecka, A.; Górecki, M.; Rzepecka-Stojko, A.; Balwierz, R.; Stojko, J. Bee products in dermatology and skin care. Molecules 2020, 25, 556. [Google Scholar] [CrossRef]
- Kalogeropoulos, N.; Konteles, S.J.; Troullidou, E.; Mourtzinos, I.; Karathanos, V.T. Chemical composition, antioxidant activity and antimicrobial properties of propolis extracts from Greece and Cyprus. Food Chem. 2009, 116, 452–461. [Google Scholar] [CrossRef]
- Fabris, S.; Bertelle, M.; Astafyeva, O.; Gregoris, E.; Zangrando, R.; Gambaro, A.; Lima, G.P.P.; Stevanato, R. Antioxidant properties and chemical composition relationship of Europeans and Brazilians propolis. Pharmacol. Pharm. 2013, 4, 46–51. [Google Scholar] [CrossRef]
- Vargas-Sánchez, R.; Mendoza-Wilson, A.; Torrescano-Urrutia, G.; Sánchez-Escalante, A. Antiradical potential of phenolic compounds fingerprints of propolis extracts: DFT approach. Comput. Theor. Chem. 2015, 1066, 7–13. [Google Scholar] [CrossRef]
- Rasul, A.; Millimouno, F.M.; Ali Eltayb, W.; Ali, M.; Li, J.; Li, X. Pinocembrin: A novel natural compound with versatile pharmacological and biological activities. BioMed Res. Int. 2013, 2013, 379850. [Google Scholar] [CrossRef]
- Carballo-Villalobos, A.; González-Trujano, M.; López-Muñoz, F. Evidence of mechanism of action of anti-inflammatory/antinociceptive activities of acacetin. Eur. J. Pain. 2014, 18, 396–405. [Google Scholar] [CrossRef] [PubMed]
- Fan, R.; Pan, T.; Zhu, A.-L.; Zhang, M.-H. Anti-inflammatory and anti-arthritic properties of naringenin via attenuation of NF-κB and activation of the heme oxygenase (HO)-1/related factor 2 pathway. Pharmacol. Rep. 2017, 69, 1021–1029. [Google Scholar] [CrossRef] [PubMed]
- Nishimura, F.d.C.Y.; De Almeida, A.C.; Ratti, B.A.; Ueda-Nakamura, T.; Nakamura, C.V.; Ximenes, V.F.; Silva, S.d.O. Antioxidant effects of quercetin and naringenin are associated with impaired neutrophil microbicidal activity. Evid. Based Complement. Altern. Med. 2013, 2013, 795916. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Liu, S. Bioactivity of naringin and related mechanisms. Die Pharmazie-Int. J. Pharm. Sci. 2021, 76, 359–363. [Google Scholar]
- Guzelmeric, E.; Yuksel, P.I.; Yaman, B.K.; Sipahi, H.; Celik, C.; Kırmızıbekmez, H.; Aydın, A.; Yesilada, E.J.J.o.P.; Analysis, B. Comparison of antioxidant and anti-inflammatory activity profiles of various chemically characterized Turkish propolis sub-types: Which propolis type is a promising source for pharmaceutical product development? J. Pharm. Biomed. Anal. 2021, 203, 114196. [Google Scholar] [CrossRef]
- Pearce, F.L.; Befus, A.D.; Bienenstock, J.J.J.o.A.; Immunology, C. Mucosal mast cells: III. Effect of quercetin and other flavonoids on antigen-induced histamine secretion from rat intestinal mast cells. J. Allergy Clin. Immunol. 1984, 73, 819–823. [Google Scholar] [CrossRef]
- Funakoshi-Tago, M.; Okamoto, K.; Izumi, R.; Tago, K.; Yanagisawa, K.; Narukawa, Y.; Kiuchi, F.; Kasahara, T.; Tamura, H.J.I.i. Anti-inflammatory activity of flavonoids in Nepalese propolis is attributed to inhibition of the IL-33 signaling pathway. Int. Immunopharmacol. 2015, 25, 189–198. [Google Scholar] [CrossRef]
- Cho, H.; Yun, C.-W.; Park, W.-K.; Kong, J.-Y.; Kim, K.S.; Park, Y.; Lee, S.; Kim, B.-K.J.P.R. Modulation of the activity of pro-inflammatory enzymes, COX-2 and iNOS, by chrysin derivatives. Pharmacol. Res. 2004, 49, 37–43. [Google Scholar] [CrossRef]
- Bruno, A.; Siena, L.; Gerbino, S.; Ferraro, M.; Chanez, P.; Giammanco, M.; Gjomarkaj, M.; Pace, E.J.E.J.o.C. Apigenin affects leptin/leptin receptor pathway and induces cell apoptosis in lung adenocarcinoma cell line. Eur. J. Cancer 2011, 47, 2042–2051. [Google Scholar] [CrossRef]
- Ginwala, R.; Bhavsar, R.; Chigbu, D.G.I.; Jain, P.; Khan, Z.K.J.A. Potential role of flavonoids in treating chronic inflammatory diseases with a special focus on the anti-inflammatory activity of apigenin. Antioxidants 2019, 8, 35. [Google Scholar] [CrossRef]
- Lin, C.-T.; Senthil Kumar, K.J.; Tseng, Y.-H.; Wang, Z.-J.; Pan, M.-Y.; Xiao, J.-H.; Chien, S.-C.; Wang, S.-Y. Anti-inflammatory activity of Flavokawain B from Alpinia pricei Hayata. J. Agric. Food Chem. 2009, 57, 6060–6065. [Google Scholar] [CrossRef] [PubMed]
- Musadji, N.Y.; Geffroy-Rodier, C. Simple derivatization–gas chromatography–mass spectrometry for fatty acids profiling in soil dissolved organic matter. Molecules 2020, 25, 5278. [Google Scholar] [CrossRef] [PubMed]
- Xue, H.-J.; Wei, J.-N.; Magalhães, S.; Zhang, B.; Song, K.-Q.; Liu, J.; Li, W.-Z.; Yang, X.-K. Contact pheromones of 2 sympatric beetles are modified by the host plant and affect mate choice. Behav. Ecol. 2016, 27, 895–902. [Google Scholar] [CrossRef]
- Bayne, K. Revised guide for the care and use of laboratory animals available. American Physiological Society. Physiologist 1996, 39, 199. [Google Scholar]
- Tallo, D. The british national formulary. Nurs. Stand. (2014+) 2016, 31, 64. [Google Scholar] [CrossRef]
- Masson-Meyers, D.S.; Andrade, T.A.; Caetano, G.F.; Guimaraes, F.R.; Leite, M.N.; Leite, S.N.; Frade, M.A.C. Experimental models and methods for cutaneous wound healing assessment. Int. J. Exp. Pathol. 2020, 101, 21–37. [Google Scholar] [CrossRef]
- Hanbisa, S.; Tadesse, W.T.; Abula, T. Evaluation of wound healing activity of 80% Methanol stem-bark extract and Solvent fractions of prunus africana (Hook. f.) kalkman (Rosaceae) in mice. J. Exp. Pharmacol. 2023, 15, 349–365. [Google Scholar] [CrossRef]
- Yiblet, T.G.; Tsegaw, A.; Ahmed, N.; Dagnew, S.B.; Tadesse, T.Y.; Kifle, Z.D. Evaluation of wound healing activity of 80% methanol root crude extract and solvent fractions of Stephania abyssinica (Dill. & A. Rich.) Walp.(Menispermaceae) in Mice. J. Exp. Pharmacol. 2022, 14, 255–273. [Google Scholar]
- Re, N.; Ma, L. The determination of hydroxyproline. J. Biol. Chem. 1950, 184, 299–306. [Google Scholar]
- Teshome, N.; Degu, A.; Ashenafi, E.; Ayele, E.; Abebe, A. Evaluation of wound healing and anti-inflammatory activity of hydroalcoholic leaf extract of Clematis simensis fresen (ranunculaceae). Clin. Cosmet. Investig. Dermatol. 2022, 15, 1883–1897. [Google Scholar] [CrossRef]
Compound i | RT (min) | RI ii | A | GM | GF |
---|---|---|---|---|---|
3-Methoxy-2-methyl-1-butene | 3.433 | 600 | 0.3 | ||
Benzene, chloro- | 5.029 | 600 | 0.5 | 0.2 | |
2-Methyl-2,4-dimethoxybutane | 5.755 | 699 | 0.4 | ||
3-Methoxy-3-methylbutanol | 6.475 | 600 | 0.3 | ||
Pentanoic acid, 4-oxo-, methyl ester | 8.124 | 600 | 0.8 | ||
Butanedioic acid, dimethyl ester | 9.244 | 600 | 0.2 | ||
Benzyl alcohol | 9.333 | 599 | 9.8 | 3.4 | 4.3 |
Benzoic acid, methyl ester | 10.86 | 701 | 2.1 | 0.2 | 0.3 |
Phenylethyl alcohol | 11.295 | 599 | 1.8 | 1.9 | 1.2 |
3-Acetoxy-3-hydroxypropionic acid, methyl ester | 11.512 | 599 | 0.3 | ||
Montanol | 12.231 | 2100 | 0.5 | ||
Methyl salicylate | 13.277 | 800 | 0.2 | ||
9-Methoxybicyclo[6.1.0]nona-2,4,6-triene | 15.028 | 999 | 4.4 | 1.9 | |
Benzenepropanoic acid, methyl ester | 15.191 | 999 | 0.4 | 0.3 | |
Decanoic acid, methyl ester | 16.291 | 1100 | 0.3 | 0.5 | |
2-Propenoic acid, 3-phenyl-, methyl ester | 17.696 | 1001 | 0.8 | 2 | 0.8 |
γ-Selinene | 19.916 | 1501 | 0.3 | ||
1-Naphthalenol, 1,2,3,4-tetrahydro-, acetate | 20.066 | 1000 | 0.7 | ||
Dodecanoic acid, methyl ester | 20.575 | 1299 | 0.4 | ||
Nonanedioic acid, dimethyl ester | 20.996 | 1099 | 0.2 | ||
2-Quinolinecarbohydrazide | 23.602 | 1000 | 1.4 | ||
α-Gurjunene | 23.121 | 1499 | 0.4 | 0.3 | |
Methyl p-methoxycinnamate, cis | 23.521 | 1100 | 0.9 | 0.4 | 0.3 |
2-(3,4-Dihydronaphthalen-1-yl)acetic acid | 23.603 | 1200 | 2.8 | 0.4 | |
Methyl tetradecanoate | 24.431 | 1501 | 0.3 | ||
2′,4′-Dihydroxyacetophenone oxime | 24.763 | 801 | 0.3 | ||
Methyl p-coumarate | 24.831 | 1001 | 2.1 | 0.5 | 1.8 |
9H-Carbazole, 9-methyl- | 25.524 | 1300 | 0.2 | ||
1,2-Dimethoxy-4-(1,2-dimethoxyethyl)benzene | 25.531 | 1200 | 0.3 | ||
Methyl ferulate | 26.393 | 1101 | 4.7 | 2 | 2.4 |
2,4-Dimethoxycinnamic acid | 26.848 | 1099 | 2.7 | 1.2 | 2.5 |
Methyl 3,4-dimethoxycinnamate | 27.126 | 1099 | 7.8 | 3.9 | 4.4 |
Hexadecanoic acid, methyl ester | 27.927 | 1700 | 1.7 | 1.8 | 7.5 |
Benzothiophene-3-carbonitrole, 4,5,6,7-tetrahydro-2-(4-methoxycarbonylbenzylidenamino)- | 28.599 | 1999 | 2.0 | 0.8 | 1.1 |
9,12-Octadecadienoic acid (Z,Z)-, methyl ester | 30.595 | 1899 | 0.9 | ||
9-Octadecenoic acid, methyl ester, (E)- | 30.704 | 1899 | 2.7 | 2.5 | 7.82 |
11-Octadecenoic acid, methyl ester, (Z)- | 30.792 | 1899 | 0.7 | ||
Methyl stearate | 31.111 | 1900 | 0.3 | 0.2 | 0.9 |
9-Hexadecenoic acid, methyl ester, (Z)- | 31.213 | 1700 | 0.3 | 1.1 | |
2-Propenoic acid, 3-phenyl-, 2-phenylethyl ester | 32.027 | 1701 | 1.7 | ||
Eicosane | 33.663 | 2000 | 0.2 | 0.5 | |
Acridin-9-amine, 1,2,3,4-tetrahydro-5,8-dimethyl- | 33.724 | 1501 | 5.5 | ||
Hexadecanoic acid, 14-methyl-, methyl ester | 34.037 | 1699 | 0.3 | 0.7 | 0.6 |
1-Ethyl-3-(hexahydroazepin-2-ylidene)-2-indolinone | 34.091 | 2199 | 0.5 | ||
Methyl dehydroabietate | 34.2 | 2099 | 0.7 | ||
1,2,4-Methenocyclobut[cd]inden-3(1H)-one, octahydro- | 34.206 | 1099 | 0.7 | ||
3-Heptanone, 5-hydroxy-1,7-diphenyl- | 34.383 | 1900 | 0.5 | ||
Benzene, 3-hexenyl- | 34.39 | 1200 | 3.6 | ||
Pinostrobin chalcone | 35.021 | 1600 | 2.9 | 10.7 | 2.7 |
Heneicosanoic acid, methyl ester | 35.428 | 2201 | 0.3 | 0.2 | |
Benzene, 1,2,3-trimethoxy-5-methyl- | 35.734 | 999 | 0.6 | ||
Androsta-1,4-diene-3,17-dione | 36.107 | 1900 | 0.6 | ||
Pinocembrin | 36.243 | 1500 | 17.7 | 14.1 | 12 |
Phenol, 3-pentadecyl- | 36.44 | 2100 | 1.2 | 1.5 | 0.9 |
Docosanoic acid, methyl ester | 37.003 | 2299 | 1.3 | 2.2 | 2.4 |
3-Methyldiphenylamine | 37.282 | 1299 | 3.2 | 0.7 | |
Benzenamine, 3,5-dimethoxy- | 37.356 | 799 | 0.6 | ||
2-Naphthalenecarbonitrile | 37.363 | 1099 | 0.6 | ||
1-Methyl-6-oxo-1,6-dihydro-3-pyridinecarboxylic acid | 37.934 | 700 | 4.4 | 4.8 | |
2,4,5-Trihydroxyphenyl-p-chlorobenzylketone | 37.94 | 1400 | 3.9 | ||
5-hydroxy-7-methoxyflavone | 38.035 | 1600 | 5.4 | 5 | 3.3 |
4H-3,1-Benzoxazin-4-one, 6,7-dimethoxy-2-(4-methoxyphenoxymethyl- | 38.252 | 1800 | 0.5 | ||
2H-1-Benzopyran, 2,2-diphenyl- | 38.64 | 2099 | 0.3 | ||
Coumaran-5-ol-3-one, 2-[4-hydroxy-3-methoxybenzylidene]- | 38.741 | 1599 | 0.9 | 0.7 | |
3,3-Diphenyl-1-indanone | 38.748 | 2099 | 0.7 | ||
Chrysin | 39.862 | 1499 | 5.2 | 6.8 | 6.7 |
Sarothrin | 40.14 | 999 | 3.9 | 1.2 | |
Hexadecanoic acid, 3-hydroxy-, methyl ester | 40.276 | 1700 | 0.5 | 1 | |
[1,2,4]Triazolo[1,5-a]pyrimidine-6-carboxylic acid, 4,7-dihydro-7-imino-, ethyl ester | 40.466 | 1000 | 0.5 | ||
1(2H)-Naphthalenone, 3,4-dihydro-2-(1-naphthalenylmethylene)- | 40.758 | 2100 | 1.1 | 0.7 | |
Apigenin | 41.077 | 1500 | 5.8 | 5.3 | 5.8 |
Tetracosanoic acid, methyl ester | 41.389 | 2499 | 1.7 | 2.5 | 5.2 |
Total | 99.9 | 98.9 | 94.9 |
Wound Area in mm2 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Group | 2 | 4 | 6 | 8 | 10 | 12 | 14 | 16 | 18 | 20 |
SO | 312.24 ± 1.42 | 281.15 ± 2.18 | 243.32 ± 1.19 | 193.16 ± 3.46 | 142.23 ± 2.66 | 98.20 ± 6.27 | 65.24 ± 2.93 | 39.24 ± 1.18 | 23.22 ± 2.15 | 11.27 ± 0.68 |
5% AP | 306.16 ± 3.24 | 277.13 ± 3.17 | 228.23 ± 6.24 | 158.14 ± 4.56 a1 | 111.44 ± 3.18 a1 | 76.86 ± 2.46 a1 | 46.08 ± 2.86 a1 | 31.14 ± 2.86 | 19.71 ± 1.28 | 8.80 ± 1.14 |
10% AP | 308.60 ± 3.18 | 272.16 ± 3.72 | 221.23 ± 9.06 | 146.55 ± 3.88 a2 | 92.44 ± 4.28 a2 | 56.82 ± 2.13 a2 | 34.19 ± 1.30 a1 | 25.46 ± 1.63 a2 | 14.22 ± 1.55 | 5.32 ± 1.46 |
5% GFP | 302.86 ± 4.19 | 264.43 ± 6.58 a2 | 218.88 ± 4.14 a1 b2 | 131.77 ± 2.34 a2b2c1 | 82.42 ± 9.80 a3b2c1 | 42.63 ± 2.36 a2b1c1 | 29.37 ± 1.21 a2b3c32 | 18.33 ± 2.84 a3b3c3 | 7.66 ± 3.45 a2b3c2 | 0 a3b2c3 |
10% GFP | 298.66 ± 2.33 | 254.15 ± 3.5 a2 | 203.54 ± 2.19 a1b2 | 116.31 ± 9.13 a1b2c1 | 62.69 ± 7.5 a3b2c3 | 34.65 ± 3.36 a3b2c1 | 23.43 ± 2.64 a3b3c3 | 14.56 ± 0.96 a3b2c2 | 3.66 ± 2.44 a3b3c3 | 0 a3b3c3 |
5% GMP | 300.82 ± 1.66 | 263.22 ± 1.11 a2b2 | 188.90 ± 4.75 a3b2c2 | 102.18 ± 4.44 a3b1c2 | 61.25 ± 2.26 a2b1c1 | 32.98 ± 6.12 a3b1c1 | 19.33 ± 1.67 a2b3c3 | 11.46 ± 2.68 a3b3c3 | 1.92 ± 0.98 a3b2c3 | 0 a3b3c3 |
10% GMP | 296.16 ± 4.48 | 255.75 ± 1.88 a1b1 | 170.44 ± 6.43 a1b3c3 | 96.14 ± 8.82 a2b3c3 | 57.32 ± 4.37 a3b3c3 | 28.33 ± 3.64 a3b3c3 | 17.55 ± 2.12 a3b3c3 | 7.98 ± 1.78 a2b3c3 | 0 a3b3c3 | - |
0.2% NF | 297.86 ± 2.16 | 249.90 ± 3.13 a2b2 | 166.22 ± 1.52 a2b3c2 | 89.08 ± 2.5 a2b3c3 | 54.54 ± 2.66 a3b3c3 | 26.21 ± 1.84 a3b3c3 | 14.48 ± 2.64 a3b3c3 | 2.31 ± 2.42 a3b3c3 | 0 a3b3c3 | - |
Wound Closure in % | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Group | 2 | 4 | 6 | 8 | 10 | 12 | 14 | 16 | 18 | 20 |
SO | 3.92 | 11.01 | 23.06 | 38.92 | 55.02 | 68.95 | 79.37 | 87.59 | 92.67 | 96.44 |
5% AP | 2.00 | 11.3 | 26.95 | 49.39 | 64.33 | 75.4 | 85.15 | 90.03 | 93.69 | 97.18 |
10% AP | 2.53 | 14.04 | 30.13 | 53.71 | 70.8 | 82.05 | 89.02 | 91.51 | 95.51 | 98.32 |
5% GFP | 2.09 | 14.51 | 29.23 | 57.4 | 73.53 | 85.99 | 90.50 | 94.07 | 97.52 | 100.00 |
10% GFP | 3.1 | 17.54 | 34.29 | 62.26 | 79.66 | 88.47 | 92.40 | 95.28 | 98.81 | 100.00 |
5% GMP | 2.17 | 14.52 | 38.57 | 66.77 | 80.08 | 89.27 | 93.71 | 96.27 | 98.38 | 100.00 |
10% GMP | 3.42 | 16.6 | 44.42 | 68.65 | 81.31 | 90.66 | 94.28 | 97.34 | 100.00 | |
0.2% NF | 4.64 | 20 | 46.79 | 71.49 | 82.54 | 91.69 | 95.36 | 98.91 | 100.00 |
Group | Epithelization Period (Days) |
---|---|
SO | 19.15 ± 0.44 |
5% AP | 18.73 ± 0.53 |
10% AP | 18.32 ± 0.29 |
5% GFP | 16.43 ± 0.12 a1 |
10% GFP | 16 ± 0.18 a2b2c1 |
5% GMP | 16.43 ± 0.22 a3b1 |
10% GMP | 15.11 ± 0.44 a3b3c2 |
0.2% NF | 14.92 ± 0.64 a3b3c2 |
Group | Tensile Strength (g) | % Tensile Strength |
---|---|---|
Untreated control | 178.18 ± 6.55 | - |
SO | 206.56 ± 7.75 | 21.54 |
5% AP | 295.14 ± 3.54 a1 | 42.89 |
10% AP | 304.66 ± 9.12 a2 | 47.49 |
5% GFP | 311.14 ± 4.33 a3b2c3 | 50.63 |
10% GFP | 321.92 ± 8.7 a2b3c2 | 55.85 |
5% GMP | 334.26 ± 7.79 a3b3c3 | 61.82 |
10% GMP | 338.13 ± 3.48 a3b3c3 | 63.82 |
0.2% NF | 352.76 ± 5.66 a3b3c3 | 70.75 |
Group | Hydroxyproline Content (µg/15 mg of Tissues) |
---|---|
SO | 4.72 ± 0.16 |
5% AP | 7.09 ± 0.25 a3 |
10% AP | 9.15 ± 0.18 a3 |
5% GFP | 7.99 ± 0.24 a3b1c2 |
10% GFP | 9.03 ± 0.63 a2b1c1 |
5% GMP | 7.81 ± 0.47 a2b3c2 |
10% GMP | 9.42 ± 0.39 a3b2c2 |
0.2% NF | 9.89 ± 0.41 a3b2c3 |
Ingredients | Master Formula (in g) | Reduced Formula (in g) |
---|---|---|
Wool fat | 50 | 5 |
Hard paraffin | 50 | 5 |
Cetylstearyl alcohol | 50 | 5 |
White soft paraffin | 850 | 85 |
Total | 1000 | 100 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dekebo, A.; Geba, C.; Bisrat, D.; Jeong, J.B.; Jung, C. Wound Healing, Anti-Inflammatory and Anti-Oxidant Activities, and Chemical Composition of Korean Propolis from Different Sources. Int. J. Mol. Sci. 2024, 25, 11352. https://doi.org/10.3390/ijms252111352
Dekebo A, Geba C, Bisrat D, Jeong JB, Jung C. Wound Healing, Anti-Inflammatory and Anti-Oxidant Activities, and Chemical Composition of Korean Propolis from Different Sources. International Journal of Molecular Sciences. 2024; 25(21):11352. https://doi.org/10.3390/ijms252111352
Chicago/Turabian StyleDekebo, Aman, Chalshisa Geba, Daniel Bisrat, Jin Boo Jeong, and Chuleui Jung. 2024. "Wound Healing, Anti-Inflammatory and Anti-Oxidant Activities, and Chemical Composition of Korean Propolis from Different Sources" International Journal of Molecular Sciences 25, no. 21: 11352. https://doi.org/10.3390/ijms252111352
APA StyleDekebo, A., Geba, C., Bisrat, D., Jeong, J. B., & Jung, C. (2024). Wound Healing, Anti-Inflammatory and Anti-Oxidant Activities, and Chemical Composition of Korean Propolis from Different Sources. International Journal of Molecular Sciences, 25(21), 11352. https://doi.org/10.3390/ijms252111352