Adunctin E from Conamomum rubidum Induces Apoptosis in Lung Cancer via HSP90AA1 Modulation: A Network Pharmacology and In Vitro Study
Abstract
:1. Introduction
2. Results
2.1. Pharmacokinetic Parameters and Target Identification of AE in NSCLC1
2.2. Construction of PPI Network and Enrichment Analyses of GO, KEGG and Reactome Pathways
2.3. Potential Target Identification
2.4. Molecular Docking and Molecular Dynamic Analysis of AE Target Interactions
2.5. In Vitro Apoptosis-Inducing Effect of AE on Nsclc
2.6. AE Downregulates HSP90AA1 Expression
3. Discussion
4. Materials and Methods
4.1. Chemicals and Reagents
4.2. Identification of the Targets of AE and Nsclc-Related Genes
4.3. Construction of the Protein–Protein Interaction Network
4.4. Bioinformatic Analyses of Gene Ontology (Go), and Kyoto Encyclopedia of Genes and Genomes (Kegg), and Reactome Pathways
4.5. Molecular Docking and Dynamics
4.6. Gene Expression Datasets and Differential Expression Analysis
4.7. Survival Analysis
4.8. Cell Culture
4.9. Cytotoxicity Assay
4.10. Apoptosis Assay
4.11. Immunoblot Analysis
4.12. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Siegel, R.L.; Giaquinto, A.N.; Jemal, A. Cancer statistics, 2024. CA Cancer J. Clin. 2024, 74, 12–49. [Google Scholar] [PubMed]
- Nicholson, A.G.; Tsao, M.S.; Beasley, M.B.; Borczuk, A.C.; Brambilla, E.; Cooper, W.A.; Dacic, S.; Jain, D.; Kerr, K.M.; Lantuejoul, S.; et al. The 2021 WHO classification of lung tumors: Impact of advances since 2015. J. Thorac. Oncol. 2022, 17, 362–387. [Google Scholar] [CrossRef] [PubMed]
- Schwendenwein, A.; Megyesfalvi, Z.; Barany, N.; Valko, Z.; Bugyik, E.; Lang, C.; Ferencz, B.; Paku, S.; Lantos, A.; Fillinger, J.; et al. Molecular profiles of small cell lung cancer subtypes: Therapeutic implications. Mol. Ther. Oncolytics 2021, 20, 470–483. [Google Scholar] [CrossRef] [PubMed]
- Walters, S.; Maringe, C.; Coleman, M.P.; Peake, M.D.; Butler, J.; Young, N.; Bergström, S.; Hanna, L.; Jakobsen, E.; Kölbeck, K.; et al. Lung cancer survival and stage at diagnosis in Australia, Canada, Denmark, Norway, Sweden and the UK: A population-based study, 2004–2007. Thorax 2013, 68, 551–564. [Google Scholar] [CrossRef] [PubMed]
- Bironzo, P.; Di Maio, M. A review of guidelines for lung cancer. J. Thorac. Dis. 2018, 10, S1556–S1563. [Google Scholar] [CrossRef] [PubMed]
- Schoenfeld, A.J.; Antonia, S.J.; Awad, M.M.; Felip, E.; Gainor, J.; Gettinger, S.N.; Hodi, F.S.; Johnson, M.L.; Leighl, N.B.; Lovly, C.M.; et al. Clinical definition of acquired resistance to immunotherapy in patients with metastatic non-small-cell lung cancer. Ann. Oncol. 2021, 32, 1597–1607. [Google Scholar]
- Liu, W.J.; Du, Y.; Wen, R.; Yang, M.; Xu, J. Drug resistance to targeted therapeutic strategies in non-small cell lung cancer. Pharmacol. Ther. 2020, 206, 107438. [Google Scholar]
- Suda, K.; Mitsudomi, T.; Shintani, Y.; Okami, J.; Ito, H.; Ohtsuka, T.; Toyooka, S.; Mori, T.; Watanabe, S.I.; Asamura, H.; et al. Clinical Impacts of EGFR Mutation Status: Analysis of 5780 Surgically Resected Lung Cancer Cases. Ann. Thorac. Surg. 2021, 111, 269–276. [Google Scholar]
- Nguyen, D.D.; Nguyen-Ngoc, H.; Tran-Trung, H.; Nguyen, D.K.; Nguyen, L.T.T. Limonene and eucalyptol rich essential oils with their antimicrobial activity from the leaves and rhizomes of Conamomum vietnamense N.S. Lý & T.S. Hoang (Zingiberaceae). Pharmacia 2023, 70, 91–96. [Google Scholar]
- Cai, R.; Yue, X.; Wang, Y.; Yang, Y.; Sun, D.; Li, H.; Chen, L. Chemistry and bioactivity of plants from the genus Amomum. J. Ethnopharmacol. 2021, 281, 114563. [Google Scholar] [CrossRef]
- Van, H. Chemical constituents and biological activities of essential oils of Amomum genus (Zingiberaceae). Asian Pac. J. Trop. Biomed. 2021, 11, 519–526. [Google Scholar] [CrossRef]
- Huong, L.T.; Huong, T.T.; Bich, N.T.; Ogunwande, I.A. Chemical compositions, larvicidal and antimicrobial activities of Zingiber castaneum (Škorničk. & Q.B. Nguyễn) and Zingiber nitens (M.F. Newman) essential oils. Braz. J. Pharm. Sci. 2022, 58, e200204. [Google Scholar]
- Hoang, H.N.T.; Vo, H.Q.; Nguyen, L.T.K.; Thi-Tran, L.T.; Nguyen, H.T.; Pham, T.V.; Le, H.T.; Canh Le, C.V.; Nguyen, B.C.; Ho, D.V. Conamonin A and dihydrochalcones from the whole plants of Conamomum rubidum (Lamxay & N.S.Lý) Škorničk. & A.D. Poulsen showing anti-inflammatory and cytotoxic activities. Nat. Prod. Res. 2024, 1–6. [Google Scholar] [CrossRef]
- Singharajkomron, N.; Yodsurang, V.; Seephan, S.; Kungsukool, S.; Petchjorm, S.; Maneeganjanasing, N.; Promboon, W.; Dangwilailuck, W.; Pongrakhananon, V. Evaluating the expression and prognostic value of genes encoding microtubule-associated proteins in lung cancer. Int. J. Mol. Sci. 2022, 23, 14724. [Google Scholar] [CrossRef]
- Li, K.; Du, Y.; Li, L.; Wei, D.Q. Bioinformatics approaches for anti-cancer drug discovery. Curr. Drug Targets 2019, 21, 3–17. [Google Scholar]
- Poornima, P.; Kumar, J.D.; Zhao, Q.; Blunder, M.; Efferth, T. Network pharmacology of cancer: From understanding of complex interactomes to the design of multi-target specific therapeutics from nature. Pharmacol. Res. 2016, 111, 290–302. [Google Scholar] [CrossRef]
- Iksen, I.; Witayateeraporn, W.; Wirojwongchai, T.; Suraphan, C.; Pornputtapong, N.; Singharajkomron, N.; Nguyen, H.M.; Pongrakhananon, V. Identifying molecular targets of Aspiletrein-derived steroidal saponins in lung cancer using network pharmacology and molecular docking-based assessments. Sci. Rep. 2023, 13, 1545. [Google Scholar] [PubMed]
- Krzywik, J.; Mozga, W.; Aminpour, M.; Janczak, J.; Maj, E.; Wietrzyk, J.; Tuszyński, J.A.; Huczyński, A. Synthesis, biological evaluation and molecular docking studies of new amides of 4-chlorothiocolchicine as anticancer agents. Bioorg. Chem. 2020, 97, 103664. [Google Scholar]
- Arjmand, B.; Hamidpour, S.K.; Alavi-Moghadam, S.; Yavari, H.; Shahbazbadr, A.; Tavirani, M.R.; Gilany, K.; Larijani, B. Molecular docking as a therapeutic approach for targeting cancer stem cell metabolic processes. Front. Pharmacol. 2022, 13, 768556. [Google Scholar]
- Wilding, J.L.; Bodmer, W.F. Cancer cell lines for drug discovery and development. Cancer Res. 2014, 74, 2377–2384. [Google Scholar] [CrossRef]
- Hopkins, A.L. Network pharmacology: The next paradigm in drug discovery. Nat. Chem. Biol. 2008, 4, 682–690. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Yang, L.; Yang, L.; He, C.; He, Y.; Chen, L.; Dong, Q.; Zhang, H.; Chen, S.; Li, P. Network pharmacology: A bright guiding light on the way to explore the personalized precise medication of traditional Chinese medicine. Chin. Med. 2023, 18, 146. [Google Scholar] [PubMed]
- Hanahan, D. Hallmarks of cancer: New dimensions. Cancer Discov. 2022, 12, 31–46. [Google Scholar]
- Elmore, S. Apoptosis: A review of programmed cell death. Toxicol. Pathol. 2007, 35, 495–516. [Google Scholar] [CrossRef]
- Voss, A.K.; Strasser, A. The essentials of developmental apoptosis. F1000Research 2020, 9, 148. [Google Scholar] [CrossRef]
- Chaudhry, G.E.S.; Md Akim, A.; Sung, Y.Y.; Sifzizul, T.M.T. Cancer and apoptosis: The apoptotic activity of plant and marine natural products and their potential as targeted cancer therapeutics. Front. Pharmacol. 2022, 13, 842376. [Google Scholar]
- Neophytou, C.M.; Trougakos, I.P.; Erin, N.; Papageorgis, P. Apoptosis deregulation and the development of cancer multi-drug resistance. Cancers 2021, 13, 4363. [Google Scholar] [CrossRef]
- Huang, J.Q.; Li, H.F.; Zhu, J.; Song, J.W.; Zhang, X.B.; Gong, P.; Liu, Q.Y.; Zhou, C.H.; Wang, L.; Gong, L.Y. SRPK1/AKT axis promotes oxaliplatin-induced anti-apoptosis via NF-κB activation in colon cancer. J. Transl. Med. 2021, 19, 280. [Google Scholar] [CrossRef]
- Chen, S.; Bie, M.; Wang, X.; Fan, M.; Chen, B.; Shi, Q.; Jiang, Y. PGRN exacerbates the progression of non-small cell lung cancer via PI3K/AKT/Bcl-2 antiapoptotic signaling. Genes Dis. 2022, 9, 1650–1661. [Google Scholar] [CrossRef]
- Peng, C.; Zhao, F.; Li, H.; Li, L.; Yang, Y.; Liu, F. HSP90 mediates the connection of multiple programmed cell death in diseases. Cell Death Dis. 2022, 13, 929. [Google Scholar] [CrossRef]
- Wang, J.; Cui, S.; Zhang, X.; Wu, Y.; Tang, H. High expression of heat shock protein 90 is associated with tumor aggressiveness and poor prognosis in patients with advanced gastric cancer. PLoS ONE 2013, 8, e62876. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Zhang, Z.; Huang, Y.; Wei, W.; Ning, S.; Li, J.; Liang, X.; Liu, K.; Zhang, L. Plasma HSP90AA1 predicts the risk of breast cancer onset and distant metastasis. Front. Cell Dev. Biol. 2021, 9, 639596. [Google Scholar] [CrossRef] [PubMed]
- Liu, K.; Kang, M.; Li, J.; Qin, W.; Wang, R. Prognostic value of the mRNA expression of members of the HSP90 family in non-small cell lung cancer. Exp. Ther. Med. 2019, 17, 2657. [Google Scholar] [CrossRef] [PubMed]
- Niu, M.; Zhang, B.; Li, L.; Su, Z.; Pu, W.; Zhao, C.; Wei, L.; Lian, P.; Lu, R.; Wang, R. Targeting HSP90 inhibits proliferation and induces apoptosis through AKT1/ERK pathway in lung cancer. Front. Pharmacol. 2022, 12, 724192. [Google Scholar] [CrossRef]
- Basso, A.D.; Solit, D.B.; Chiosis, G.; Giri, B.; Tsichlis, P.; Rosen, N. Akt forms an intracellular complex with heat shock protein 90 (Hsp90) and Cdc37 and is destabilized by inhibitors of Hsp90 function. J. Biol. Chem. 2002, 277, 39858–39866. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharyya, N.; Gupta, S.; Sharma, S.; Soni, A.; Bagabir, S.A.; Bhattacharyya, M.; Mukherjee, A.; Almalki, A.H.; Alkhanani, M.F.; Haque, S.; et al. CDK1 and HSP90AA1 appear as the novel regulatory genes in non-small cell lung cancer: A bioinformatics approach. J. Pers. Med. 2022, 12, 393. [Google Scholar] [CrossRef]
- Mori, M.; Hitora, T.; Nakamura, O.; Yamagami, Y.; Horie, R.; Nishimura, H.; Yamamoto, T. Hsp90 inhibitor induces autophagy and apoptosis in osteosarcoma cells. Int. J. Oncol. 2015, 46, 47. [Google Scholar] [CrossRef]
- Xie, M.; Yu, T.; Jing, X.; Ma, L.; Fan, Y.; Yang, F.; Ma, P.; Jiang, H.; Wu, X.; Shu, Y.; et al. Exosomal circSHKBP1 promotes gastric cancer progression via regulating the miR-582-3p/HUR/VEGF axis and suppressing HSP90 degradation. Mol. Cancer 2020, 19, 112. [Google Scholar] [CrossRef]
- Miricescu, D.; Totan, A.; Stanescu-Spinu, I.I.; Badoiu, S.C.; Stefani, C.; Greabu, M. PI3K/AKT/mTOR signaling pathway in breast cancer: From molecular landscape to clinical aspects. Int. J. Mol. Sci. 2021, 22, 173. [Google Scholar]
- Pires, D.E.V.; Blundell, T.L.; Ascher, D.B. pkCSM: Predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures. J. Med. Chem. 2015, 58, 4066–4072. [Google Scholar]
- Daina, A.; Michielin, O.; Zoete, V. SwissTargetPrediction: Updated data and new features for efficient prediction of protein targets of small molecules. Nucleic Acids Res. 2019, 47, W357–W3664. [Google Scholar] [CrossRef] [PubMed]
- Keiser, M.J.; Roth, B.L.; Armbruster, B.N.; Ernsberger, P.; Irwin, J.J.; Shoichet, B.K. Relating protein pharmacology by ligand chemistry. Nat. Biotechnol. 2007, 25, 197–206. [Google Scholar] [CrossRef] [PubMed]
- Safran, M.; Dalah, I.; Alexander, J.; Rosen, N.; Iny Stein, T.; Shmoish, M.; Nativ, N.; Bahir, I.; Doniger, T.; Krug, H.; et al. GeneCards Version 3: The human gene integrator. Database 2010, 2010, baq020. [Google Scholar] [CrossRef] [PubMed]
- Amberger, J.S.; Bocchini, C.A.; Scott, A.F.; Hamosh, A. OMIM.org: Leveraging knowledge across phenotype-gene relationships. Nucleic Acids Res. 2019, 47, D1038–D1043. [Google Scholar]
- Queralt-Rosinach, N.; Piñero, J.; Bravo, À.; Sanz, F.; Furlong, L.I. DisGeNET-RDF: Harnessing the innovative power of the Semantic Web to explore the genetic basis of diseases. Bioinformatics 2016, 32, 2236–2238. [Google Scholar] [CrossRef]
- Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. 2003, 13, 2498–2504. [Google Scholar] [CrossRef]
- Venny. An Interactive Tool for Comparing Lists with Venn’s Diagrams. Available online: https://bioinfogp.cnb.csic.es/tools/venny/index.html (accessed on 8 April 2024).
- Szklarczyk, D.; Gable, A.L.; Lyon, D.; Junge, A.; Wyder, S.; Huerta-Cepas, J.; Simonovic, M.; Doncheva, N.T.; Morris, J.H.; Bork, P.; et al. STRING v11: Protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2019, 47, D607–D613. [Google Scholar]
- Chin, C.H.; Chen, S.H.; Wu, H.H.; Ho, C.W.; Ko, M.T.; Lin, C.Y. cytoHubba: Identifying hub objects and sub-networks from complex interactome. BMC Syst. Biol. 2014, 8 (Suppl. S4), S11. [Google Scholar] [CrossRef]
- Ashburner, M.; Ball, C.A.; Blake, J.A.; Botstein, D.; Butler, H.; Cherry, J.M.; Davis, A.P.; Dolinski, K.; Dwight, S.S.; Eppig, J.T.; et al. Gene ontology: Tool for the unification of biology. The Gene Ontology Consortium. Nat. Genet. 2000, 25, 25–29. [Google Scholar] [CrossRef]
- Kanehisa, M.; Goto, S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000, 28, 27–30. [Google Scholar] [CrossRef]
- Ito, K.; Murphy, D. Application of ggplot2 to pharmacometric graphics. CPT Pharmacomet. Syst. Pharmacol. 2013, 2, e79. [Google Scholar] [CrossRef] [PubMed]
- Milacic, M.; Beavers, D.; Conley, P.; Gong, C.; Gillespie, M.; Griss, J.; Haw, R.; Jassal, B.; Matthews, L.; May, B.; et al. The reactome pathway knowledgebase 2024. Nucleic Acids Res. 2024, 52, D672–D678. [Google Scholar] [CrossRef] [PubMed]
- RStudio. RStudio: Integrated Development for R. Available online: http://www.rstudio.com (accessed on 8 April 2024).
- Edgar, R.; Domrachev, M.; Lash, A.E. Gene expression omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res. 2002, 30, 207–210. [Google Scholar] [CrossRef] [PubMed]
Pathways | Targets |
---|---|
Signal transduction | HDAC7, DD4, MAPK1, HDAC5, CTSD, MMP7, ITGAV, CCNE1, PIK3CA, CDK2, PAK1, NOS3, PLK1, HDAC3, ADORA2B, F2, PAK2, GSK3B, PDE2A, HSP90AA1, PDE5A, RET, RAC1, DRD2, HSP90AB1, PIK3CD, CDK1, MAPK8, RXRA, HDAC2, NTRK1, JAK3, CCKBR, ITGB3, ADORA2A, JAK1 |
Signaling by receptor tyrosine kinases | MAPK1, CTSD, ITGAV, PIK3CA, PAK1, NOS3, HDAC3, PAK2, HSP90AA1, RAC1, HDAC2, NTRK1, JAK3, ITGB3, ADORA2A |
Degradation of the extracellular matrix | CTSD, MMP7, MMP13, CAPN2, PRSS1, MMP1, CTSB, CAPN1, CAPNS1 |
TP53 regulates transcription of cell cycle genes | AURKA, CCNB1, CCNE1, CDK2, CDK1, CCNE2 |
MAPK family signaling cascades | MAPK1, PIK3CA, PAK1, PAK2, RET, RAC1, CDK1, JAK3, ITGB3, JAK1 |
Apoptosis | HSP90AA1, MAPK1, PAK2, TLR4, MAPK8, DAPK1, DAPK3, DAPK2 |
Cell cycle | MAPK1, AURKA, CCNB1, CCNE1, CDK2, PLK1, GSK3B, HSP90AA1, HSP90AB1, CDK1, CCNE2 |
PI3K/AKT signaling in cancer | PIK3CA, GSK3B, RAC1, PIK3CD, NTRK1 |
Targets | PDB | Binding Energy (kcal/mol) | Ligand Efficiency (kcal/mol per Heavy Atom) | Number of Interactions | |||
---|---|---|---|---|---|---|---|
Hydrogen | van der Waals | Hydrophobic | Electrostatic | ||||
HSP90AA1 | 4BQG | −10.1 | 0.32 | - | 12 | 9 | - |
MAPK1 (ERK2) | 1WZY | −7.7 | 0.24 | 1 | 11 | 11 | - |
PIK3CA | 6DGT | −8.1 | 0.25 | 2 | 7 | 3 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iksen, I.; Singharajkomron, N.; Nguyen, H.M.; Hoang, H.N.T.; Ho, D.V.; Pongrakhananon, V. Adunctin E from Conamomum rubidum Induces Apoptosis in Lung Cancer via HSP90AA1 Modulation: A Network Pharmacology and In Vitro Study. Int. J. Mol. Sci. 2024, 25, 11368. https://doi.org/10.3390/ijms252111368
Iksen I, Singharajkomron N, Nguyen HM, Hoang HNT, Ho DV, Pongrakhananon V. Adunctin E from Conamomum rubidum Induces Apoptosis in Lung Cancer via HSP90AA1 Modulation: A Network Pharmacology and In Vitro Study. International Journal of Molecular Sciences. 2024; 25(21):11368. https://doi.org/10.3390/ijms252111368
Chicago/Turabian StyleIksen, Iksen, Natsaranyatron Singharajkomron, Hien Minh Nguyen, Hanh Nhu Thi Hoang, Duc Viet Ho, and Varisa Pongrakhananon. 2024. "Adunctin E from Conamomum rubidum Induces Apoptosis in Lung Cancer via HSP90AA1 Modulation: A Network Pharmacology and In Vitro Study" International Journal of Molecular Sciences 25, no. 21: 11368. https://doi.org/10.3390/ijms252111368
APA StyleIksen, I., Singharajkomron, N., Nguyen, H. M., Hoang, H. N. T., Ho, D. V., & Pongrakhananon, V. (2024). Adunctin E from Conamomum rubidum Induces Apoptosis in Lung Cancer via HSP90AA1 Modulation: A Network Pharmacology and In Vitro Study. International Journal of Molecular Sciences, 25(21), 11368. https://doi.org/10.3390/ijms252111368