Cytokine Storm in COVID-19: Exploring IL-6 Signaling and Cytokine-Microbiome Interactions as Emerging Therapeutic Approaches
Abstract
:1. Introduction
2. The Hallmarks of Cytokine Storm in COVID-19
2.1. Key Proinflammatory Cytokines—Past and Present
2.1.1. IL-6
2.1.2. TNF-α
2.1.3. IL-1β
2.2. Correlation Between CS and Gut Microbiota in COVID-19
2.3. Current Diagnostic Methods for Identifying COVID-19 Cytokine Storm
2.4. Genetic Variations Characterizing the Cytokine Storm
2.5. Advances in Cytokine Storm Therapy Management
3. Conclusions and Open Questions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fajgenbaum, D.C.; June, C.H. Cytokine Storm. N. Engl. J. Med. 2020, 383, 2255–2273. [Google Scholar] [CrossRef] [PubMed]
- Karki, R.; Kanneganti, T.-D. The “Cytokine Storm”: Molecular Mechanisms and Therapeutic Prospects. Trends Immunol. 2021, 42, 681–705. [Google Scholar] [CrossRef] [PubMed]
- Chatenoud, L.; Ferran, C.; Legendre, C.; Thouard, I.; Merite, S.; Reuter, A.; Gevaert, Y.; Kreis, H.; Franchimont, P.; Bach, J.F. In Vivo Cell Activation following OKT3 Administration. Systemic Cytokine Release and Modulation by Corticosteroids. Transplantation 1990, 49, 697–702. [Google Scholar] [CrossRef] [PubMed]
- Suntharalingam, G.; Perry, M.R.; Ward, S.; Brett, S.J.; Castello-Cortes, A.; Brunner, M.D.; Panoskaltsis, N. Cytokine Storm in a Phase 1 Trial of the Anti-CD28 Monoclonal Antibody TGN1412. N. Engl. J. Med. 2006, 355, 1018–1028. [Google Scholar] [CrossRef] [PubMed]
- Paranga, T.G.; Pavel-Tanasa, M.; Constantinescu, D.; Plesca, C.E.; Petrovici, C.; Miftode, I.-L.; Moscalu, M.; Cianga, P.; Miftode, E.G. Comparison of C-Reactive Protein with Distinct Hyperinflammatory Biomarkers in Association with COVID-19 Severity, Mortality and SARS-CoV-2 Variants. Front. Immunol. 2023, 14, 1213246. [Google Scholar] [CrossRef]
- Paranga, T.G.; Pavel-tanasa, M.; Constantinescu, D.; Iftimi, E.; Plesca, C.E.; Miftode, I.; Cianga, P.; Miftode, E. Distinct Soluble Immune Checkpoint pro Fi Les Characterize COVID-19 Severity, Mortality and SARS-CoV-2 Variant Infections. Front. Immunol. 2024, 15, 1464480. [Google Scholar] [CrossRef]
- Cron, R.Q.; Goyal, G.; Chatham, W.W. Cytokine Storm Syndrome. Annu. Rev. Med. 2023, 74, 321–337. [Google Scholar] [CrossRef]
- Gu, Y.; Zuo, X.; Zhang, S.; Ouyang, Z.; Jiang, S.; Wang, F.; Wang, G. The Mechanism Behind Influenza Virus Cytokine Storm. Viruses 2021, 13, 1362. [Google Scholar] [CrossRef]
- Ombrello, M.J.; Schulert, G.S. COVID-19 and Cytokine Storm Syndrome: Are There Lessons from Macrophage Activation Syndrome? Transl. Res. 2021, 232, 1–12. [Google Scholar] [CrossRef]
- Kumar, V. Toll-like Receptors in Sepsis-Associated Cytokine Storm and Their Endogenous Negative Regulators as Future Immunomodulatory Targets. Int. Immunopharmacol. 2020, 89, 107087. [Google Scholar] [CrossRef]
- Eloseily, E.M.; Cron, R.Q. Bacteria-Associated Cytokine Storm Syndrome. Adv. Exp. Med. Biol. 2024, 1448, 275–283. [Google Scholar] [CrossRef] [PubMed]
- Sterba, G.; Sterba, Y. Parasitic and Fungal Triggers of Cytokine Storm Syndrome. Adv. Exp. Med. Biol. 2024, 1448, 293–305. [Google Scholar] [CrossRef] [PubMed]
- Canna, S.W.; Cron, R.Q. Highways to Hell: Mechanism-Based Management of Cytokine Storm Syndromes. J. Allergy Clin. Immunol. 2020, 146, 949–959. [Google Scholar] [CrossRef] [PubMed]
- Caricchio, R.; Gallucci, S. Systemic Lupus Erythematosus and Cytokine Storm. Adv. Exp. Med. Biol. 2024, 1448, 355–364. [Google Scholar] [CrossRef] [PubMed]
- Meng, J.; Ma, Y.; Jia, J.; Wang, M.; Teng, J.; Shi, H.; Liu, H.; Su, Y.; Ye, J.; Sun, Y.; et al. Cytokine Storm in Coronavirus Disease 2019 and Adult-Onset Still’s Disease: Similarities and Differences. Front. Immunol. 2020, 11, 603389. [Google Scholar] [CrossRef]
- Tsoukas, P.; Yeung, R.S.M. Kawasaki Disease-Associated Cytokine Storm Syndrome. Adv. Exp. Med. Biol. 2024, 1448, 365–383. [Google Scholar] [CrossRef]
- Fajgenbaum, D.C.; Uldrick, T.S.; Bagg, A.; Frank, D.; Wu, D.; Srkalovic, G.; Simpson, D.; Liu, A.Y.; Menke, D.; Chandrakasan, S.; et al. International, Evidence-Based Consensus Diagnostic Criteria for HHV-8-Negative/Idiopathic Multicentric Castleman Disease. Blood 2017, 129, 1646–1657. [Google Scholar] [CrossRef]
- Yongzhi, X. COVID-19-Associated Cytokine Storm Syndrome and Diagnostic Principles: An Old and New Issue. Emerg. Microbes Infect. 2021, 10, 266–276. [Google Scholar] [CrossRef]
- Hughes, A.D.; Teachey, D.T.; Diorio, C. Riding the Storm: Managing Cytokine-Related Toxicities in CAR-T Cell Therapy. Semin. Immunopathol. 2024, 46, 5. [Google Scholar] [CrossRef]
- Hines, M.R.; Knight, T.E.; McNerney, K.O.; Leick, M.B.; Jain, T.; Ahmed, S.; Frigault, M.J.; Hill, J.A.; Jain, M.D.; Johnson, W.T.; et al. Immune Effector Cell-Associated Hemophagocytic Lymphohistiocytosis-like Syndrome. Transplant. Cell. Ther. 2023, 29, e1–e438. [Google Scholar] [CrossRef]
- Kantarjian, H.; Stein, A.; Gökbuget, N.; Fielding, A.K.; Schuh, A.C.; Ribera, J.-M.; Wei, A.; Dombret, H.; Foà, R.; Bassan, R.; et al. Blinatumomab Versus Chemotherapy for Advanced Acute Lymphoblastic Leukemia. N. Engl. J. Med. 2017, 376, 836–847. [Google Scholar] [CrossRef] [PubMed]
- Jarczak, D.; Nierhaus, A. Cytokine Storm-Definition, Causes, and Implications. Int. J. Mol. Sci. 2022, 23, 11740. [Google Scholar] [CrossRef] [PubMed]
- Lukan, N. “Cytokine Storm”, Not Only in COVID-19 Patients. Mini-Review. Immunol. Lett. 2020, 228, 38–44. [Google Scholar] [CrossRef] [PubMed]
- Frazier, T.; Hogue, C.J.R.; Bonney, E.A.; Yount, K.M.; Pearce, B.D. Weathering the Storm; a Review of Pre-Pregnancy Stress and Risk of Spontaneous Abortion. Psychoneuroendocrinology 2018, 92, 142–154. [Google Scholar] [CrossRef] [PubMed]
- Zhao, D.; Yang, R.; Liu, S.; Ge, D.; Su, X. Study on the Characteristics of Early Cytokine Storm Response to Cardiac Surgery. J. Interf. Cytokine Res. Off. J. Int. Soc. Interf. Cytokine Res. 2023, 43, 351–358. [Google Scholar] [CrossRef]
- Wing, A.; Xu, J.; Meng, W.; Rosenfeld, A.M.; Li, E.Y.; Wertheim, G.; Paessler, M.; Bagg, A.; Frank, D.; Tan, K.; et al. Transcriptome and Unique Cytokine Microenvironment of Castleman Disease. Mod. Pathol. Off. J. United States Can. Acad. Pathol. Inc. 2022, 35, 451–461. [Google Scholar] [CrossRef]
- Wang, J.; Jiang, M.; Chen, X.; Montaner, L.J. Cytokine Storm and Leukocyte Changes in Mild versus Severe SARS-CoV-2 Infection: Review of 3939 COVID-19 Patients in China and Emerging Pathogenesis and Therapy Concepts. J. Leukoc. Biol. 2020, 108, 17–41. [Google Scholar] [CrossRef]
- Dharra, R.; Sharma, A.K.; Datta, S. Emerging Aspects of Cytokine Storm in COVID-19: The Role of Proinflammatory Cytokines and Therapeutic Prospects. Cytokine 2023, 169, 156287. [Google Scholar] [CrossRef]
- Lucas, C.; Wong, P.; Klein, J.; Castro, T.B.R.; Silva, J.; Sundaram, M.; Ellingson, M.K.; Mao, T.; Oh, J.E.; Israelow, B.; et al. Longitudinal Analyses Reveal Immunological Misfiring in Severe COVID-19. Nature 2020, 584, 463–469. [Google Scholar] [CrossRef]
- Hu, B.; Huang, S.; Yin, L. The Cytokine Storm and COVID-19. J. Med. Virol. 2021, 93, 250–256. [Google Scholar] [CrossRef]
- Song, P.; Li, W.; Xie, J.; Hou, Y.; You, C. Cytokine Storm Induced by SARS-CoV-2. Clin. Chim. Acta 2020, 509, 280–287. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Tang, G.; Liu, Y.; Zhang, L.; Chen, B.; Han, Y.; Fu, Z.; Wang, L.; Hu, G.; Ma, Q.; et al. The Role of IL-6 in Coronavirus, Especially in COVID-19. Front. Pharmacol. 2022, 13, 1033674. [Google Scholar] [CrossRef] [PubMed]
- Grebenciucova, E.; VanHaerents, S. Interleukin 6: At the Interface of Human Health and Disease. Front. Immunol. 2023, 14, 1255533. [Google Scholar] [CrossRef] [PubMed]
- Forcina, L.; Franceschi, C.; Musarò, A. The Hormetic and Hermetic Role of IL-6. Ageing Res. Rev. 2022, 80, 101697. [Google Scholar] [CrossRef] [PubMed]
- Rose-John, S.; Jenkins, B.J.; Garbers, C.; Moll, J.M.; Scheller, J. Targeting IL-6 Trans-Signalling: Past, Present and Future Prospects. Nat. Rev. Immunol. 2023, 23, 666–681. [Google Scholar] [CrossRef]
- Monsour, M.; Croci, D.M.; Agazzi, S.; Borlongan, C.V. Contemplating IL-6, a Double-Edged Sword Cytokine: Which Side to Use for Stroke Pathology? CNS Neurosci. Ther. 2023, 29, 493–497. [Google Scholar] [CrossRef]
- Du, P.; Geng, J.; Wang, F.; Chen, X.; Huang, Z.; Wang, Y. Role of IL-6 Inhibitor in Treatment of COVID-19-Related Cytokine Release Syndrome. Int. J. Med. Sci. 2021, 18, 1356–1362. [Google Scholar] [CrossRef]
- Hasanvand, A. COVID-19 and the Role of Cytokines in This Disease. Inflammopharmacology 2022, 30, 789–798. [Google Scholar] [CrossRef]
- Korotaeva, A.A.; Samoilova, E.V.; Pogosova, N.V.; Kuchiev, D.T.; Gomyranova, N.V.; Paleev, F.N. Factors of Interleukin-6 Signaling in COVID-19 Patients with Lung Damage of Varying Degrees: A Pilot Study. Bull. Exp. Biol. Med. 2024, 176, 772–775. [Google Scholar] [CrossRef]
- Drost, C.C.; Rovas, A.; Osiaevi, I.; Schughart, K.; Lukasz, A.; Linke, W.A.; Pavenstädt, H.; Kümpers, P. Interleukin-6 Drives Endothelial Glycocalyx Damage in COVID-19 and Bacterial Sepsis. Angiogenesis 2024, 27, 411–422. [Google Scholar] [CrossRef]
- Qidwai, T. Cytokine Storm in COVID-19 and Malaria: Annals of pro-Inflammatory Cytokines. Cytokine 2024, 173, 156420. [Google Scholar] [CrossRef] [PubMed]
- Lazzaroni, M.G.; Piantoni, S.; Masneri, S.; Garrafa, E.; Martini, G.; Tincani, A.; Andreoli, L.; Franceschini, F. Coagulation Dysfunction in COVID-19: The Interplay between Inflammation, Viral Infection and the Coagulation System. Blood Rev. 2021, 46, 100745. [Google Scholar] [CrossRef] [PubMed]
- Lavillegrand, J.-R.; Garnier, M.; Spaeth, A.; Mario, N.; Hariri, G.; Pilon, A.; Berti, E.; Fieux, F.; Thietart, S.; Urbina, T.; et al. Elevated Plasma IL-6 and CRP Levels Are Associated with Adverse Clinical Outcomes and Death in Critically Ill SARS-CoV-2 Patients: Inflammatory Response of SARS-CoV-2 Patients. Ann. Intensive Care 2021, 11, 9. [Google Scholar] [CrossRef] [PubMed]
- Aliyu, M.; Zohora, F.T.; Anka, A.U.; Ali, K.; Maleknia, S.; Saffarioun, M.; Azizi, G. Interleukin-6 Cytokine: An Overview of the Immune Regulation, Immune Dysregulation, and Therapeutic Approach. Int. Immunopharmacol. 2022, 111, 109130. [Google Scholar] [CrossRef]
- Carlini, V.; Noonan, D.M.; Abdalalem, E.; Goletti, D.; Sansone, C.; Calabrone, L.; Albini, A. The Multifaceted Nature of IL-10: Regulation, Role in Immunological Homeostasis and Its Relevance to Cancer, COVID-19 and Post-COVID Conditions. Front. Immunol. 2023, 14, 1161067. [Google Scholar] [CrossRef]
- Al-Qahtani, A.A.; Alhamlan, F.S.; Al-Qahtani, A.A. Pro-Inflammatory and Anti-Inflammatory Interleukins in Infectious Diseases: A Comprehensive Review. Trop. Med. Infect. Dis. 2024, 9, 13. [Google Scholar] [CrossRef]
- Dhawan, M.; Rabaan, A.A.; Alwarthan, S.; Alhajri, M.; Halwani, M.A.; Alshengeti, A.; Najim, M.A.; Alwashmi, A.S.S.; Alshehri, A.A.; Alshamrani, S.A.; et al. Regulatory T Cells (Tregs) and COVID-19: Unveiling the Mechanisms, and Therapeutic Potentialities with a Special Focus on Long COVID. Vaccines 2023, 11, 699. [Google Scholar] [CrossRef]
- Nara, H.; Watanabe, R. Anti-Inflammatory Effect of Muscle-Derived Interleukin-6 and Its Involvement in Lipid Metabolism. Int. J. Mol. Sci. 2021, 22, 9889. [Google Scholar] [CrossRef]
- Chen, L.Y.C.; Hoiland, R.L.; Stukas, S.; Wellington, C.L.; Sekhon, M.S. Confronting the Controversy: Interleukin-6 and the COVID-19 Cytokine Storm Syndrome. Eur. Respir. J. 2020, 56, 2003006. [Google Scholar] [CrossRef]
- Plocque, A.; Mitri, C.; Lefèvre, C.; Tabary, O.; Touqui, L.; Philippart, F. Should We Interfere with the Interleukin-6 Receptor During COVID-19: What Do We Know So Far? Drugs 2023, 83, 1–36. [Google Scholar] [CrossRef]
- Khafaei, M.; Asghari, R.; Zafari, F.; Sadeghi, M. Impact of IL-6 Rs1800795 and IL-17A Rs2275913 Gene Polymorphisms on the COVID-19 Prognosis and Susceptibility in a Sample of Iranian Patients. Cytokine 2024, 174, 156445. [Google Scholar] [CrossRef] [PubMed]
- Deng, X.; Tang, K.; Wang, Z.; He, S.; Luo, Z. Impacts of Inflammatory Cytokines Variants on Systemic Inflammatory Profile and COVID-19 Severity. J. Epidemiol. Glob. Health 2024, 14, 363–378. [Google Scholar] [CrossRef] [PubMed]
- Noureddine, R.; Baba, H.; Aqillouch, S.; Abounouh, K.; Laazaazia, O.; Elmessaoudi-Idrissi, M.; Bahmani, F.Z.; Tanouti, I.A.; Ouladlahsen, A.; Sarih, M.; et al. The Interleukin-6 Gene Variants May Protect against SARS-CoV-2 Infection and the Severity of COVID-19: A Case-Control Study in a Moroccan Population. BMC Med. Genom. 2024, 17, 139. [Google Scholar] [CrossRef] [PubMed]
- Zawawi, Z.M.; Kalyanasundram, J.; Zain, R.M.; Thayan, R.; Basri, D.F.; Yap, W.B. Prospective Roles of Tumor Necrosis Factor-Alpha (TNF-α) in COVID-19: Prognosis, Therapeutic and Management. Int. J. Mol. Sci. 2023, 24, 6142. [Google Scholar] [CrossRef] [PubMed]
- van Loo, G.; Bertrand, M.J.M. Death by TNF: A Road to Inflammation. Nat. Rev. Immunol. 2023, 23, 289–303. [Google Scholar] [CrossRef]
- Tang, Y.; Liu, J.; Zhang, D.; Xu, Z.; Ji, J.; Wen, C. Cytokine Storm in COVID-19: The Current Evidence and Treatment Strategies. Front Immunol. 2020, 11, 1708. [Google Scholar] [CrossRef]
- Del Valle, D.M.; Kim-Schulze, S.; Huang, H.-H.; Beckmann, N.D.; Nirenberg, S.; Wang, B.; Lavin, Y.; Swartz, T.H.; Madduri, D.; Stock, A.; et al. An Inflammatory Cytokine Signature Predicts COVID-19 Severity and Survival. Nat. Med. 2020, 26, 1636–1643. [Google Scholar] [CrossRef]
- Halim, C.; Mirza, A.F.; Sari, M.I. The Association between TNF-α, IL-6, and Vitamin D Levels and COVID-19 Severity and Mortality: A Systematic Review and Meta-Analysis. Pathogens 2022, 11, 195. [Google Scholar] [CrossRef]
- Lighter, J.; Phillips, M.; Hochman, S.; Sterling, S.; Johnson, D.; Francois, F.; Stachel, A. Obesity in Patients Younger Than 60 Years Is a Risk Factor for COVID-19 Hospital Admission. Clin. Infect. Dis. 2020, 71, 896–897. [Google Scholar] [CrossRef]
- Zheng, K.I.; Gao, F.; Wang, X.-B.; Sun, Q.-F.; Pan, K.-H.; Wang, T.-Y.; Ma, H.-L.; Chen, Y.-P.; Liu, W.-Y.; George, J.; et al. Letter to the Editor: Obesity as a Risk Factor for Greater Severity of COVID-19 in Patients with Metabolic Associated Fatty Liver Disease. Microorganism 2020, 108, 154244. [Google Scholar] [CrossRef]
- Yang, X.; Yu, Y.; Xu, J.; Shu, H.; Xia, J.; Liu, H.; Wu, Y.; Zhang, L.; Yu, Z.; Fang, M.; et al. Clinical Course and Outcomes of Critically Ill Patients with SARS-CoV-2 Pneumonia in Wuhan, China: A Single-Centered, Retrospective, Observational Study. Lancet Respir. Med. 2020, 8, 475–481. [Google Scholar] [CrossRef] [PubMed]
- Balzanelli, M.G.; Distratis, P.; Lazzaro, R.; Cefalo, A.; Catucci, O.; Aityan, S.K.; Dipalma, G.; Vimercati, L.; Inchingolo, A.D.; Maggiore, M.E.; et al. The Vitamin D, IL-6 and the EGFR Markers a Possible Way to Elucidate the Lung-Heart-Kidney Cross-Talk in COVID-19 Disease: A Foregone Conclusion. Microorganisms 2021, 9, 1903. [Google Scholar] [CrossRef] [PubMed]
- Udomsinprasert, W.; Jittikoon, J.; Sangroongruangsri, S.; Chaikledkaew, U. Circulating Levels of Interleukin-6 and Interleukin-10, But Not Tumor Necrosis Factor-Alpha, as Potential Biomarkers of Severity and Mortality for COVID-19: Systematic Review with Meta-Analysis. J. Clin. Immunol. 2021, 41, 11–22. [Google Scholar] [CrossRef] [PubMed]
- Karki, R.; Sharma, B.R.; Tuladhar, S.; Williams, E.P.; Zalduondo, L.; Samir, P.; Zheng, M.; Sundaram, B.; Banoth, B.; Malireddi, R.K.S.; et al. Synergism of TNF-α and IFN-γ Triggers Inflammatory Cell Death, Tissue Damage, and Mortality in SARS-CoV-2 Infection and Cytokine Shock Syndromes. Cell 2021, 184, 149. [Google Scholar] [CrossRef] [PubMed]
- Eldesouki, R.E.; Kishk, R.M.; Abd El-Fadeal, N.M.; Mahran, R.I.; Kamel, N.; Riad, E.; Nemr, N.; Kishk, S.M.; Mohammed, E.A.-M. Association of IL-10-592 C > A /-1082 A > G and the TNFα -308 G > A with Susceptibility to COVID-19 and Clinical Outcomes. BMC Med. Genom. 2024, 17, 40. [Google Scholar] [CrossRef]
- Pyrillou, K.; Burzynski, L.C.; Clarke, M.C.H. Alternative Pathways of IL-1 Activation, and Its Role in Health and Disease. Front. Immunol. 2020, 11, 613170. [Google Scholar] [CrossRef]
- Makaremi, S.; Asgarzadeh, A.; Kianfar, H.; Mohammadnia, A.; Asghariazar, V.; Safarzadeh, E. The Role of IL-1 Family of Cytokines and Receptors in Pathogenesis of COVID-19. Inflamm. Res. 2022, 71, 923–947. [Google Scholar] [CrossRef]
- Nezhad, M.G.; Jami, G.; Kooshkaki, O.; Chamani, S.; Naghizadeh, A. The Role of Inflammatory Cytokines (Interleukin-1 and Interleukin-6) as a Potential Biomarker in the Different Stages of COVID-19 (Mild, Severe, and Critical). J. Interferon Cytokine Res. 2023, 43, 147–163. [Google Scholar] [CrossRef]
- Lücke, J.; Heinrich, F.; Malsy, J.; Meins, N.; Schnell, J.; Böttcher, M.; Nawrocki, M.; Zhang, T.; Bertram, F.; Sabihi, M.; et al. Intestinal IL-1β Plays a Role in Protecting against SARS-CoV-2 Infection. J. Immunol. 2023, 211, 1052–1061. [Google Scholar] [CrossRef]
- Qudus, M.S.; Tian, M.; Sirajuddin, S.; Liu, S.; Afaq, U.; Wali, M.; Liu, J.; Pan, P.; Luo, Z.; Zhang, Q.; et al. The Roles of Critical Pro-inflammatory Cytokines in the Drive of Cytokine Storm During SARS-CoV-2 Infection. J. Med. Virol. 2023, 95, e28751. [Google Scholar] [CrossRef]
- Costela-Ruiz, V.J.; Illescas-Montes, R.; Puerta-Puerta, J.M.; Ruiz, C.; Melguizo-Rodríguez, L. SARS-CoV-2 Infection: The Role of Cytokines in COVID-19 Disease. Cytokine Growth Factor Rev. 2020, 54, 62–75. [Google Scholar] [CrossRef] [PubMed]
- Schultheiß, C.; Willscher, E.; Paschold, L.; Gottschick, C.; Klee, B.; Henkes, S.-S.; Bosurgi, L.; Dutzmann, J.; Sedding, D.; Frese, T.; et al. The IL-1β, IL-6, and TNF Cytokine Triad Is Associated with Post-Acute Sequelae of COVID-19. Cell Rep. Med. 2022, 3, 100663. [Google Scholar] [CrossRef] [PubMed]
- Gomes, S.M.R.; de Brito, A.C.S.; Manfro, W.F.P.; Ribeiro-Alves, M.; de Ribeiro, R.S.A.; da Cal, M.S.; da Lisboa, V.C.; de Abreu, D.P.B.; Castilho, L.D.R.; de Porto, L.C.M.S.; et al. High Levels of Pro-Inflammatory SARS-CoV-2-Specific Biomarkers Revealed by In Vitro Whole Blood Cytokine Release Assay (CRA) in Recovered and Long-COVID-19 Patients. PLoS ONE 2023, 18, e0283983. [Google Scholar] [CrossRef] [PubMed]
- Alonso-Domínguez, J.; Gallego-Rodríguez, M.; Martínez-Barros, I.; Calderón-Cruz, B.; Leiro-Fernández, V.; Pérez-González, A.; Poveda, E. High Levels of IL-1β, TNF-α and MIP-1α One Month after the Onset of the Acute SARS-CoV-2 Infection, Predictors of Post COVID-19 in Hospitalized Patients. Microorganisms 2023, 11, 2396. [Google Scholar] [CrossRef]
- Chen, Y.; Chen, C. Gut Microbiota, Inflammatory Proteins and COVID-19: A Mendelian Randomisation Study. Front. Immunol. 2024, 15, 1406291. [Google Scholar] [CrossRef]
- Giovanetti, M.; Pannella, G.; Altomare, A.; Rocchi, G.; Guarino, M.; Ciccozzi, M.; Riva, E.; Gherardi, G. Exploring the Interplay between COVID-19 and Gut Health: The Potential Role of Prebiotics and Probiotics in Immune Support. Viruses 2024, 16, 370. [Google Scholar] [CrossRef]
- Keely, S.; Talley, N.J.; Hansbro, P.M. Pulmonary-Intestinal Cross-Talk in Mucosal Inflammatory Disease. Mucosal Immunol. 2012, 5, 7–18. [Google Scholar] [CrossRef]
- Ancona, G.; Alagna, L.; Alteri, C.; Palomba, E.; Tonizzo, A.; Pastena, A.; Muscatello, A.; Gori, A.; Bandera, A. Gut and Airway Microbiota Dysbiosis and Their Role in COVID-19 and Long-COVID. Front. Immunol. 2023, 14, 1080043. [Google Scholar] [CrossRef]
- Rizzello, F.; Viciani, E.; Gionchetti, P.; Filippone, E.; Imbesi, V.; Melotti, L.; Dussias, N.K.; Salice, M.; Santacroce, B.; Padella, A.; et al. Signatures of Disease Outcome Severity in the Intestinal Fungal and Bacterial Microbiome of COVID-19 Patients. Front. Cell. Infect. Microbiol. 2024, 14, 1352202. [Google Scholar] [CrossRef]
- Essex, M.; Pascual-Leone, B.M.; Löber, U.; Kuhring, M.; Zhang, B.; Brüning, U.; Fritsche-Guenther, R.; Krzanowski, M.; Vernengo, F.F.; Brumhard, S.; et al. Gut Microbiota Dysbiosis Is Associated with Altered Tryptophan Metabolism and Dysregulated Inflammatory Response in COVID-19. NPJ Biofilms Microbiomes 2024, 10, 66. [Google Scholar] [CrossRef]
- Zhang, F.; Lau, R.I.; Liu, Q.; Su, Q.; Chan, F.K.L.; Ng, S.C. Gut Microbiota in COVID-19: Key Microbial Changes, Potential Mechanisms and Clinical Applications. Nat. Rev. Gastroenterol. Hepatol. 2023, 20, 323–337. [Google Scholar] [CrossRef] [PubMed]
- Yeoh, Y.K.; Zuo, T.; Lui, G.C.-Y.; Zhang, F.; Liu, Q.; Li, A.Y.; Chung, A.C.; Cheung, C.P.; Tso, E.Y.; Fung, K.S.; et al. Gut Microbiota Composition Reflects Disease Severity and Dysfunctional Immune Responses in Patients with COVID-19. Gut 2021, 70, 698–706. [Google Scholar] [CrossRef] [PubMed]
- Giron, L.B.; Dweep, H.; Yin, X.; Wang, H.; Damra, M.; Goldman, A.R.; Gorman, N.; Palmer, C.S.; Tang, H.-Y.; Shaikh, M.W.; et al. Plasma Markers of Disrupted Gut Permeability in Severe COVID-19 Patients. Front. Immunol. 2021, 12, 686240. [Google Scholar] [CrossRef]
- Nagata, N.; Takeuchi, T.; Masuoka, H.; Aoki, R.; Ishikane, M.; Iwamoto, N.; Sugiyama, M.; Suda, W.; Nakanishi, Y.; Terada-Hirashima, J.; et al. Human Gut Microbiota and Its Metabolites Impact Immune Responses in COVID-19 and Its Complications. Gastroenterology 2023, 164, 272–288. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Wan, Y.; Zuo, T.; Yeoh, Y.K.; Liu, Q.; Zhang, L.; Zhan, H.; Lu, W.; Xu, W.; Lui, G.C.Y.; et al. Prolonged Impairment of Short-Chain Fatty Acid and L-Isoleucine Biosynthesis in Gut Microbiome in Patients With COVID-19. Gastroenterology 2022, 162, 548–561.e4. [Google Scholar] [CrossRef]
- Liu, S.; Wang, B.; Chen, T.; Wang, H.; Liu, J.; Zhao, X.; Zhang, Y. Two New and Effective Food-Extracted Immunomodulatory Agents Exhibit Anti-Inflammatory Response Activity in the HACE2 Acute Lung Injury Murine Model of COVID-19. Front. Immunol. 2024, 15, 1374541. [Google Scholar] [CrossRef]
- Cione, E.; Siniscalchi, A.; Gangemi, P.; Cosco, L.; Colosimo, M.; Longhini, F.; Luciani, F.; De Sarro, G.; Berrino, L.; D’Agostino, B.; et al. Neuron-Specific Enolase Serum Levels in COVID-19 Are Related to the Severity of Lung Injury. PLoS ONE 2021, 16, e0251819. [Google Scholar] [CrossRef]
- Shen, Y.; Cheng, C.; Zheng, X.; Jin, Y.; Duan, G.; Chen, M.; Chen, S. Elevated Procalcitonin Is Positively Associated with the Severity of COVID-19: A Meta-Analysis Based on 10 Cohort Studies. Medicina 2021, 57, 594. [Google Scholar] [CrossRef]
- SB, M.J.; Chacko, B.; Selvarajan, S.; Peter, J.V.; Geevar, T.; Dave, R.G.; Georgy, J.T.; Zachariah, A.; George, T.; Sathyendra, S.; et al. Biomarkers of Coagulation, Endothelial, Platelet Function, and Fibrinolysis in Patients with COVID-19: A Prospective Study. Sci. Rep. 2024, 14, 2011. [Google Scholar] [CrossRef]
- Metkus, T.S.; Sokoll, L.J.; Barth, A.S.; Czarny, M.J.; Hays, A.G.; Lowenstein, C.J.; Michos, E.D.; Nolley, E.P.; Post, W.S.; Resar, J.R.; et al. Myocardial Injury in Severe COVID-19 Compared with Non-COVID-19 Acute Respiratory Distress Syndrome. Circulation 2021, 143, 553–565. [Google Scholar] [CrossRef]
- Shi, S.; Qin, M.; Shen, B.; Cai, Y.; Liu, T.; Yang, F.; Gong, W.; Liu, X.; Liang, J.; Zhao, Q.; et al. Association of Cardiac Injury with Mortality in Hospitalized Patients with COVID-19 in Wuhan, China. JAMA Cardiol. 2020, 5, 802–810. [Google Scholar] [CrossRef] [PubMed]
- Ochoa-Ramírez, L.A.; De la Herrán Arita, A.K.; Sanchez-Zazueta, J.G.; Ríos-Burgueño, E.; Murillo-Llanes, J.; De Jesús-González, L.A.; Farfan-Morales, C.N.; Cordero-Rivera, C.D.; Del Ángel, R.M.; Romero-Utrilla, A.; et al. Association between Lipid Profile and Clinical Outcomes in COVID-19 Patients. Sci. Rep. 2024, 14, 12139. [Google Scholar] [CrossRef] [PubMed]
- Sarkar, A.; Sanyal, S.; Majumdar, A.; Tewari, D.N.; Bhattacharjee, U.; Pal, J.; Chakrabarti, A.K.; Dutta, S. Development of Lab Score System for Predicting COVID-19 Patient Severity: A Retrospective Analysis. PLoS ONE 2022, 17, e0273006. [Google Scholar] [CrossRef] [PubMed]
- Antunez Muiños, P.J.; López Otero, D.; Amat-Santos, I.J.; López País, J.; Aparisi, A.; Cacho Antonio, C.E.; Catalá, P.; González Ferrero, T.; Cabezón, G.; Otero García, O.; et al. The COVID-19 Lab Score: An Accurate Dynamic Tool to Predict in-Hospital Outcomes in COVID-19 Patients. Sci. Rep. 2021, 11, 9361. [Google Scholar] [CrossRef] [PubMed]
- Statsenko, Y.; Al Zahmi, F.; Habuza, T.; Gorkom, K.N.-V.; Zaki, N. Prediction of COVID-19 Severity Using Laboratory Findings on Admission: Informative Values, Thresholds, ML Model Performance. BMJ Open 2021, 11, e044500. [Google Scholar] [CrossRef]
- Wendland, P.; Schmitt, V.; Zimmermann, J.; Häger, L.; Göpel, S.; Schenkel-Häger, C.; Kschischo, M. Machine Learning Models for Predicting Severe COVID-19 Outcomes in Hospitals. Inform. Med. Unlocked 2023, 37, 101188. [Google Scholar] [CrossRef]
- Laatifi, M.; Douzi, S.; Ezzine, H.; El Asry, C.; Naya, A.; Bouklouze, A.; Zaid, Y.; Naciri, M. Explanatory Predictive Model for COVID-19 Severity Risk Employing Machine Learning, Shapley Addition, and LIME. Sci. Rep. 2023, 13, 5481. [Google Scholar] [CrossRef]
- Rashidi, H.H.; Ikram, A.; Dang, L.T.; Bashir, A.; Zohra, T.; Ali, A.; Tanvir, H.; Mudassar, M.; Ravindran, R.; Akhtar, N.; et al. Comparing Machine Learning Screening Approaches Using Clinical Data and Cytokine Profiles for COVID-19 in Resource-Limited and Resource-Abundant Settings. Sci. Rep. 2024, 14, 14892. [Google Scholar] [CrossRef]
- Cabaro, S.; D’Esposito, V.; Di Matola, T.; Sale, S.; Cennamo, M.; Terracciano, D.; Parisi, V.; Oriente, F.; Portella, G.; Beguinot, F.; et al. Cytokine Signature and COVID-19 Prediction Models in the Two Waves of Pandemics. Sci. Rep. 2021, 11, 20793. [Google Scholar] [CrossRef]
- Hawerkamp, H.C.; Dyer, A.H.; Patil, N.D.; McElheron, M.; O’Dowd, N.; O’Doherty, L.; Mhaonaigh, A.U.; George, A.M.; O’Halloran, A.M.; Reddy, C.; et al. Characterisation of the Pro-Inflammatory Cytokine Signature in Severe COVID-19. Front. Immunol. 2023, 14, 1170012. [Google Scholar] [CrossRef]
- Kalinina, O.; Golovkin, A.; Zaikova, E.; Aquino, A.; Bezrukikh, V.; Melnik, O.; Vasilieva, E.; Karonova, T.; Kudryavtsev, I.; Shlyakhto, E. Cytokine Storm Signature in Patients with Moderate and Severe COVID-19. Int. J. Mol. Sci. 2022, 23, 8879. [Google Scholar] [CrossRef] [PubMed]
- Maaß, H.; Ynga-Durand, M.; Milošević, M.; Krstanović, F.; Matešić, M.P.; Žuža, I.; Jonjić, S.; Brizić, I.; Šustić, A.; Bloos, F.; et al. Serum Cytokine Dysregulation Signatures Associated with COVID-19 Outcomes in High Mortality Intensive Care Unit Cohorts across Pandemic Waves and Variants. Sci. Rep. 2024, 14, 13605. [Google Scholar] [CrossRef] [PubMed]
- Diorio, C.; Shaw, P.A.; Pequignot, E.; Orlenko, A.; Chen, F.; Aplenc, R.; Barrett, D.M.; Bassiri, H.; Behrens, E.; DiNofia, A.M.; et al. Diagnostic Biomarkers to Differentiate Sepsis from Cytokine Release Syndrome in Critically Ill Children. Blood Adv. 2020, 4, 5174–5183. [Google Scholar] [CrossRef] [PubMed]
- Kessel, C.; Vollenberg, R.; Masjosthusmann, K.; Hinze, C.; Wittkowski, H.; Debaugnies, F.; Nagant, C.; Corazza, F.; Vély, F.; Kaplanski, G.; et al. Discrimination of COVID-19 From Inflammation-Induced Cytokine Storm Syndromes Using Disease-Related Blood Biomarkers. Arthritis Rheumatol. 2021, 73, 1791–1799. [Google Scholar] [CrossRef]
- Wood, H.; Jones, J.R.; Hui, K.; Mare, T.; Pirani, T.; Galloway, J.; Metaxa, V.; Benjamin, R.; Rutherford, A.; Cain, S.; et al. Secondary HLH Is Uncommon in Severe COVID-19. Br. J. Haematol. 2020, 190, e283–e285. [Google Scholar] [CrossRef]
- Hakim, N.N.; Chi, J.; Olazagasti, C.; Liu, J.M. Secondary Hemophagocytic Lymphohistiocytosis versus Cytokine Release Syndrome in Severe COVID-19 Patients. Exp. Biol. Med. 2021, 246, 5–9. [Google Scholar] [CrossRef]
- Onuk, S.; Sipahioğlu, H.; Karahan, S.; Yeşiltepe, A.; Kuzugüden, S.; Karabulut, A.; Dursun, Z.B.; Akın, A. Cytokine Levels and Severity of Illness Scoring Systems to Predict Mortality in COVID-19 Infection. Healthcare 2023, 11, 387. [Google Scholar] [CrossRef]
- Ruytinx, P.; Vandormael, P.; Fraussen, J.; Pieters, Z.; Thonissen, S.; Hellings, N.; Stinissen, P.; Callebaut, I.; Penders, J.; Vanhove, K.; et al. Comprehensive Antibody and Cytokine Profiling in Hospitalized COVID-19 Patients in Relation to Clinical Outcomes in a Large Belgian Cohort. Sci. Rep. 2023, 13, 19322. [Google Scholar] [CrossRef]
- Copaescu, A.; Smibert, O.; Gibson, A.; Phillips, E.J.; Trubiano, J.A. The Role of IL-6 and Other Mediators in the Cytokine Storm Associated with SARS-CoV-2 Infection. J. Allergy Clin. Immunol. 2020, 146, 518–534.e1. [Google Scholar] [CrossRef]
- Gao, Y.; Li, T.; Han, M.; Li, X.; Wu, D.; Xu, Y.; Zhu, Y.; Liu, Y.; Wang, X.; Wang, L. Diagnostic Utility of Clinical Laboratory Data Determinations for Patients with the Severe COVID-19. J. Med. Virol. 2020, 92, 791–796. [Google Scholar] [CrossRef]
- Liu, C.; Chu, D.; Kalantar-Zadeh, K.; George, J.; Young, H.A.; Liu, G. Cytokines: From Clinical Significance to Quantification. Adv. Sci. 2021, 8, e2004433. [Google Scholar] [CrossRef] [PubMed]
- Verberk, I.M.; Nossent, E.J.; Bontkes, H.J.; Teunissen, C.E. Pre-Analytical Sample Handling Effects on Blood Cytokine Levels: Quality Control of a COVID-19 Biobank. Biomark. Med. 2021, 15, 987–997. [Google Scholar] [CrossRef] [PubMed]
- Cohen, L.; Keegan, A.; Melanson, S.E.F.; Walt, D.R. Impact of Clinical Sample Handling and Processing on Ultra-Low Level Measurements of Plasma Cytokines. Clin. Biochem. 2019, 65, 38–44. [Google Scholar] [CrossRef] [PubMed]
- Hao, Z.; Luo, Y.; Huang, C.; Wang, Z.; Song, G.; Pan, Y.; Zhao, X.; Liu, S. An Intelligent Graphene-Based Biosensing Device for Cytokine Storm Syndrome Biomarkers Detection in Human Biofluids. Small 2021, 17, e2101508. [Google Scholar] [CrossRef] [PubMed]
- De Silva, T.; Fawzy, M.; Hasani, A.; Ghanbari, H.; Abnavi, A.; Askar, A.; Ling, Y.; Mohammadzadeh, M.R.; Kabir, F.; Ahmadi, R.; et al. Ultrasensitive Rapid Cytokine Sensors Based on Asymmetric Geometry Two-Dimensional MoS(2) Diodes. Nat. Commun. 2022, 13, 7593. [Google Scholar] [CrossRef]
- Calvo-Alvarez, E.; D’Alessandro, S.; Zanotta, N.; Basilico, N.; Parapini, S.; Signorini, L.; Perego, F.; Maina, K.K.; Ferrante, P.; Modenese, A.; et al. Multiplex Array Analysis of Circulating Cytokines and Chemokines in COVID-19 Patients during the First Wave of the SARS-CoV-2 Pandemic in Milan, Italy. BMC Immunol. 2024, 25, 49. [Google Scholar] [CrossRef]
- Izquierdo, M.B.; Romo, A.M.N.; Zafra, A.G.S.; Garrido, J. de D.L.-G. Predictors of Mortality in Patients with COVID-19 by Flow Cytometry. Clin. Immunol. Commun. 2023, 3, 14–20. [Google Scholar] [CrossRef]
- Liu, J.; Li, S.; Liu, J.; Liang, B.; Wang, X.; Wang, H.; Li, W.; Tong, Q.; Yi, J.; Zhao, L.; et al. Longitudinal Characteristics of Lymphocyte Responses and Cytokine Profiles in the Peripheral Blood of SARS-CoV-2 Infected Patients. EBioMedicine 2020, 55, 102763. [Google Scholar] [CrossRef]
- Chen, G.; Wu, D.; Guo, W.; Cao, Y.; Huang, D.; Wang, H.; Wang, T.; Zhang, X.; Chen, H.; Yu, H.; et al. Clinical and Immunological Features of Severe and Moderate Coronavirus Disease 2019. J. Clin. Investig. 2020, 130, 2620–2629. [Google Scholar] [CrossRef]
- Ulhaq, Z.S.; Soraya, G.V. Anti-IL-6 Receptor Antibody Treatment for Severe COVID-19 and the Potential Implication of IL-6 Gene Polymorphisms in Novel Coronavirus Pneumonia. Med. Clin. 2020, 155, 548–556. [Google Scholar] [CrossRef]
- Ulhaq, Z.S.; Soraya, G.V. Interleukin-6 as a Potential Biomarker of COVID-19 Progression. Med. Mal. Infect. 2020, 50, 382–383. [Google Scholar] [CrossRef] [PubMed]
- Balzanelli, M.G.; Distratis, P.; Lazzaro, R.; Pham, V.H.; Tran, T.C.; Dipalma, G.; Bianco, A.; Serlenga, E.M.; Aityan, S.K.; Pierangeli, V.; et al. Analysis of Gene Single Nucleotide Polymorphisms in COVID-19 Disease Highlighting the Susceptibility and the Severity towards the Infection. Diagnostics 2022, 12, 2824. [Google Scholar] [CrossRef] [PubMed]
- Balzanelli, M.; Distratis, P.; Catucci, O.; Amatulli, F.; Cefalo, A.; Lazzaro, R.; Aityan, K.S.; Dalagni, G.; Nico, A.; De Michele, A.; et al. Clinical and Diagnostic Findings in COVID-19 Patients: An Original Research from SG Moscati Hospital in Taranto Italy. J. Biol. Regul. Homeost. Agents 2021, 35, 171–183. [Google Scholar] [CrossRef] [PubMed]
- Balzanelli, M.G.; Distratis, P.; Aityan, S.K.; Amatulli, F.; Catucci, O.; Cefalo, A.; De Michele, A.; Dipalma, G.; Inchingolo, F.; Lazzaro, R.; et al. An Alternative “Trojan Horse” Hypothesis for COVID-19: Immune Deficiency of IL-10 and SARS-CoV-2 Biology. Endocr. Metab. Immune Disord. Drug Targets 2022, 22, 1–5. [Google Scholar] [CrossRef] [PubMed]
- van de Veerdonk, F.L. COVID-19 Pneumonia and Cytokine Storm Syndrome. In Cytokine Storm Syndrome; Cron, R.Q., Behrens, E.M., Eds.; Springer International Publishing: Cham, Switzerland, 2024; pp. 307–319. ISBN 978-3-031-59815-9. [Google Scholar]
- Wang, F.; Qu, M.; Zhou, X.; Zhao, K.; Lai, C.; Tang, Q.; Xian, W.; Chen, R.; Li, X.; Li, Z.; et al. The Timeline and Risk Factors of Clinical Progression of COVID-19 in Shenzhen, China. J. Transl. Med. 2020, 18, 270. [Google Scholar] [CrossRef]
- Bhimraj, A.; Morgan, R.L.; Shumaker, A.H.; Baden, L.R.; Cheng, V.C.-C.; Edwards, K.M.; Gallagher, J.C.; Gandhi, R.T.; Muller, W.J.; Nakamura, M.M.; et al. Infectious Diseases Society of America Guidelines on the Treatment and Management of Patients With COVID-19 (September 2022). Clin. Infect. Dis. 2024, 78, e250–e349. [Google Scholar] [CrossRef]
- Gentilotti, E.; Savoldi, A.; Compri, M.; Górska, A.; De Nardo, P.; Visentin, A.; Be, G.; Razzaboni, E.; Soriolo, N.; Meneghin, D.; et al. Assessment of COVID-19 Progression on Day 5 from Symptoms Onset. BMC Infect. Dis. 2021, 21, 883. [Google Scholar] [CrossRef]
- Stone, J.H.; Frigault, M.J.; Serling-Boyd, N.J.; Fernandes, A.D.; Harvey, L.; Foulkes, A.S.; Horick, N.K.; Healy, B.C.; Shah, R.; Bensaci, A.M.; et al. Efficacy of Tocilizumab in Patients Hospitalized with COVID-19. N. Engl. J. Med. 2020, 383, 2333–2344. [Google Scholar] [CrossRef]
- Salvarani, C.; Dolci, G.; Massari, M.; Merlo, D.F.; Cavuto, S.; Savoldi, L.; Bruzzi, P.; Boni, F.; Braglia, L.; Turrà, C.; et al. Effect of Tocilizumab vs Standard Care on Clinical Worsening in Patients Hospitalized With COVID-19 Pneumonia: A Randomized Clinical Trial. JAMA Intern. Med. 2021, 181, 24–31. [Google Scholar] [CrossRef]
- Suresh, K.; Figart, M.; Formeck, S.; Mehmood, T.; Salam, M.A.; Bassilly, D. Tocilizumab for the Treatment of COVID-19-Induced Cytokine Storm and Acute Respiratory Distress Syndrome: A Case Series From a Rural Level 1 Trauma Center in Western Pennsylvania. J. Investig. Med. High Impact Case Rep. 2021, 9, 23247096211019556. [Google Scholar] [CrossRef]
- Salama, C.; Han, J.; Yau, L.; Reiss, W.G.; Kramer, B.; Neidhart, J.D.; Criner, G.J.; Kaplan-Lewis, E.; Baden, R.; Pandit, L.; et al. Tocilizumab in Patients Hospitalized with COVID-19 Pneumonia. N. Engl. J. Med. 2021, 384, 20–30. [Google Scholar] [CrossRef] [PubMed]
- Shankar-Hari, M.; Vale, C.L.; Godolphin, P.J.; Fisher, D.; Higgins, J.P.T.; Spiga, F.; Savovic, J.; Tierney, J.; Baron, G.; Benbenishty, J.S.; et al. Association between Administration of IL-6 Antagonists and Mortality Among Patients Hospitalized for COVID-19: A Meta-Analysis. JAMA 2021, 326, 499–518. [Google Scholar] [CrossRef] [PubMed]
- De Rossi, N.; Scarpazza, C.; Filippini, C.; Cordioli, C.; Rasia, S.; Mancinelli, C.R.; Rizzoni, D.; Romanelli, G.; Cossi, S.; Vettoretto, N.; et al. Early Use of Low Dose Tocilizumab in Patients with COVID-19: A Retrospective Cohort Study with a Complete Follow-Up. EClinicalMedicine 2020, 25, 100459. [Google Scholar] [CrossRef] [PubMed]
- Allen, F.D.; RECOVERY Collaborative Group. Baricitinib in Patients Admitted to Hospital with COVID-19 (RECOVERY): A Randomised, Controlled, Open-Label, Platform Trial and Updated Meta-Analysis. Lancet 2022, 400, 359–368. [Google Scholar] [CrossRef]
- Karampitsakos, T.; Papaioannou, O.; Tsiri, P.; Katsaras, M.; Katsimpris, A.; Kalogeropoulos, A.P.; Malakounidou, E.; Zarkadi, E.; Tsirikos, G.; Georgiopoulou, V.; et al. Tocilizumab versus Baricitinib in Hospitalized Patients with Severe COVID-19: An Open Label, Randomized Controlled Trial. Clin. Microbiol. Infect. 2023, 29, 372–378. [Google Scholar] [CrossRef] [PubMed]
- Sunny, S.; Tran, A.; Lee, J.; Abdallah, M.; Chaudhry, N.; Quale, J. Comparison of Tocilizumab vs Baricitinib in Clinical Outcomes Among Hospitalized Patients with COVID-19: Experience From a Public Hospital System in New York City. Open Forum Infect. Dis. 2023, 10, ofad426. [Google Scholar] [CrossRef]
- Zhang, J.; Fan, X.; Zhang, X.; Jiang, F.; Wu, Y.; Yang, B.; Li, X.; Liu, D. Efficacy and Safety of Tocilizumab and Baricitinib among Patients Hospitalized for COVID-19: A Systematic Review and Meta-Analysis. Front. Pharmacol. 2023, 14, 1293331. [Google Scholar] [CrossRef]
- Dastan, F.; Jamaati, H.; Barati, S.; Varmazyar, S.; Yousefian, S.; Niknami, E.; Tabarsi, P. The Effects of Combination-Therapy of Tocilizumab and Baricitinib on the Management of Severe COVID-19 Cases: A Randomized Open-Label Clinical Trial. Front. Pharmacol. 2023, 14, 1265541. [Google Scholar] [CrossRef]
- Miftode, E.; Miftode, L.; Coman, I.; Prepeliuc, C.; Obreja, M.; Stămăteanu, O.; Părângă, T.G.; Leca, D.; Pleşca, C.E. Diabetes Mellitus-A Risk Factor for Unfavourable Outcome in COVID-19 Patients-The Experience of an Infectious Diseases Regional Hospital. Healthcare 2021, 9, 788. [Google Scholar] [CrossRef]
- Rothuizen, L.E.; Livio, F.; Buclin, T. Drugs that aggravate the course of COVID-19: Really? Rev. Med. Suisse 2020, 16, 852–854. [Google Scholar]
- Kelleni, M.T. ACEIs, ARBs, Ibuprofen Originally Linked to COVID-19: The Other Side of the Mirror. Inflammopharmacology 2020, 28, 1477–1480. [Google Scholar] [CrossRef] [PubMed]
- Smart, L.; Fawkes, N.; Goggin, P.; Pennick, G.; Rainsford, K.D.; Charlesworth, B.; Shah, N. A Narrative Review of the Potential Pharmacological Influence and Safety of Ibuprofen on Coronavirus Disease 19 (COVID-19), ACE2, and the Immune System: A Dichotomy of Expectation and Reality. Inflammopharmacology 2020, 28, 1141–1152. [Google Scholar] [CrossRef] [PubMed]
- Laughey, W.; Lodhi, I.; Pennick, G.; Smart, L.; Sanni, O.; Sandhu, S.; Charlesworth, B. Ibuprofen, Other NSAIDs and COVID-19: A Narrative Review. Inflammopharmacology 2023, 31, 2147–2159. [Google Scholar] [CrossRef] [PubMed]
- Kushner, P.; McCarberg, B.H.; Grange, L.; Kolosov, A.; Haveric, A.L.; Zucal, V.; Petruschke, R.; Bissonnette, S. The Use of Non-Steroidal Anti-Inflammatory Drugs (NSAIDs) in COVID-19. NPJ Prim. Care Respir. Med. 2022, 32, 35. [Google Scholar] [CrossRef] [PubMed]
- Moshawih, S.; Jarrar, Q.; Bahrin, A.A.; Lim, A.F.; Ming, L.; Goh, H.P. Evaluating NSAIDs in SARS-CoV-2: Immunomodulatory Mechanisms and Future Therapeutic Strategies. Heliyon 2024, 10, e25734. [Google Scholar] [CrossRef]
- Chen, J.S.; Alfajaro, M.M.; Chow, R.D.; Wei, J.; Filler, R.B.; Eisenbarth, S.C.; Wilen, C.B. Non-Steroidal Anti-Inflammatory Drugs Dampen the Cytokine and Antibody Response to SARS-CoV-2 Infection. J. Virol. 2021, 95, 10-1128. [Google Scholar] [CrossRef]
- Horby, P.; Lim, W.S.; Emberson, J.R.; Mafham, M.; Bell, J.L.; Linsell, L.; Staplin, N.; Brightling, C.; Ustianowski, A.; Elmahi, E.; et al. Dexamethasone in Hospitalized Patients with COVID-19. N. Engl. J. Med. 2021, 384, 693–704. [Google Scholar] [CrossRef]
- Rodríguez-Hernández, M.Á.; Baena-Bustos, M.; Carneros, D.; Zurita-Palomo, C.; Muñoz-Pinillos, P.; Millán, J.; Padillo, F.J.; Smerdou, C.; von Kobbe, C.; Rose-John, S.; et al. Targeting IL-6 Trans-Signalling by Sgp130Fc Attenuates Severity in SARS-CoV-2 -Infected Mice and Reduces Endotheliopathy. EBioMedicine 2024, 103, 105132. [Google Scholar] [CrossRef]
Disease | Cause | References |
---|---|---|
Infection-induced | Viral infections: COVID-19 and MIS-C, HIV (AIDS infection and secondary infections/malignancies), EBV, HHV6, CMV, hemorrhagic fever viruses, influenza viruses | [7,8,9] |
Bacterial infections: Mycobacterium tuberculosis, Rickettsia spp., Ehrlichia spp. and any other bacteria causing hematogenous infection (bacterial sepsis) | [1,7,10,11] | |
Fungal (e.g., histoplasmosis) and parasitic infections (e.g., Leishmania, Plasmodium, Toxoplasma) | [7,12] | |
Genetic disorders | Familial hemophagocytic lymphohistiocytosis (HLH) | [1,7,13] |
Immunodeficiencies (e.g., PIK3CD, ITK) | ||
Autoinflammatory/inflammasomopathies (e.g., NLRC4, CDC42) | [1,7] | |
Autoimmune-related | Systemic lupus erythematosus | [7,14] |
Still’s disease | [7,15] | |
Kawasaki disease | [7,16] | |
Idiopathic multicentric Castleman’s disease (MCD) | [1,17] | |
Malignancy-associated | Hematologic (e.g., leukemia, lymphoma) | [7,18] |
Solid tumors | [7] | |
Iatrogenic-induced | CAR-T cell therapy | [7,19,20] |
Blinatumomab therapy | [7,21] | |
Others | Graft-versus-host disease (first used by James L. Ferrara in 1993) | [22] |
Anaphylaxis | [22,23] | |
Pregnancy | [7,24] | |
Cardiac bypass/ECMO circuit | [7,25] | |
Castleman disease | [7,26] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paranga, T.G.; Mitu, I.; Pavel-Tanasa, M.; Rosu, M.F.; Miftode, I.-L.; Constantinescu, D.; Obreja, M.; Plesca, C.E.; Miftode, E. Cytokine Storm in COVID-19: Exploring IL-6 Signaling and Cytokine-Microbiome Interactions as Emerging Therapeutic Approaches. Int. J. Mol. Sci. 2024, 25, 11411. https://doi.org/10.3390/ijms252111411
Paranga TG, Mitu I, Pavel-Tanasa M, Rosu MF, Miftode I-L, Constantinescu D, Obreja M, Plesca CE, Miftode E. Cytokine Storm in COVID-19: Exploring IL-6 Signaling and Cytokine-Microbiome Interactions as Emerging Therapeutic Approaches. International Journal of Molecular Sciences. 2024; 25(21):11411. https://doi.org/10.3390/ijms252111411
Chicago/Turabian StyleParanga, Tudorita Gabriela, Ivona Mitu, Mariana Pavel-Tanasa, Manuel Florin Rosu, Ionela-Larisa Miftode, Daniela Constantinescu, Maria Obreja, Claudia Elena Plesca, and Egidia Miftode. 2024. "Cytokine Storm in COVID-19: Exploring IL-6 Signaling and Cytokine-Microbiome Interactions as Emerging Therapeutic Approaches" International Journal of Molecular Sciences 25, no. 21: 11411. https://doi.org/10.3390/ijms252111411
APA StyleParanga, T. G., Mitu, I., Pavel-Tanasa, M., Rosu, M. F., Miftode, I. -L., Constantinescu, D., Obreja, M., Plesca, C. E., & Miftode, E. (2024). Cytokine Storm in COVID-19: Exploring IL-6 Signaling and Cytokine-Microbiome Interactions as Emerging Therapeutic Approaches. International Journal of Molecular Sciences, 25(21), 11411. https://doi.org/10.3390/ijms252111411