Exploring the Potential of Fungal Biomass for Bisphenol A Removal in Aquatic Environments
Abstract
:1. Introduction
2. Results and Discussion
2.1. Screening Test
2.2. Time of Incubation
2.3. Influence of Temeprature
2.4. The pH Value Influence
2.5. Reuse of Sorbent
2.5.1. Sorbent Stability
2.5.2. Sorbent Regeneration, Reuse, and Estimated Utility
3. Materials and Methods
3.1. Biological Material
3.2. Chemicals and Reagents
3.3. Biomass Preparation
3.4. Fruiting Bodies Screening Test
3.5. Incubation Time Influence
3.6. Temperature of Incubation
3.7. pH Value of the Incubation Buffer
3.8. Operational Stability
3.9. BPA Desorption and Carrier Regeneration
3.10. Statistical Analysis and Artwork
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cimmino, I.; Fiory, F.; Perruolo, G.; Miele, C.; Beguinot, F.; Formisano, P.; Oriente, F. Potential mechanisms of bisphenol a (BPA) contributing to human disease. Int. J. Mol. Sci. 2020, 21, 5761. [Google Scholar] [CrossRef] [PubMed]
- Torres-García, J.L.; Ahuactzin-Pérez, M.; Fernández, F.J.; Cortés-Espinosa, D.V. Bisphenol A in the environment and recent advances in biodegradation by fungi. Chemosphere 2022, 303, 134940. [Google Scholar] [CrossRef] [PubMed]
- Dogra, K.; Lalwani, D.; Dogra, S.; Panday, D.P.; Raval, N.P.; Trivedi, M.; Mora, A.; Hernandez, M.S.G.; Snyder, S.A.; Mahlknecht, J.; et al. Indian and global scenarios of Bisphenol A distribution and its new analogues: Prevalence & probability exceedance. J. Hazard. Mater. 2024, 477, 135128. [Google Scholar] [PubMed]
- Ullah, A.; Pirzada, M.; Jahan, S.; Ullah, H.; Shaheen, G.; Rehman, H.; Siddiqui, M.F.; Butt, M.A. Bisphenol A and its analogs bisphenol B, bisphenol F, and bisphenol S: Comparative in vitro and in vivo studies on the sperms and testicular tissues of rats. Chemosphere 2018, 209, 508–516. [Google Scholar] [CrossRef]
- Kapustka, K.; Ziegmann, G.; Klimecka-Tatar, D.; Ostrega, M. Identification of health risks from harmful chemical agents–review concerning bisphenol A in workplace. Prod. Eng. Arch. 2020, 26, 45–49. [Google Scholar] [CrossRef]
- Sifakis, S.; Androutsopoulos, V.P.; Tsatsakis, A.M.; Spandidos, D.A. Human exposure to endocrine disrupting chemicals: Effects on the male and female reproductive systems. Environ. Toxicol. Pharmacol. 2017, 51, 56–70. [Google Scholar] [CrossRef]
- Ajduk, A.; Sadkowska, M.; Gronek, Z.; Płocienniak, A.; Stodulska, A. Plastic—(nie)fantastic? O wpływie bisfenolu A na funkcjonowanie oocytów i zarodków ssaków. Postępy Biochemii 2022, 67, 349–361. [Google Scholar] [CrossRef]
- Mustieles, V.; D’Cruz, S.C.; Couderq, S.; Rodríguez-Carrillo, A.; Fini, J.-B.; Hofer, T.; Steffensen, I.-L.; Dirven, H.; Barouki, R.; Olea, N.; et al. Bisphenol A and its analogues: A comprehensive review to identify and prioritize effect biomarkers for human biomonitoring. Environ. Int. 2020, 144, 105811. [Google Scholar] [CrossRef]
- Hu, Y.; Zhu, Q.; Yan, X.; Liao, C.; Jiang, G. Occurrence, fate and risk assessment of BPA and its substituents in wastewater treatment plant: A review. Environ. Res. 2019, 178, 108732. [Google Scholar] [CrossRef]
- Ramakrishna, M.; Girigoswami, A.; Chakraboty, S.; Girigoswami, K. Bisphenol A—An Overview on its Effect on Health and Environment. Biointerface Res. Appl. Chem. 2022, 12, 105–119. [Google Scholar]
- Yu, Y.; Song, Z.; Zhu, Z.; Qiu, Y. Occurrence, removal efficiency and exposure assessment of bisphenols in drinking water treatment plants. Environ. Sci. Water Res. 2023, 9, 806–817. [Google Scholar] [CrossRef]
- Sonavane, M.; Gassman, N.R. Bisphenol A co-exposure effects: A key factor in understanding BPA’s complex mechanism and health outcomes. Crit. Rev. Toxicol. 2019, 49, 371–386. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Yang, J.; Yao, B.; Zhi, D.; Luo, L.; Zhou, Y. Endocrine disrupting chemicals in the environment: Environmental sources, biological effects, remediation techniques, and perspective. Environ. Pollut. 2022, 310, 119918. [Google Scholar] [CrossRef] [PubMed]
- Štefanac, T.; Grgas, D.; Landeka Dragičević, T. Xenobiotics—Division and methods of detection: A review. J. Xenobiotics 2021, 11, 130–141. [Google Scholar] [CrossRef]
- Karthigadevi, G.; Manikandan, S.; Karmegam, N.; Subbaiya, R.; Chozhavendhan, S.; Ravindran, B.; Chang, S.W.; Awasthi, M.K. Chemico-nanotreatment methods for the removal of persistent organic pollutants and xenobiotics in water—A review. Bioresour. Technol. 2021, 324, 124678. [Google Scholar] [CrossRef]
- Bhatnagar, A.; Anastopoulos, I. Adsorptive removal of bisphenol A (BPA) from aqueous solution: A review. Chemosphere 2017, 168, 885–902. [Google Scholar] [CrossRef]
- Pérez, P.; Ribas, J.C. Fungal cell wall analysis. In Laboratory Protocols in Fungal Biology—Current Methods in Fungal Biology; Gupta, V.L., Tuohy, M.G., Eds.; Springer: New York, NY, USA, 2013; pp. 175–196. [Google Scholar]
- Ding, J.; Chen, B.L.; Zhu, L.Z. Biosorption and biodegradation of polycyclic aromatic hydrocarbons by Phanerochaete chrysosporium in aqueous solution. Sci. Bull. 2013, 58, 613–621. [Google Scholar] [CrossRef]
- Nguyen, L.N.; Hai, F.I.; Yang, S.; Kang, J.; Leusch, F.D.L.; Roddick, F.; Price, W.E.; Nghiem, L.D. Removal of pharmaceuticals, steroid hormones, phytoestrogens, UV-filters, industrial chemicals and pesticides by Trametes versicolor: Role of biosorption and biodegradation. Int. Biodeterior. Biodegrad. 2014, 88, 169–175. [Google Scholar] [CrossRef]
- Jastrzębska, E. Circular Economy—A New Idea or the Old Approach? Good Practices of Socially Responsible Companies. Pr. Nauk. Uniw. Ekon. We Wrocławiu 2017, 491, 220–234. [Google Scholar] [CrossRef]
- Bijla, S.; Sharma, V.P. Status of mushroom production: Global and national scenario. Mushroom Res. 2023, 32, 91–98. [Google Scholar] [CrossRef]
- Grelska, A.; Noszczyńska, M. White rot fungi can be a promising tool for removal of bisphenol A, bisphenol S, and nonylphenol from wastewater. Environ. Sci. Pollut. Res. 2020, 27, 39958–39976. [Google Scholar] [CrossRef] [PubMed]
- Ahmaruzzaman, M. Adsorption of phenolic compounds on low-cost adsorbents: A review. Adv. Colloid Interface Sci. 2008, 143, 48–67. [Google Scholar] [CrossRef] [PubMed]
- Rovani, S.; Santos, J.J.; Guilhen, S.N.; Corio, P.; Fungaro, D.A. Fast, efficient and clean adsorption of bisphenol A using renewable mesoporous silica nanoparticles from sugarcane waste ash. RSC Adv. 2020, 10, 27706–27712. [Google Scholar] [CrossRef] [PubMed]
- Yonten, V.; Ince, M.; Tanyol, M.; Yildirim, N. Adsorption of bisphenol A from aqueous solutions by Pleurotus eryngii immobilized on Amberlite XAD-4 using as a new adsorbent. Desalin. Water Treat. 2016, 57, 22362–22369. [Google Scholar] [CrossRef]
- Arroyo, J.; Farkaš, V.; Sanz, A.B.; Cabib, E. Strengthening the fungal cell wall through chitin–glucan cross-links: Effects on morphogenesis and cell integrity. Cell. Microbiol. 2016, 18, 1239–1250. [Google Scholar] [CrossRef]
- Feofilova, E.P. The fungal cell wall: Modern concepts of its composition and biological function. Microbiology 2010, 79, 711–720. [Google Scholar] [CrossRef]
- Dehghani, M.H.; Karri, R.R.; Alimohammadi, M.; Nazmara, S.; Zarei, A.; Saeedi, Z. Insights into endocrine-disrupting Bisphenol A adsorption from pharmaceutical affluent by chirosan immobilized nanoscale zero-valent iron nanoparticles. J. Mol. Liq. 2020, 311, 113317. [Google Scholar] [CrossRef]
- Thaveemas, P.; Chuenchom, L.; Kaowphong, S.; Techasakul, S.; Saparpakorn, P.; Dechtrirat, D. Magnetic carbon nanofiber composite adsorbent through green in situ conversion of bacterial cellulose for highly efficient removal of bisphenol A. Bioresour. Technol. 2021, 333, 125184. [Google Scholar] [CrossRef]
- Dehghani, M.H.; Ghadermazi, M.; Bhatnagar, A.; Sadighara, P.; Jahed-Khaniki, G.; Heibati, B.; McKay, G. Adsorptive removal of endocrine disrupting bisphenol A from aqueous solution using chitosan. J. Environ. Chem. Eng. 2016, 4, 2647–2655. [Google Scholar] [CrossRef]
- Kusmierek, K.; Swiatkowski, A.; Kotkowski, T.; Cherbanski, R.; Molga, E. Adsorption of bisphenol a from aqueous solutions by activated tyre pyrolysis char-effect of physical and chemical activation. Chem. Process. Eng.-Inz. 2020, 41, 129–141. [Google Scholar]
- Martín-Lara, M.A.; Calero, M.; Ronda, A.; Iáñez-Rodríguez, I.; Escudero, C. Adsorptive behavior of an activated carbon for bisphenol A removal in single and binary (bisphenol A-heavy metal) solutions. Water 2020, 12, 2150. [Google Scholar] [CrossRef]
- Bugajski, P. Zmienność temperatury ścieków w małych systemach kanalizacyjnych. Infrastrukt. I Ekol. Teren. Wiej. 2013, 3, 103–113. [Google Scholar]
- Alisawi, H.A.O. Performance of wastewater treatment during variable temperature. Appl. Water Sci. 2020, 10, 89. [Google Scholar] [CrossRef]
- Bayramoglu, G.; Kilic, M.; Arica, M.Y. Tramates trogii biomass in carboxymethylcellulose-lignin composite beads for adsorption and biodegradation of bisphenol A. Biodegradation 2023, 34, 263–281. [Google Scholar] [CrossRef]
- Heo, J.; Yoon, Y.; Lee, G.; Kim, Y.; Han, J.; Park, C.M. Enhanced adsorption of bisphenol A and sulfamethoxazole by a novel magnetic CuZnFe2O–biochar composite. Bioresour. Technol. 2019, 281, 179–187. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, M. Adsorption Characteristics and Mechanism of Bisphenol A by Magnetic Biochar. Int. J. Environ. Res. Public. Health 2020, 17, 1075. [Google Scholar] [CrossRef]
- Yang, S.; Hai, F.I.; Nghiem, L.D.; Price, W.E.; Roddick, F.; Moreira, M.T.; Magram, S.F. Understanding the factors controlling the removal of trace organic contaminants by white-rot fungi and their lignin modifying enzymes: A critical review. Bioresour. Technol. 2013, 141, 97–108. [Google Scholar] [CrossRef]
- Lv, Y.; Ma, J.; Liu, K.; Jiang, Y.; Yang, G.; Liu, Y.; Lin, C.; Ye, X.; Shi, Y.; Liu, M.; et al. Rapid elimination of trace bisphenol pollutants with porous β-cyclodextrin modified cellulose nanofibrous membrane in water: Adsorption behavior and mechanism. J. Hazard. Mater. 2021, 403, 123666. [Google Scholar] [CrossRef]
- Lee, M.Y.; Ahmed, I.; Yu, K.; Lee, C.S.; Kang, K.K.; Jang, M.S.; Ahn, W.S. Aqueous adsorption of bisphenol A over a porphyrinic porous organic polymer. Chemosphere 2021, 265, 129161. [Google Scholar] [CrossRef]
- Yuan, W.; Zhou, L.; Zhang, Z.; Ying, Y.; Fan, W.; Chai, K.; Zhao, Z.; Tan, Z.; Shen, F.; Ji, H. Synergistic dual-functionalities of starch-grafted-styrene hydrophilic porous resin for efficiently removing bisphenols from wastewater. J. Chem. Eng. 2022, 429, 132350. [Google Scholar] [CrossRef]
- Li, S.; Li, Z.; Dong, Y.; Wang, Q.; Wang, C.; Wang, Z.; Wu, Q. Fabrication of chitin based hydrophilic hyper-crosslinked porous polymer for efficiently removing bisphenol A from water. Int. J. Biol. Macromol. 2024, 262, 129963. [Google Scholar] [CrossRef] [PubMed]
- Zhou, G.; Cao, Y.; Jin, Y.; Wang, C.; Wang, Y.; Hua, C.; Wu, S. Novel selective adsorption and photodegradation of BPA by molecularly imprinted sulfur doped nano-titanium dioxide. J. Clean. Prod. 2020, 274, 122929. [Google Scholar] [CrossRef]
- Men, X.; Guo, Q.; Meng, B.; Ren, S.; Shen, B. Adsorption of bisphenol A in aqueous solution by composite bentonite with organic moity. Micropor. Mesopor. Mat. 2020, 308, 110450. [Google Scholar] [CrossRef]
- Golveia, J.C.S.; Santiago, M.F.; Silva, M.B.; Campos, L.C.; Schimidt, F. Utilization of the Corncob Agro-Industrial Residue as a Potential Adsorbent in the Biosorption of Bisphenol-A. J. Braz. Chem. Soc. 2021, 32, 1396–1404. [Google Scholar] [CrossRef]
- Hashemzadeh, F.; Derakhshandeh, S.H.; Soori, M.M.; Khedri, F.; Rajabi, S. Bisphenol A adsorption using modified aloe vera leaf-wastes derived bio-sorbents from aqueous solution: Kinetic, isotherm, and thermodynamic studies. Int. J. Environ. Health Res. 2023, 34, 2031–2051. [Google Scholar] [CrossRef]
- Bohdziewicz, J.; Kamińska, G.; Kudlek, E. Wpływ stopnia odzysku permeatu na wydajność i efektywność nanofiltracyjnego doczyszczania ścieków komunalnych. JCEEA 2013, 60, 117–127. [Google Scholar] [CrossRef]
- Icten, O.; Ozer, D. Magnetite doped metal–organic framework nanocomposites: An efficient adsorbent for removal of bisphenol A pollutant. New J. Chem. 2021, 45, 2157–2166. [Google Scholar] [CrossRef]
- Fachina, Y.J.; Andrade, M.B.D.; Guerra, A.C.S.; Santos, T.R.T.D.; Bergamasco, R.; Vieira, A.M.S. Graphene oxide functionalized with cobalt ferrites applied to the removal of bisphenol A: Ionic study, reuse capacity and desorption kinetics. Environ. Technol. 2022, 43, 1388–1404. [Google Scholar] [CrossRef]
- Choma, A.; Nowak, K.; Komaniecka, I.; Waśko, A.; Pleszczyńska, M.; Siwulski, M.; Wiater, A. Chemical characterization of alkali-soluble polysaccharides isolated from a Boletus edulis (Bull.) fruiting body and their potential for heavy metal biosorption. Food Chem. 2018, 266, 329–334. [Google Scholar] [CrossRef]
- Tursi, A.; Chatzisymeon, E.; Chidichimo, F.; Beneduci, A.; Chidichimo, G. Removal of Endocrine Disrupting Chemicals from Water: Adsorption of Bisphenol-A by Biobased Hydrophobic Functionalized Cellulose. Int. J. Environ. Res. Public. Health. 2018, 15, 2419. [Google Scholar] [CrossRef]
- Ali, H.; Ibrahim, O.M.; Ali, A.S.M.; Mohamed, M.A.; Ghareeb, R.Y.; Hafez, E.E.; El-Aassar, M.R. Cross-Linked Chitosan/Gelatin Beads Loaded with Chlorella vulagris Microalgae/Zinc Oxide Nanoparticles for Adsorbing Carcinogenic Bisphenol A Pollutant from Water. ACS Omega 2022, 7, 27239–27248. [Google Scholar] [CrossRef] [PubMed]
- Yazid, H.; Bouzid, T.; El Himri, M.; Regti, A.; El Haddad, M. Bisphenol A (BPA) remediation using walnut shell as activated carbon employing experimental design for parameter optimization and theoretical study to establish the adsorption mechanism. Inorg. Chem. Commun. 2024, 161, 112064. [Google Scholar] [CrossRef]
- Zhang, Y.; Cheng, Y.; Chen, N.; Zhou, Y.; Li, B.; Gu, W.; Shi, X.; Xian, Y. Recyclable removal of bisphenol A from aqueous solution by reduced graphene oxide-magnetic nanoparticles: Adsorption and desorption. J. Colloid. Interface Sci. 2014, 421, 85–92. [Google Scholar] [CrossRef]
- Tappert, L.; Bunge, M.; Hoehne, D.; Dlugi, I.; Fetters, K.; Fischer, B.; Mueller, G.; Bock, M.; Gestermann, S. Bisphenol A in surface waters in Germany: Part I. Reassessment of sources and emissions pathways for FlowEQ modeling. Integr. Environ. Assess. Manag. 2023, 20, 211–225. [Google Scholar] [CrossRef]
- Klečka, G.M.; Staples, C.A.; Clark, K.E.; Van Der Hoeven, N.; Thomas, D.E.; Hentges, S.G. Exposure analysis of bisphenol A in surface water systems in North America and Europe. Environ. Sci. Technol. 2009, 43, 6145–6150. [Google Scholar] [CrossRef]
- Arnold, S.M.; Clark, K.E.; Staples, C.A.; Klecka, G.M.; Dimond, S.S.; Caspers, N.; Hentges, S.G. Relevance of drinking water as a source of human exposure to bisphenol A. J. Expo. Sci. Environ. Epidemiol. 2013, 23, 137–144. [Google Scholar] [CrossRef]
- Kulshreshtha, S.; Mathur, N.; Bhatnagar, P. Mushroom as a product and their role in mycoremediation. AMB Express 2014, 4, 29. [Google Scholar] [CrossRef]
- Bilal, M.; Rasheed, T.; Nabeel, F.; Iqbal, H.M.N.; Zhao, Y. Hazardous contaminants in the environment and their laccase-assisted degradation—A review. J. Environ. Manag. 2019, 234, 253–264. [Google Scholar] [CrossRef]
- Kołwzan, B.; Adamiak, W.; Dziubek, A. Możliwości zastosowania grzybów w technologiach oczyszczania i remediacji wybranych elementów środowiska. Ochr. Sr. 2018, 40, 3–20. [Google Scholar]
- Zawirska-Wojtasiak, R.; Siwulski, M.; Mildner-Szkudlarz, S.; Wąsowicz, E. Studies on the aroma of different species and strains of Pleurotus measured by GC/MS, sensory analysis and electronic nose. Acta Sci. Pol. Technol. Aliment. 2009, 8, 47–61. [Google Scholar]
- Siwulski, M.; Jasiñska, A.; Sobieralski, K.; Sas-Golak, I. Comparison of chemical composition of fruiting bodies of some edible mushrooms cultivated on sawdust. Ecol. Chem. Eng. A 2011, 18, 89–96. [Google Scholar]
Species | BPA Adsorbed in a Single Batch [mg/g] | Calculated Volume of Wastewater Effluent [m3/g] a | Calculated Volume of Surface Water [m3/g] b | Calculated Volume of Drinking Water [m3/g] c |
---|---|---|---|---|
CM10 | 6.56 | 10.1 | 18.7 | 469 |
PN13 | 6.16 | 9.48 | 17.6 | 440 |
PC8 | 5.92 | 9.11 | 16.9 | 423 |
CC30 | 6.00 | 9.23 | 17.1 | 429 |
LD36 | 5.76 | 8.86 | 16.5 | 411 |
Acronym | Species | Acronym | Species |
---|---|---|---|
Cultivated fungi | |||
LE1 | Lentinus edodes | PN13 | Pholiota nameko |
PO2 | Pleurotus ostreatus | HM14 | Hypsyzigus marmoreus (white) |
PP3 | Pleurotus pulmonarius | HM15 | Hypsyzigus marmoreus (brown) |
POf4 | Pleurotus ostreatus var. florida | HE16 | Hericium erinaceus |
PE5 | Pleurotus eryngii | AP17 | Auricularia polytricha |
PC6 | Pleurotus citrinopileatus | AAJ18 | Auricularia auricula-judae |
PD7 | Pleurotus djamor | AB19 | Agaricus bisporus (white) |
PC8 | Pleurotus columbinus | AB20 | Agaricus bisporus (brown) |
FV9 | Flammulina valutipes | AA21 | Agaricus arvensis |
CM10 | Clitocybe maxima | AB22 | Agaricus brasiliensis |
GL11 | Ganoderma lucidum | TF23 | Tremella fuciformis |
AC12 | Agrocybe cylindracea | ||
Wild fungi | |||
SR24 | Stropharia rugosoannulata | GA38 | Ganoderma applanatum |
AM25 | Armillaria mellea | GR39 | Ganoderma resinaceum |
SC26 | Sparasis crispa | GA40 | Ganoderma adspersum |
TV27 | Trametes versicolor | GC41 | Ganoderma carnosum |
CC28 | Coprinus comatus | PP42 | Phellinus pini |
TE29 | Tricholoma equestre | PR43 | Phellinus robustus |
CC30 | Cantharellus cibarius | FF44 | Fomes fomentarius |
BE31 | Boletus edulis | FP45 | Fomitopsis pinicola |
IB32 | Imleria badia | HA46 | Heterobasidion annosum |
LA33 | Leccinum aurantiacum | GO47 | Gleophyllum odoratum |
LS34 | Leccinum scabrum | PS48 | Pholiota squarossa |
MP35 | Macrolepiota procera | PO49 | Pleurotus ostreatus |
LD36 | Lactarius deliciosus | LS50 | Laetiporus sulphureus |
PB37 | Piptoporus betulinus |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wlizło, K.; Siwulski, M.; Kowalska-Krochmal, B.; Wiater, A. Exploring the Potential of Fungal Biomass for Bisphenol A Removal in Aquatic Environments. Int. J. Mol. Sci. 2024, 25, 11388. https://doi.org/10.3390/ijms252111388
Wlizło K, Siwulski M, Kowalska-Krochmal B, Wiater A. Exploring the Potential of Fungal Biomass for Bisphenol A Removal in Aquatic Environments. International Journal of Molecular Sciences. 2024; 25(21):11388. https://doi.org/10.3390/ijms252111388
Chicago/Turabian StyleWlizło, Kamila, Marek Siwulski, Beata Kowalska-Krochmal, and Adrian Wiater. 2024. "Exploring the Potential of Fungal Biomass for Bisphenol A Removal in Aquatic Environments" International Journal of Molecular Sciences 25, no. 21: 11388. https://doi.org/10.3390/ijms252111388
APA StyleWlizło, K., Siwulski, M., Kowalska-Krochmal, B., & Wiater, A. (2024). Exploring the Potential of Fungal Biomass for Bisphenol A Removal in Aquatic Environments. International Journal of Molecular Sciences, 25(21), 11388. https://doi.org/10.3390/ijms252111388