Recent Progress on Plant Apomixis for Genetic Improvement
Abstract
:1. Introduction
2. Classification of Asexual Reproduction
2.1. Diplospory
2.2. Apospory
2.3. Adventitious Embryony
2.4. Parthenogenesis
2.4.1. Gynogenesis
2.4.2. Androgenesis
3. Progress of Apomixis-Related Genes
3.1. DYAD/SWITCH1 (SWI1)
3.2. MiMe
3.3. CENH3
3.3.1. Tagged CENH3 Variants
3.3.2. Untagged CENH3 Knockouts
3.3.3. Orthologous CENH3 Introgression Lines
3.3.4. In Vivo CENH3-RNAi Line
3.3.5. In Vivo Chemical Treatment Lines
3.4. MATL/PLA1/NLD
3.5. BABY BOOM 1 (BBM1)
3.6. DMP
3.7. PAR
3.8. RWP
4. Main Factors Affecting Apomixis
4.1. Differential Gene Expression
4.2. Epigenetics
4.3. Hormones
4.4. Plant Genomic Evolution
5. Application of Apomixis in Sexually Reproducing Plants
5.1. Haploid Induction Line
5.2. Applications of Apomictic Genes
5.3. HI-Edit
5.4. Other Applications of Natural Apomixis
6. Prospects and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Conner, J.A.; Mookkan, M.; Huo, H.; Chae, K.; Ozias-Akins, P. A parthenogenesis gene of apomict origin elicits embryo formation from unfertilized eggs in a sexual plant. Proc. Natl. Acad. Sci. USA 2015, 112, 11205–11210. [Google Scholar] [CrossRef] [PubMed]
- Koltunow, A.M.; Grossniklaus, U. Apomixis: A Developmental Perspective. Annu. Rev. Plant Biol. 2003, 54, 547–574. [Google Scholar] [CrossRef] [PubMed]
- Hand, M.L.; Koltunow, A.M.G. The Genetic Control of Apomixis: Asexual Seed Formation. Genetics 2014, 197, 441–450. [Google Scholar] [CrossRef] [PubMed]
- Hand, M.L.; Vit, P.; Krahulcová, A.; Johnson, S.D.; Oelkers, K.; Siddons, H.; Chrtek, J.; Fehrer, J.; Koltunow, A.M.G. Evolution of apomixis loci in Pilosella and Hieracium (Asteraceae) inferred from the conservation of apomixis-linked markers in natural and experimental populations. Heredity 2015, 114, 17–26. [Google Scholar] [CrossRef]
- Tucker, M.R.; Okada, T.; Johnson, S.D.; Takaiwa, F.; Koltunow, A.M.G. Sporophytic ovule tissues modulate the initiation and progression of apomixis in Hieracium. J. Exp. Bot. 2012, 63, 3229–3241. [Google Scholar] [CrossRef]
- Hofmann, N.R. Apomixis and Gene Expression in Boechera. Plant Cell 2010, 22, 539. [Google Scholar] [CrossRef]
- Albertini, E.; Marconi, G.; Reale, L.; Barcaccia, G.; Porceddu, A.; Ferranti, F.; Falcinelli, M. SERK and APOSTART. Candidate genes for apomixis in Poa pratensis. Plant Physiol. 2005, 138, 2185–2199. [Google Scholar] [CrossRef]
- Sharma, R.; Geeta, R.; Bhat, V. Asynchronous male/female gametophyte development in facultative apomictic plants of Cenchrus ciliaris (Poaceae). S. Afr. J. Bot. 2014, 91, 19–31. [Google Scholar] [CrossRef]
- Whitton, J.; Dlugosch, K.M.; Sears, C.J. Molecular and morphological evidence for and against gene flow in sympatric apo-micts of the North American Crepis agamic complex (Asteraceae). Botany 2008, 86, 877–885. [Google Scholar] [CrossRef]
- Mendes-Rodrigues, C.; Oliveira, P.E. Polyembryony in Melastomataceae from Brazilian Cerrado: Multiple embryos in a small world. Plant Biol. 2012, 14, 845–853. [Google Scholar] [CrossRef]
- Maia, F.R.; Varassin, I.G.; Goldenberg, R. Apomixis does not affect visitation to flowers of Melastomataceae, but pollen sterility does. Plant Biol. 2015, 18, 132–138. [Google Scholar] [CrossRef]
- Burgess, M.B.; Cushman, K.R.; Doucette, E.T.; Talent, N.; Frye, C.T.; Campbell, C.S. Effects of apomixis and polyploidy on diversification and geographic distribution in Amelanchier (Rosaceae). Am. J. Bot. 2014, 101, 1375–1387. [Google Scholar] [CrossRef]
- Dobeš, C.; Lückl, A.; Kausche, L.; Scheffknecht, S.; Prohaska, D.; Sykora, C.; Paule, J. Parallel origins of apomixis in two di-verged evolutionary lineages in tribe Potentilleae (Rosaceae). Bot. J. Linn. Soc. 2015, 177, 214–229. [Google Scholar] [CrossRef]
- Savidan, Y. Apomixis: Genetics and Breeding. In Plant Breeding Reviews; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2010; Volume 18. [Google Scholar]
- Koltunow, A.M. Apomixis: Embryo sacs and embryos formed without meiosis or fertilization in ovules. Plant Cell 1993, 5, 1425–1437. [Google Scholar] [CrossRef] [PubMed]
- Conner, J.A.; Ozias-Akins, P. Apomixis: Engineering the Ability to Harness Hybrid Vigor in Crop Plants. Methods Mol. Biol. 2017, 1669, 17–34. [Google Scholar]
- Kumlehn, J. Embryogenesis and plant regeneration from isolated wheat zygotes. Methods Mol. Biol. 2016, 1359, 503–514. [Google Scholar]
- Vijverberg, K.; Ozias-Akins, P.; Schranz, M.E. Identifying and Engineering Genes for Parthenogenesis in Plants. Front. Plant Sci. 2019, 10, 128. [Google Scholar] [CrossRef]
- Blasco, M.; Badenes, M.L.; Naval, M.d.M. Induced parthenogenesis by gamma-irradiated pollen in loquat for haploid production. Breed. Sci. 2016, 66, 606–612. [Google Scholar] [CrossRef]
- Kalinowska, K.; Chamas, S.; Unkel, K.; Demidov, D.; Lermontova, I.; Dresselhaus, T.; Kumlehn, J.; Dunemann, F.; Houben, A. State-of-the-art and novel developments of in vivo haploid technologies. Theor. Appl. Genet. 2018, 132, 593–605. [Google Scholar] [CrossRef]
- Portemer, V.; Renne, C.; Guillebaux, A.; Mercier, R. Large genetic screens for gynogenesis and androgenesis haploid inducers in Arabidopsis thaliana failed to identify mutants. Front. Plant Sci. 2015, 6, 147. [Google Scholar] [CrossRef]
- Dong, Y.-Q.; Zhao, W.-X.; Li, X.-H.; Liu, X.-C.; Gao, N.-N.; Huang, J.-H.; Wang, W.-Y.; Xu, X.-L.; Tang, Z.-H. Androgenesis, gynogenesis, and parthenogenesis haploids in cucurbit species. Plant Cell Rep. 2016, 35, 1991–2019. [Google Scholar] [CrossRef]
- Ahmadi, B.; Ebrahimzadeh, H. In vitro androgenesis: Spontaneous vs. artificial genome doubling and characterization of regenerants. Plant Cell Rep. 2020, 39, 299–316. [Google Scholar] [CrossRef] [PubMed]
- Santra, M.; Wang, H.; Seifert, S.; Haley, S. Doubled haploid laboratory protocol for wheat using wheat–Maize wide hybridi-zation. Methods Mol. Biol. 2017, 1679, 235–249. [Google Scholar] [PubMed]
- Schmid, M.W.; Schmidt, A.; Grossniklaus, U. The female gametophyte: An emerging model for cell type-specific systems biology in plant development. Front. Plant Sci. 2015, 6, 907. [Google Scholar] [CrossRef] [PubMed]
- Ravi, M.; Marimuthu, M.P.A.; Siddiqi, I. Gamete formation without meiosis in Arabidopsis. Nature 2008, 451, 1121–1124. [Google Scholar] [CrossRef]
- D’Erfurth, I.; Jolivet, S.; Froger, N.; Catrice, O.; Novatchkova, M.; Mercier, R. Turning Meiosis into Mitosis. PLoS Biol. 2009, 7, e1000124. [Google Scholar] [CrossRef]
- Nonomura, K.I.; Morohoshi, A.; Nakano, M.; Eiguchi, M.; Miyao, A.; Hirochika, H.; Kurataa, N. A germ cell-specific gene of the ARGONAUTE family is essential for the progression of premeiotic mitosis and meiosis during sporogenesis in rice. Plant Cell 2007, 19, 2583–2594. [Google Scholar] [CrossRef]
- Mieulet, D.; Jolivet, S.; Rivard, M.; Cromer, L.; Vernet, A.; Mayonove, P.; Pereira, L.; Droc, G.; Courtois, B.; Guiderdoni, E.; et al. Turning rice meiosis into mitosis. Cell Res. 2016, 26, 1242–1254. [Google Scholar] [CrossRef]
- Cromer, L.; Heyman, J.; Touati, S.; Harashima, H.; Araou, E.; Girard, C.; Horlow, C.; Wassmann, K.; Schnittger, A.; de Veylder, L.; et al. OSD1 promotes meiotic progression via APC/C inhibition and forms a regulatory network with TDM and CYCA1;2/TAM. PLoS Genet. 2012, 8, e1002865. [Google Scholar] [CrossRef]
- D’Erfurth, I.; Cromer, L.; Jolivet, S.; Girard, C.; Horlow, C.; Sun, Y.; To, J.P.; Berchowitz, L.E.; Copenhaver, G.P.; Mercier, R. The cyclin-A CYCA1; 2/TAM is required for the meiosis I to meiosis II transition and cooperates with OSD1 for the prophase to first meiotic division transition. PLoS Genet. 2010, 6, e1000989. [Google Scholar]
- Mercier, R.; Vezon, D.; Bullier, E.; Motamayor, J.C.; Sellier, A.; Lefèvre, F.; Pelletier, G.; Horlow, C. SWITCH1 (SWI1): A novel protein required for the establishment of sister chromatid cohesion and for bivalent formation at meiosis. Genes. Dev. 2001, 15, 1859–1871. [Google Scholar] [CrossRef] [PubMed]
- Siddiqi, I.; Ganesh, G.; Grossniklaus, U.; Subbiah, V. The dyad gene is required for progression through female meiosis in Arabidopsis. Development 2000, 127, 197–207. [Google Scholar] [CrossRef] [PubMed]
- Karimi-Ashtiyani, R.; Ishii, T.; Niessen, M.; Stein, N.; Heckmann, S.; Gurushidze, M.; Banaei-Moghaddam, A.M.; Fuchs, J.; Schubert, V.; Koch, K.; et al. Point mutation impairs centromeric CENH3 loading and induces haploid plants. Proc. Natl. Acad. Sci. USA 2015, 112, 11211–11216. [Google Scholar] [CrossRef]
- Tek, A.L.; Stupar, R.M.; Nagaki, K. Modification of centromere structure: A promising approach for haploid line production in plant breeding. Turk. J. Agric. For. 2015, 39, 557–562.38. [Google Scholar] [CrossRef]
- Kelliher, T.; Starr, D.; Wang, W.; McCuiston, J.; Zhong, H.; Nuccio, M.L.; Martin, B. Maternal Haploids Are Preferentially Induced by CENH3-tailswap Transgenic Complementation in Maize. Front. Plant Sci. 2016, 7, 414. [Google Scholar] [CrossRef]
- Maheshwari, S.; Tan, E.H.; West, A.; Franklin, F.C.H.; Comai, L.; Chan, S.W.L. Naturally Occurring Differences in CENH3 Affect Chromosome Segregation in Zygotic Mitosis of Hybrids. PLoS Genet. 2015, 11, e1004970. [Google Scholar] [CrossRef]
- Britt, A.B.; Kuppu, S. Cenh3: An emerging player in haploid induction technology. Front. Plant Sci. 2016, 7, 1–10. [Google Scholar] [CrossRef]
- Ravi, M.; Chan, S.W.L. Haploid plants produced by centromere-mediated genome elimination. Nature 2010, 464, 615–618. [Google Scholar] [CrossRef]
- Lv, J.; Yu, K.; Wei, J.; Gui, H.; Liu, C.; Liang, D.; Wang, Y.; Zhou, H.; Carlin, R.; Rich, R.; et al. Generation of paternal haploids in wheat by genome editing of the centromeric histone CENH3. Nat. Biotechnol. 2020, 38, 1397–1401. [Google Scholar] [CrossRef]
- Gao, X.; Guo, H.; Wu, J.; Fan, Y.; Zhang, L.; Guo, H.; Lian, X.; Fan, Y.; Gou, Z.; Zhang, C.; et al. Haploid Bio-Induction in Plant through Mock Sexual Reproduction. iScience 2020, 23, 101279. [Google Scholar] [CrossRef]
- Manape, T.K.; Satheesh, V.; Somasundaram, S.; Soumia, P.S.; Khade, Y.P.; Mainkar, P.; Mahajan, V.; Singh, M.; Anandhan, S. RNAi-mediated downregulation of AcCENH3 can induce in vivo haploids in onion (Allium cepa L.). Sci. Rep. 2024, 14, 14481. [Google Scholar] [CrossRef] [PubMed]
- Kuppu, S.; Tan, E.H.; Nguyen, H.; Rodgers, A.; Comai, L.; Chan, S.W.L.; Britt, A.B. Point Mutations in Centromeric Histone Induce Post-zygotic Incompatibility and Uniparental Inheritance. PLoS Genet. 2015, 11, e1005494. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Liu, Q.; Shen, Y.; Hua, Y.; Wang, J.; Lin, J.; Wu, M.; Sun, T.; Cheng, Z.; Mercier, R.; et al. Clonal seeds from hybrid rice by simultaneous genome engineering of meiosis and fertilization genes. Nat. Biotechnol. 2019, 37, 283–286. [Google Scholar] [CrossRef] [PubMed]
- Sanei, M.; Pickering, R.; Kumke, K.; Nasuda, S.; Houben, A. Loss of centromeric histone H3 (CENH3) from centromeres pre-cedes uniparental chromosome elimination in interspecific barley hybrids. Proc. Natl. Acad. Sci. USA 2011, 108, E498–E505. [Google Scholar] [CrossRef]
- Ishii, T.; Karimi-Ashtiyani, R.; Houben, A. Haploidization via Chromosome Elimination: Means and Mechanisms. Annu. Rev. Plant Biol. 2016, 67, 421–438. [Google Scholar] [CrossRef]
- Gilles, L.M.; Khaled, A.; Laffaire, J.; Chaignon, S.; Gendrot, G.; Laplaige, J.; Bergès, H.; Beydon, G.; Bayle, V.; Barret, P.; et al. Loss of pollen-specific phospholipase NOT LIKE DAD triggers gynogenesis in maize. EMBO J. 2017, 36, 707–717. [Google Scholar] [CrossRef]
- Liu, C.; Li, X.; Meng, D.; Zhong, Y.; Chen, C.; Dong, X.; Xu, X.; Chen, B.; Li, W.; Li, L.; et al. A 4-bp Insertion at ZmPLA1 Encoding a Putative Phospholipase A Generates Haploid Induction in Maize. Mol. Plant 2017, 10, 520–522. [Google Scholar] [CrossRef]
- Kelliher, T.; Starr, D.; Richbourg, L.; Chintamanani, S.; Delzer, B.; Nuccio, M.L.; Green, J.; Chen, Z.; McCuiston, J.; Wang, W.; et al. MATRILINEAL, a sperm-specific phospholipase, triggers maize haploid induction. Nature 2017, 542, 105–109. [Google Scholar] [CrossRef]
- Yao, L.; Zhang, Y.; Liu, C.; Liu, Y.; Wang, Y.; Liang, D.; Liu, J.; Sahoo, G.; Kelliher, T. OsMATL mutation induces haploid seed formation in indica rice. Nat. Plants 2018, 4, 530–533. [Google Scholar] [CrossRef]
- Liu, H.; Wang, K.; Jia, Z.; Gong, Q.; Lin, Z.; Du, L.; Pei, X.; Ye, X. Efficient induction of haploid plants in wheat by editing of TaMTL using an optimized Agrobacterium-mediated CRISPR system. J. Exp. Bot. 2019, 71, 1337–1349. [Google Scholar] [CrossRef]
- Boutilier, K.; Offringa, R.; Sharma, V.K.; Kieft, H.; Ouellet, T.; Zhang, L.; Hattori, J.; Liu, C.-M.; van Lammeren, A.A.M.; Miki, B.L.A.; et al. Ectopic Expression of BABY BOOM Triggers a Conversion from Vegetative to Embryonic Growth. Plant Cell 2002, 14, 1737–1749. [Google Scholar] [CrossRef]
- Horstman, A.; Li, M.; Heidmann, I.; Weemen, M.; Chen, B.; Muino, J.M.; Angenent, G.C.; Boutilier, K. The BABY BOOM Transcription Factor Activates the LEC1-ABI3-FUS3-LEC2 Network to Induce Somatic Embryogenesis. Plant Physiol. 2017, 175, 848–857. [Google Scholar] [CrossRef] [PubMed]
- El Ouakfaoui, S.; Schnell, J.; Abdeen, A.; Colville, A.; Labbé, H.; Han, S.; Baum, B.; Laberge, S.; Miki, B. Control of somatic embryogenesis and embryo development by AP2 transcription factors. Plant Mol. Biol. 2010, 74, 313–326. [Google Scholar] [CrossRef] [PubMed]
- Feng, J.X.; Liu, D.; Pan, Y.; Gong, W.; Ma, L.G.; Luo, J.C.; Deng, X.W.; Zhu, Y.X. An Annotation Update via cDNA Sequence Analysis and Comprehensive Profiling of Developmental, Hormonal or Environmental Responsiveness of the Arabidopsis AP2/EREBP Transcription Factor Gene Family. Plant Mol. Biol. 2005, 59, 853–868. [Google Scholar] [CrossRef]
- Nole-Wilson, S.; Tranby, T.L.; Krizek, B.A. AINTEGUMENTA-like (AIL) genes are expressed in young tissues and may specify meristematic or division-competent states. Plant Mol. Biol. 2005, 57, 613–628. [Google Scholar] [CrossRef]
- Passarinho, P.; Ketelaar, T.; Xing, M.; van Arkel, J.; Maliepaard, C.; Hendriks, M.W.; Joosen, R.; Lammers, M.; Herdies, L.; Boer, B.D.; et al. BABY BOOM target genes provide diverse entry points into cell proliferation and cell growth pathways. Plant Mol. Biol. 2008, 68, 225–237. [Google Scholar] [CrossRef]
- Bui, L.T.; Pandzic, D.; Youngstrom, C.E.; Wallace, S.; Irish, E.E.; Szövényi, P.; Cheng, C.L. A fern AINTEGUMENTA gene mirrors BABY BOOM in promoting apogamy in Ceratopteris richardii. Plant J. 2017, 90, 122–132. [Google Scholar] [CrossRef]
- Heidmann, I.; de Lange, B.; Lambalk, J.; Angenent, G.C.; Boutilier, K. Efficient sweet pepper transformation mediated by the BABY BOOM transcription factor. Plant Cell Rep. 2011, 30, 1107–1115. [Google Scholar] [CrossRef]
- Conner, J.A.; Podio, M.; Ozias-Akins, P. Haploid embryo production in rice and maize induced by PsASGR-BBML transgenes. Plant Reprod. 2017, 30, 41–52. [Google Scholar] [CrossRef]
- Khanday, I.; Skinner, D.; Yang, B.; Mercier, R.; Sundaresan, V. A male-expressed rice embryogenic trigger redirected for asexual propagation through seeds. Nature 2018, 565, 91–95. [Google Scholar] [CrossRef]
- Ferreira, L.G.; Dusi, D.M.d.A.; Irsigler, A.S.T.; Gomes, A.C.M.M.; Mendes, M.A.; Colombo, L.; Carneiro, V.T.d.C. GID1 expression is associated with ovule development of sexual and apomictic plants. Plant Cell Rep. 2018, 37, 293–306. [Google Scholar] [CrossRef]
- Liu, Q.; Han, D.; Cheng, D.; Chen, J.; Tian, S.; Wang, J.; Liu, M.; Yuan, L. AtRKD5 inhibits the parthenogenic potential me-diated by AtBBM. J. Integr. Plant Biol. 2024, 66, 1517–1531. [Google Scholar] [CrossRef] [PubMed]
- Zhong, Y.; Liu, C.; Qi, X.; Jiao, Y.; Wang, D.; Wang, Y.; Liu, Z.; Chen, C.; Chen, B.; Tian, X.; et al. Mutation of ZmDMP enhances haploid induction in maize. Nat. Plants 2019, 5, 575–580. [Google Scholar] [CrossRef] [PubMed]
- Zhong, Y.; Chen, B.; Li, M.; Wang, D.; Jiao, Y.; Qi, X.; Wang, M.; Liu, Z.; Chen, C.; Wang, Y.; et al. A DMP-triggered in vivo maternal haploid induction system in the dicotyledonous Arabidopsis. Nat. Plants 2020, 6, 466–472. [Google Scholar] [CrossRef] [PubMed]
- Van Dijk, P.J.; Op den Camp, R.; Schauer, S.E. Genetic Dissection of Apomixis in Dandelions Identifies a Dominant Par-thenogenesis Locus and Highlights the Complexity of Autonomous Endosperm Formation. Genes 2020, 11, 961. [Google Scholar] [CrossRef]
- Underwood, C.J.; Vijverberg, K.; Rigola, D.; Okamoto, S.; Oplaat, C.; Camp, R.H.M.O.D.; Radoeva, T.; Schauer, S.E.; Fierens, J.; Jansen, K.; et al. A PARTHENOGENESIS allele from apomictic dandelion can induce egg cell division without fertilization in lettuce. Nat. Genet. 2022, 54, 84–93. [Google Scholar] [CrossRef]
- Huang, Y.; Liang, Y.; Xie, Y.; Rao, Y.; Xiong, J.; Liu, C.; Wang, C.; Wang, X.; Qian, Q.; Wang, K. Efficient haploid induction via egg cell expression of dandelion PARTHENOGENESIS in foxtail millet (Setaria italica). Plant Biotechnol. J. 2024, 22, 1797–1799. [Google Scholar] [CrossRef]
- Waki, T.; Hiki, T.; Watanabe, R.; Hashimoto, T.; Nakajima, K. The Arabidopsis RWP-RK Protein RKD4 Triggers Gene Expression and Pattern Formation in Early Embryogenesis. Curr. Biol. 2011, 21, 1277–1281. [Google Scholar] [CrossRef]
- Wang, X.; Xu, Y.; Zhang, S.; Cao, L.; Huang, Y.; Cheng, J.; Wu, G.; Tian, S.; Chen, C.; Liu, Y.; et al. Genomic analyses of primitive, wild and cultivated citrus provide insights into asexual reproduction. Nat. Genet. 2017, 49, 765–772. [Google Scholar] [CrossRef]
- Wang, N.; Song, X.; Ye, J.; Zhang, S.; Cao, Z.; Zhu, C.; Hu, J.; Zhou, Y.; Huang, Y.; Cao, S.; et al. Structural variation and parallel evolution of apomixis in citrus during domestication and diversification. Natl. Sci. Rev. 2022, 9, nwac114. [Google Scholar] [CrossRef]
- Yadav, C.B.; Rozen, A.; Eshed, R.; Ish-Shalom, M.; Faigenboim, A.; Dillon, N.; Bally, I.; Webb, M.; Kuhn, D.; Ophir, R.; et al. Promoter insertion leads to polyembryony in mango—A case of convergent evolution with citrus. Hortic. Res. 2023, 10, uhad227. [Google Scholar] [CrossRef]
- Ronceret, A.; Vielle-Calzada, J.-P. Meiosis, unreduced gametes, and parthenogenesis: Implications for engineering clonal seed formation in crops. Plant Reprod. 2015, 28, 91–102. [Google Scholar] [CrossRef] [PubMed]
- Marimuthu, M.P.A.; Jolivet, S.; Ravi, M.; Pereira, L.; Davda, J.N.; Cromer, L.; Wang, L.; Nogué, F.; Chan, S.W.L.; Siddiqi, I.; et al. Synthetic Clonal Reproduction Through Seeds. Science 2011, 331, 876. [Google Scholar] [CrossRef] [PubMed]
- Bai, X.; Peirson, B.N.; Dong, F.; Xue, C.; Makaroff, C.A. Isolation and Characterization of SYN1, a RAD21-Like Gene Essential for Meiosis in Arabidopsis. Plant Cell 1999, 11, 417. [Google Scholar] [CrossRef] [PubMed]
- Tucker, M.R.; Araujo, A.-C.G.; Paech, N.A.; Hecht, V.; Schmidt, E.D.L.; Rossell, J.-B.; de Vries, S.C.; Koltunow, A.M.G.; Tucker, M.R. Sexual and Apomictic Reproduction in Hieracium subgenus Pilosella Are Closely Interrelated Developmental Pathways. Plant Cell 2003, 15, 1524–1537. [Google Scholar] [CrossRef]
- Barcaccia, G.; Albertini, E. Apomixis in plant reproduction: A novel perspective on an old dilemma. Plant Reprod. 2013, 26, 159–179. [Google Scholar] [CrossRef]
- Schwartz, Y.B.; Pirrotta, V. Polycomb complexes and epigenetic states. Curr. Opin. Cell Biol. 2008, 20, 266–273. [Google Scholar] [CrossRef]
- Folsom, J.J.; Begcy, K.; Hao, X.; Wang, D.; Walia, H. Rice Fertilization-Independent Endosperm1 Regulates Seed Size under Heat Stress by Controlling Early Endosperm Development. Plant Physiol. 2014, 165, 238–248. [Google Scholar] [CrossRef]
- Hehenberger, E.; Kradolfer, D.; Köhler, C. Endosperm cellularization defines an important developmental transition for em-bryo development. Development 2012, 139, 2031–2039. [Google Scholar] [CrossRef]
- Liu, D.D.; Dong, Q.L.; Sun, C.; Wang, Q.L.; You, C.X.; Yao, Y.X.; Hao, Y.J. Functional characterization of an apple apo-mixis-related MhFIE gene in reproduction development. Plant Sci. 2012, 185–186, 105–111. [Google Scholar] [CrossRef]
- Kiyosue, T.; Ohad, N.; Yadegari, R.; Hannon, M.; Dinneny, J.; Wells, D.; Katz, A.; Margossian, L.; Harada, J.J.; Goldberg, R.B.; et al. Control of fertilization-independent endosperm development by the MEDEA polycomb gene in Arabidopsis. Proc. Natl. Acad. Sci. USA 1999, 96, 4186–4191. [Google Scholar] [CrossRef]
- Liu, D.-D.; Dong, Q.-L.; Fang, M.-J.; Chen, K.-Q.; Hao, Y.-J. Ectopic expression of an apple apomixis-related gene MhFIE induces co-suppression and results in abnormal vegetative and reproductive development in tomato. J. Plant Physiol. 2012, 169, 1866–1873. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Aguilar, M.; Michaud, C.; Leblanc, O.; Grimanelli, D. Inactivation of a DNA methylation pathway in maize repro-ductive organs results in apomixis-like phenotypes. Plant Cell 2010, 22, 3249–3267. [Google Scholar] [CrossRef] [PubMed]
- Olmedo-Monfil, V.; Durán-Figueroa, N.; Arteaga-Vázquez, M.; Demesa-Arévalo, E.; Autran, D.; Grimanelli, D.; Slotkin, R.K.; Martienssen, R.A.; Vielle-Calzada, J.-P. Control of female gamete formation by a small RNA pathway in Arabidopsis. Nature 2010, 464, 628–632. [Google Scholar] [CrossRef] [PubMed]
- Singh, M.; Goel, S.; Meeley, R.B.; Dantec, C.; Parrinello, H.; Michaud, C.; Leblanc, O.; Grimanelli, D. Production of Viable Gametes without Meiosis in Maize Deficient for an ARGONAUTE Protein. Plant Cell 2011, 23, 443–458. [Google Scholar] [CrossRef]
- Agashe, B.; Prasad, C.K.; Siddiqi, I. Identification and analysis of DYAD: A gene required for meiotic chromosome organisation and female meiotic progression in Arabidopsis. Development 2002, 129, 3935–3943. [Google Scholar] [CrossRef]
- Siena, L.A.; Ortiz, J.P.A.; Calderini, O.; Paolocci, F.; Cáceres, M.E.; Kaushal, P.; Grisan, S.; Pessino, S.C.; Pupilli, F. An apomixis-linked ORC3-like pseudogene is associated with silencing of its functional homolog in apomictic Paspalum simplex. J. Exp. Bot. 2016, 67, 1965–1978. [Google Scholar] [CrossRef]
- Nonomura, K.-I.; Miyoshi, K.; Eiguchi, M.; Suzuki, T.; Miyao, A.; Hirochika, H.; Kurata, N. The MSP1 Gene Is Necessary to Restrict the Number of Cells Entering into Male and Female Sporogenesis and to Initiate Anther Wall Formation in Rice. Plant Cell 2003, 15, 1728–1739. [Google Scholar] [CrossRef]
- Marconi, G.; Aiello, D.; Kindiger, B.; Storchi, L.; Marrone, A.; Reale, L.; Terzaroli, N.; Albertini, E. The Role of APOSTART in Switching between Sexuality and Apomixis in Poa pratensis. Genes 2020, 11, 941. [Google Scholar] [CrossRef]
- Groß-Hardt, R.; Lenhard, M.; Laux, T. WUSCHEL signaling functions in interregional communication during Arabidopsis ovule development. Genes Dev. 2002, 16, 1129–1138. [Google Scholar] [CrossRef]
- Barcaccia, G.; Baumlein, H.; Sharbel, T.F. Apomixis in St. John’s wort: An overview and glimpse towards the future. In Apomixis: Mechanisms and Perspectives; Hörandl, E., Grossniklaus, U., Van Dijk, P., Sharbel, T.F., Eds.; Koeltz Scientific Books; International Association of Plant Taxonomy: Vienna, Austria, 2007; pp. 259–280. [Google Scholar]
- Galla, G.; Volpato, M.; Sharbel, T.F.; Barcaccia, G. Computational identification of conserved microRNAs and their putative targets in the Hypericum perforatum L. flower transcriptome. Plant Reprod. 2013, 26, 209–229. [Google Scholar] [CrossRef]
- Schallau, A.; Arzenton, F.; Johnston, A.J.; Hähnel, U.; Koszegi, D.; Blattner, F.R.; Altschmied, L.; Haberer, G.; Barcaccia, G.; Bäumlein, H. Identification and genetic analysis of the APOSPORY locus in Hypericum perforatum L. Plant J. 2010, 62, 773–784. [Google Scholar] [CrossRef] [PubMed]
- Siena, L.A.; Ortiz, J.P.A.; Leblanc, O.; Pessino, S. PnTgs1-like expression during reproductive development supports a role for RNA methyltransferases in the aposporous pathway. BMC Plant Biol. 2014, 14, 297. [Google Scholar] [CrossRef] [PubMed]
- Horandl, E.; Hojsgaard, D. The evolution of apomixis in angiosperms: A reappraisal. Plant Biosyst. 2012, 146, 859. [Google Scholar]
- Avramidou, E.V.; Doulis, A.G.; Aravanopoulos, F.A. Determination of epigenetic inheritance, genetic inheritance, and es-timation of genome DNA methylation in a full-sib family of Cupressus sempervirens L. Gene 2015, 562, 180–187. [Google Scholar] [CrossRef]
- Baroux, C.; Raissig, M.T.; Grossniklaus, U. Epigenetic regulation and reprogramming during gamete formation in plants. Curr. Opin. Genet. Dev. 2011, 21, 124–133. [Google Scholar] [CrossRef]
- Wang, W.; Huang, F.; Qin, Q.; Zhao, X.; Li, Z.; Fu, B. Comparative analysis of DNA methylation changes in two rice genotypes under salt stress and subsequent recovery. Biochem. Biophys. Res. Commun. 2015, 465, 790–796. [Google Scholar] [CrossRef]
- Kumar, S. Epigenetic Control of Apomixis: A New Perspective of an Old Enigma. Adv. Plants Agric. Res. 2017, 7, 1. [Google Scholar] [CrossRef]
- Taşkin, K.M.; Özbilen, A.; Sezer, F.; Hürkan, K.; Güneş, Ş. Structure and expression of dna methyltransferase genes from apomictic and sexual Boechera species. Comput. Biol. Chem. 2017, 67, 15–21. [Google Scholar] [CrossRef]
- Podio, M.; Cáceres, M.E.; Samoluk, S.S.; Seijo, J.G.; Pessino, S.C.; Ortiz, J.P.A.; Pupilli, F. A methylation status analysis of the apomixis-specific region in Paspalum spp. suggests an epigenetic control of parthenogenesis. J. Exp. Bot. 2014, 65, 6411–6424. [Google Scholar] [CrossRef]
- Shah, J.N.; Kirioukhova, O.; Pawar, P.; Tayyab, M.; Mateo, J.L.; Johnston, A.J. Depletion of Key Meiotic Genes and Tran-scriptome-Wide Abiotic Stress Reprogramming Mark Early Preparatory Events Ahead of Apomeiotic Transition. Front. Plant Sci. 2016, 7, 1539. [Google Scholar] [CrossRef]
- Jia, H.-H.; Xu, Y.-T.; Yin, Z.-P.; Wu, X.-M.; Qing, M.; Fan, Y.-J.; Song, X.; Xie, K.-D.; Xie, Z.-Z.; Xu, Q.; et al. Transcriptomes and DNA methylomes in apomictic cells delineate nucellar embryogenesis initiation in citrus. DNA Res. 2021, 28, dsab014. [Google Scholar] [CrossRef] [PubMed]
- Grimanelli, D. Epigenetic regulation of reproductive development and the emergence of apomixis in angiosperms. Curr. Opin. Plant Biol. 2012, 15, 57–62. [Google Scholar] [CrossRef] [PubMed]
- Selva, J.P.; Siena, L.; Rodrigo, J.M.; Garbus, I.; Zappacosta, D.; Romero, J.R.; Ortiz, J.P.A.; Pessino, S.C.; Leblanc, O.; Echenique, V. Temporal and spatial expression of genes involved in DNA methylation during reproductive development of sexual and apomictic Eragrostis curvula. Sci. Rep. 2017, 7, 15092. [Google Scholar] [CrossRef] [PubMed]
- Solís, M.-T.; Rodríguez-Serrano, M.; Meijón, M.; Cañal, M.-J.; Cifuentes, A.; Risueño, M.C.; Testillano, P.S. DNA methylation dynamics and MET1a-like gene expression changes during stress-induced pollen reprogramming to embryogenesis. J. Exp. Bot. 2012, 63, 6431–6444. [Google Scholar] [CrossRef]
- Ortiz, J.P.A.; Leblanc, O.; Rohr, C.; Grisolia, M.; Siena, L.A.; Podio, M.; Colono, C.; Azzaro, C.; Pessino, S.C. Small RNA-seq reveals novel regulatory components for apomixis in Paspalum notatum. BMC Genom. 2019, 20, 487. [Google Scholar] [CrossRef]
- Hojsgaard, D. Apomixis Technology: Separating the Wheat from the Chaff. Genes 2020, 11, 411. [Google Scholar] [CrossRef]
- Galla, G.; Zenoni, S.; Avesani, L.; Altschmied, L.; Rizzo, P.; Sharbel, T.F.; Barcaccia, G. Pistil Transcriptome Analysis to Disclose Genes and Gene Products Related to Aposporous Apomixis in Hypericum perforatum L. Front. Plant Sci. 2017, 8, 79. [Google Scholar] [CrossRef]
- Ceccato, L.; Masiero, S.; Roy, D.S.; Bencivenga, S.; Roig-Villanova, I.; Ditengou, F.A.; Palme, K.; Simon, R.; Colombo, L. Maternal Control of PIN1 Is Required for Female Gametophyte Development in Arabidopsis. PLoS ONE 2013, 8, e66148. [Google Scholar] [CrossRef]
- Cheng, C.; Mathews, D.E.; Schaller, G.E.; Kieber, J.J. Cytokinin-dependent specification of the functional megaspore in the Arabidopsis female gametophyte. Plant J. 2012, 73, 929–940. [Google Scholar] [CrossRef]
- Schmidt, A.; Schmid, M.W.; Klostermeier, U.C.; Qi, W.; Guthörl, D.; Sailer, C.; Waller, M.; Rosenstiel, P.; Grossniklaus, U. Apomictic and Sexual Germline Development Differ with Respect to Cell Cycle, Transcriptional, Hormonal and Epigenetic Regulation. PLoS Genet. 2014, 10, e1004476. [Google Scholar] [CrossRef]
- Bencivenga, S.; Simonini, S.; Benková, E.; Colombo, L. The Transcription Factors BEL1 and SPL Are Required for Cytokinin and Auxin Signaling During Ovule Development in Arabidopsis. Plant Cell 2012, 24, 2886–2897. [Google Scholar] [CrossRef] [PubMed]
- Rojek, J.; Pawełko; Kapusta, M.; Naczk, A.; Bohdanowicz, J. Exogenous steroid hormones stimulate full development of autonomous endosperm in Arabidopsis thaliana. Acta Soc. Bot. Pol. 2015, 84, 287–301. [Google Scholar] [CrossRef]
- Chen, X.; Lai, H.-G.; Sun, Q.; Liu, J.-P.; Chen, S.-B.; Zhu, W.-L. Induction of apomixis by dimethyl sulfoxide (DMSO) and genetic identification of apomictic plants in cassava. Breed. Sci. 2018, 68, 227–232. [Google Scholar] [CrossRef]
- Zagorski, D.; Hartmann, M.; Bertrand, Y.J.K.; Paštová, L.; Slavíková, R.; Josefiová, J.; Fehrer, J. Characterization and Dy-namics of Repeatomes in Closely Related Species of Hieracium (Asteraceae) and Their Synthetic and Apomictic Hybrids. Front. Plant Sci. 2020, 11, 591053. [Google Scholar] [CrossRef]
- Ferreira de Carvalho, J.; de Jager, V.; van Gurp, T.P.; Wagemaker, N.C.; Verhoeven, K.J. Recent and dynamic transposable elements contribute to genomic divergence under asexuality. BMC Genom. 2016, 17, 884. [Google Scholar] [CrossRef]
- Sailer, C.; Schmid, B.; Grossniklaus, U. Apomixis allows the transgenerational fixation of phenotypes in hybrid plants. Curr. Biol. 2016, 26, 331–337. [Google Scholar] [CrossRef]
- Prigge, V.; Xu, X.; Li, L.; Babu, R.; Chen, S.; Atlin, G.N.; Melchinger, A.E. New insights into the genetics of in vivo induction of maternal haploids, the backbone of doubled haploid technology in maize. Genetics 2012, 190, 781–793. [Google Scholar] [CrossRef]
- Chase, S.S. Production of Homozygous Diploids of Maize from Monoploids. Agron. J. 1952, 44, 263–267. [Google Scholar] [CrossRef]
- Melchinger, A.E.; Schipprack, W.; Würschum, T.; Chen, S.; Technow, F. Rapid and accurate identification of in vivo-induced haploid seeds based on oil content in maize. Sci. Rep. 2013, 3, srep02129. [Google Scholar] [CrossRef]
- Sarkar, K.R.; Coe, E.H. A genetic analysis of the origin of maternal haploids in maize. Genetics 1966, 54, 453–464. [Google Scholar] [CrossRef]
- Coe, E.H. The properties, origin, and mechanism of conversion-type inheritance at the B locus in maize. Genetics 1966, 53, 1035–1063. [Google Scholar] [CrossRef] [PubMed]
- Dong, X.; Xu, X.; Li, L.; Liu, C.; Tian, X.; Li, W.; Chen, S. Marker-assisted selection and evaluation of high oil in vivo haploid inducers in maize. Mol. Breed. 2014, 34, 1147–1158. [Google Scholar] [CrossRef]
- Nanda, D.K.; Chase, S.S. An Embryo Marker for Detecting Monoploids of Maize (Zea mays L.). Crop Sci. 1966, 6, 213–215. [Google Scholar] [CrossRef]
- Fu, S.; Yin, L.; Xu, M.; Li, Y.; Wang, M.; Yang, J.; Fu, T.; Wang, J.; Shen, J.; Ali, A.; et al. Maternal doubled haploid production in interploidy hybridization between Brassica napus and Brassica allooctaploids. Planta 2017, 247, 113–125. [Google Scholar] [CrossRef]
- Rotarenco, V.; Dicu, G.; Armaniuc, M. Induction of MaternaI Haploids in Maize. J. Msize Sci. 2010, 18, 27–30. [Google Scholar]
- Luo, X.; Yang, J.; Zhu, Z.; Huang, L.; Ali, A.; Javed, H.H.; Zhang, W.; Zhou, Y.; Yin, L.; Xu, P.; et al. Genetic characteristics and ploidy trigger the high in-ducibility of double haploid (DH) inducer in Brassica napus. BMC Plant Biol. 2021, 21, 538. [Google Scholar] [CrossRef]
- Zhang, W.; Ma, Y.; Zhu, Z.; Huang, L.; Ali, A.; Luo, X.; Zhou, Y.; Li, Y.; Xu, P.; Yang, J.; et al. Maternal karyogene and cytoplasmic genotype affect the in-duction efficiency of doubled haploid inducer in Brassica napus. BMC Plant Biol. 2021, 21, 207. [Google Scholar]
- Zhao, S.; Huang, L.; Zhang, Q.; Zhou, Y.; Yang, M.; Shi, H.; Li, Y.; Yang, J.; Li, C.; Ge, X.; et al. Paternal chromosome elimination of inducer triggers induction of double haploids in Brassica napus. Front. Plant Sci. 2023, 14, 1256338. [Google Scholar] [CrossRef]
- Barret, P.; Brinkmann, M.; Beckert, M. A major locus expressed in the male gametophyte with incomplete penetrance is re-sponsible for in situ gynogenesis in maize. Theor. Appl. Genet. 2008, 117, 581–594. [Google Scholar] [CrossRef]
- Wu, P.; Li, H.; Ren, J.; Chen, S. Mapping of maternal QTLs for in vivo haploid induction rate in maize (Zea mays L.). Euphytica 2014, 196, 413–421. [Google Scholar] [CrossRef]
- Zhang, Z.; Qiu, F.; Liu, Y.; Ma, K.; Li, Z.; Xu, S. Chromosome elimination and in vivo haploid production induced by Stock 6-derived inducer line in maize (Zea mays L.). Plant Cell Rep. 2008, 27, 1851–1860. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Li, W.; Zhong, Y.; Dong, X.; Hu, H.; Tian, X.; Wang, L.; Chen, B.; Chen, C.; Melchinger, A.E.; et al. Fine mapping of qhir8 affecting in vivo haploid induction in maize. Theor. Appl. Genet. 2015, 128, 2507–2515. [Google Scholar] [CrossRef] [PubMed]
- Xie, E.; Li, Y.; Tang, D.; Lv, Y.; Shen, Y.; Cheng, Z. A strategy for generating rice apomixis by gene editing. J. Integr. Plant Biol. 2019, 61, 911–916. [Google Scholar] [CrossRef] [PubMed]
- Ozias-Akins, P.; Conner, J.A. Clonal Reproduction through Seeds in Sight for Crops. Trends Genet. 2020, 36, 215–226. [Google Scholar] [CrossRef]
- Hamant, O.; Ma, H.; Cande, W.Z. Genetics of meiotic prophase I in plants. Annu. Rev. Plant Biol. 2006, 57, 267–302. [Google Scholar] [CrossRef]
- Song, M.; Wang, W.; Ji, C.; Li, S.; Liu, W.; Hu, X.; Feng, A.; Ruan, S.; Du, S.; Wang, H.; et al. Simultaneous production of high-frequency synthetic apomixis with high fertility and improved agronomic traits in hybrid rice. Mol. Plant 2023, 17, 4–7. [Google Scholar] [CrossRef]
- Kelliher, T.; Starr, D.; Su, X.; Tang, G.; Chen, Z.; Carter, J.; Wittich, P.E.; Dong, S.; Green, J.; Burch, E.; et al. One-step genome editing of elite crop germplasm during haploid induction. Nat. Biotechnol. 2019, 37, 287–292. [Google Scholar] [CrossRef]
- Voytas, D.F. Editorial Prerogative and the Plant Genome. J. Genet. Genom. Yi Chuan Xue Bao 2016, 43, 229–232. [Google Scholar] [CrossRef]
- Wang, B.; Zhu, L.; Zhao, B.; Zhao, Y.; Xie, Y.; Zheng, Z.; Li, Y.; Sun, J.; Wang, H. Development of a Haploid-Inducer Mediated Genome Editing System for Accelerating Maize Breeding. Mol. Plant 2019, 12, 597–602. [Google Scholar] [CrossRef]
- Nakano, M.; Shimada, T.; Endo, T.; Fujii, H.; Nesumi, H.; Kita, M.; Ebina, M.; Shimizu, T.; Omura, M. Characterization of genomic sequence showing strong association with polyembryony among diverse Citrus species and cultivars, and its synteny with Vitis and Populus. Plant Sci. 2012, 183, 131–142. [Google Scholar] [CrossRef]
- Freitas, D.; Nassar, N. Review Apomixis in cassava: Advances and challenges. Evolution 2013, 12, 988–994. [Google Scholar] [CrossRef] [PubMed]
- Yao, J.L.; Zhou, Y.; Hu, C.G. Apomixis in Eulaliopsis binata: Characterization of reproductive mode and endosperm devel-opment. Sex. Plant Reprod. 2007, 20, 151–158. [Google Scholar] [CrossRef]
- Bicknell, R.A.; Koltunow, A.M. Understanding Apomixis: Recent Advances and Remaining Conundrums. Plant Cell 2004, 16, S228–S245. [Google Scholar] [CrossRef] [PubMed]
Gene/Mutant | Molecular Function | Function in Apomixis | Species | References | |
---|---|---|---|---|---|
MiMe | SPO11-1 or PRD1 or PRD2 or PRD3/PAIR1 | Blocks homologous chromosome pairing and recombination | Production of functional diploid gametes | Arabidopsis, rice | [26,27,28,29] |
DIF1/SYN1/REC8 | Causes early separation of sister chromatids | [27] | |||
OSD1 or TAM/CYCA1;2 | Produces diploid gametes by omission the division of meiosis II | [27,30,31] | |||
SWITCH1/DYAD (SWI1) | Encodes a nuclear entwining protein | Production of fertile undiminished female gametes | Arabidopsis | [32,33] | |
CENH3 | Causes the elimination of chromosomes with mutant CENH3 protein and haploid induction | Haploid offspring induction | Arabidopsis, wheat, onion, cotton, barley | [34,35,36,37,38,39,40,41,42,43,44,45,46] | |
MATL/ZMPLA1/NLD | Contributes towards all pleiotropic defects associated with haploid induction | Parthenogenetic haploid offspring induction | Arabidopsis, maize, rice | [47,48,49,50,51] | |
BABY BOOM 1(BBM1) | Functions in cell proliferation, plant growth and development, and induces embryogenesis | Parthenogenetic haploid offspring induction | Brassica napus L., Arabidopsis, maize, rice | [52,53,54,55,56,57,58,59,60,61,62,63] | |
ZmDMP | Increases haploid induction rate (HIR) and the endosperm aborted kernels (EnAs) | Haploid offspring induction | Arabidopsis, maize | [64,65] | |
PARTHENOGENESIS (PAR) | Triggers embryo development in unfertilized egg cells | Egg cell division without fertilization induction | Taraxacum officinale, Setaria italica, rice | [66,67,68] | |
RWP (RKD, RWP-RK domain-containing) | Maintains egg-cell identity | Polyembryony induction | Arabidopsis, Fortunella hindsii, citrus, mango | [69,70,71,72] |
Gene | Species | Affected Process | Gene Function | Reference |
---|---|---|---|---|
DMT102 and DMT103 | Maize-Tripsacum hybrid | Differentiation between apomictic and sexual reproduction | Produces a phenotype similar to apomixis | [84] |
FIE | Malus hupehensis, Solanum lycopersicum | Autonomous endosperm | Fertilization independent endosperm | [81,83] |
AGO9 | Arabidopsis | Diplospory | Controls female gamete formation by limiting the specification of gametophyte precursors in a noncell autonomous manner | [85] |
AGO104 | Tripsacum | Diplospory | Catalytic the component of RNA-induced protein complex of gene silencing | [86] |
SWITCH1/DYAD (SWI1) | Arabidopsis | Diplospory | Meiosis specific chromatin associated protein | [87] |
ORC | Paspalum simplex | Adventitious embryony | Controls DNA replication and cell differentiation in eukaryotes | [88] |
GID1 | Brachiaria brizantha | Diplospory | Involved in the differentiation of single megaspore mother cells in ovule development | [62] |
MSP1 | Oryza sativa | Adventitious embryony | Controls early sporogenic development | [89] |
SERK | Poa pratensis, Paspalum notatum | Adventitious embryony | Plays a key role in embryo sac development | [7] |
APORSTART | Medicago sativa | Diplospory | Speculated to participate in the formation of 2n eggs in apomixis | [77] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xue, L.; Zhang, Y.; Wei, F.; Shi, G.; Tian, B.; Yuan, Y.; Jiang, W.; Zhao, M.; Hu, L.; Xie, Z.; et al. Recent Progress on Plant Apomixis for Genetic Improvement. Int. J. Mol. Sci. 2024, 25, 11378. https://doi.org/10.3390/ijms252111378
Xue L, Zhang Y, Wei F, Shi G, Tian B, Yuan Y, Jiang W, Zhao M, Hu L, Xie Z, et al. Recent Progress on Plant Apomixis for Genetic Improvement. International Journal of Molecular Sciences. 2024; 25(21):11378. https://doi.org/10.3390/ijms252111378
Chicago/Turabian StyleXue, Lihua, Yingying Zhang, Fang Wei, Gongyao Shi, Baoming Tian, Yuxiang Yuan, Wenjing Jiang, Meiqi Zhao, Lijiao Hu, Zhengqing Xie, and et al. 2024. "Recent Progress on Plant Apomixis for Genetic Improvement" International Journal of Molecular Sciences 25, no. 21: 11378. https://doi.org/10.3390/ijms252111378
APA StyleXue, L., Zhang, Y., Wei, F., Shi, G., Tian, B., Yuan, Y., Jiang, W., Zhao, M., Hu, L., Xie, Z., & Gu, H. (2024). Recent Progress on Plant Apomixis for Genetic Improvement. International Journal of Molecular Sciences, 25(21), 11378. https://doi.org/10.3390/ijms252111378